
J. Fluid Mech. (2024), vol. 989, A2, doi:10.1017/jfm.2024.482

A crystallographic approach to
symmetry-breaking in fluid layers
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Symmetry-breaking bifurcations, where a flow state with a certain symmetry undergoes a
transition to a state with a different symmetry, are ubiquitous in fluid mechanics. Much can
be understood about the nature of these transitions from symmetry alone, using the theory
of groups and their representations. Here, we show how the extensive databases on groups
in crystallography can be exploited to yield insights into fluid dynamical problems. In
particular, we demonstrate the application of the crystallographic layer groups to problems
in fluid layers, using thermal convection as an example. Crystallographic notation provides
a concise and unambiguous description of the symmetries involved, and we advocate its
broader use by the fluid dynamics community.
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1. Introduction

One of the best known examples of pattern formation in fluid dynamics concerns
Rayleigh–Bénard convection in a fluid layer. As the temperature difference across the layer
is increased, the geometry of the flow changes from an initial stationary state in which
no flow occurs, to a series of more complex flows. At the onset of convection, patterns of
rolls, hexagons or squares can be seen, depending on the nature of the fluid properties (e.g.
whether the viscosity is temperature-dependent) and the nature of the boundary conditions.
As the temperature difference is increased, further changes in the geometry of the flow
occur, with the flow ultimately becoming chaotic and time-dependent.

The transition from one flow geometry to another (e.g. from a stationary state to
hexagons) involves a loss of symmetry; the system is said to have undergone a spontaneous
symmetry-breaking bifurcation. What is remarkable is that much can be understood about
the nature of the bifurcation purely from the consideration of the symmetries of the
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system. This understanding comes from the subset of dynamical systems theory termed
equivariant bifurcation theory, and is well covered in textbooks such as Hoyle (2006) and
Golubitsky & Stewart (2002). The language of symmetry is group theory. Each of the
symmetry-breaking transitions from one state to another can be described by a state with
a certain symmetry group transitioning to a state whose symmetry is a subgroup of the
original group.

Crystallographers have long been concerned with transitions between states with
different symmetries. Indeed, there is a celebrated theory of phase transitions in crystals
due to Landau (1965), which has much in common with equivariant bifurcation theory.
Crystallographers have catalogued detailed symmetry information for periodic structures
in the famous International Tables for Crystallography (Hahn 2006), which have been
supplemented in recent decades by extensive computer databases such as the Bilbao
Crystallographic Server (Aroyo et al. 2006a,b).

The aim of the present paper is to demonstrate how the extensive databases on group
theory in crystallography can be exploited to understand transitions in fluid layers. While
there has already been extensive use of group theory to understand transitions in fluid
layers, authors tend to use a bespoke notation for their particular problem. The advantage
of crystallographic notation is that it is standardised. Moreover, there is a wealth of
group-theoretic information that can be simply looked up, without the need for it to
be re-derived for each new problem. The use of crystallographic notation to describe
convective transitions was first advocated by McKenzie (1988). The present paper is
in a sense an extension of that work, and goes further by exploiting the theory of
crystallographic layer groups (Wood 1964; Litvin & Wike 1991), which were added to
the International Tables only in 2002 (Kopský & Litvin 2010).

There is no new theory discussed in this paper: the theoretical ideas are well established
and can be found in textbooks. We aim to provide here an informal introduction to
the main ideas, and the interested reader can refer to the literature for the detailed
theory. One of the main difficulties with this topic is the large amount of technical
jargon needed to properly describe the ideas: the topic encompasses fluid dynamics,
representation theory, bifurcation theory and crystallography. Additional difficulties
arise because different communities use different words for the same concept (e.g.
factor group/quotient group, invariant subgroup/normal subgroup, isotropy group/little
group/stabiliser). Where possible, we have tried to use the notation of the International
Tables for the crystallographic concepts, and the notation of the textbook by Hoyle (2006)
for equivariant bifurcation theory.

The paper is organised as follows. In § 2, we establish the fundamental symmetries of
fluid layers. This is followed by an introduction to the crystallographic layer groups in
§ 3, and an introduction to symmetry-breaking transitions in § 4. Section 5 introduces the
relevant representation theory, and § 6 the relevant bifurcation theory. The theory is then
applied to some simple convection problems in § 7. Three appendices provide additional
technical details, and three supplements give tables of group theory information, available
at https://doi.org/10.1017/jfm.2024.482.

2. The symmetry of fluid layers

We will consider a fluid dynamical problem that takes place in a layer. In terms of
symmetry, it is important to distinguish between three different symmetries: (i) the
symmetry of the domain; (ii) the symmetry of the fluid dynamical problem (i.e. the domain
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plus the governing equations and boundary conditions); and (iii) the symmetry of solutions
to the problem. Each of these symmetries may be different.

2.1. Domain symmetries
Let us consider first the symmetries of the domain. We have an infinite fluid layer, and will
take x and y as horizontal coordinates, and z as a vertical coordinate. Let z = 0 denote the
mid-plane of the layer, and let a denote the layer thickness. The domain is thus the region
bounded by −a/2 � z � a/2.

A symmetry of the domain is an invertible map that maps points in the domain to other
points in the domain. Here, we will consider only distance-preserving symmetries of the
domain (isometries) as these will be the ones of relevance to the physical problem. We can
translate all points by a horizontal displacement vector d = (d1, d2, 0), with

td : (x, y, z) → (x + d1, y + d2, z), (2.1)

and retain the same domain −a/2 � z � a/2. We also retain the same domain if we rotate
about a vertical axis by an angle θ ,

Rθ
z : (x, y, z) → (x cos θ − y sin θ, x sin θ + y cos θ, z), (2.2)

or reflect in a vertical mirror plane, e.g. with normal x,

mx : (x, y, z) → (−x, y, z). (2.3)

The set of all such operations of the form (2.1), (2.2), (2.3) – i.e. all horizontal translations,
rotations about vertical axes, and vertical mirrors – and their combinations forms a group
known as E(2), the Euclidean group of distance-preserving transformations in a plane.
The fluid layer domain is also invariant under reflections in a horizontal plane, i.e. with
normal z,

mz : (x, y, z) → (x, y, −z), (2.4)

from which it follows that the domain is also invariant under the inversion operation

1̄ : (x, y, z) → (−x, −y, −z). (2.5)

The group of all distance-preserving operations (isometries) of the layer is E(2) × C2, a
direct product of E(2) and C2, where C2 denotes the cyclic group of order 2 containing
two elements (taken here as the identity and the inversion operation). Sometimes, C2 is
denoted as Z2 in other work. The combination of elements in the group E(2) × C2 leads
to operations that are more complex than individual rotations and reflections: e.g. one can
have glide reflections that combine a reflection and a translation, and screw displacements
that combine translations and rotations.

2.2. Problem symmetries
A fluid dynamical problem in the layer consists of the domain, a set of governing equations
and boundary conditions. At each point in the domain, there is a set of field variables
that describe the state of the fluid (e.g. its temperature, velocity, pressure). A symmetry
operation of the fluid dynamical problem is described by the combination of one of
the isometries with a description of how the field variables transform. If the governing
equations and boundary conditions are invariant under this transformation, then it is a
symmetry of the fluid dynamical problem.
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Choices of material properties and boundary conditions mean that not all operations that
are isometries of the domain are necessarily symmetries of the fluid dynamical problem.
For example, if a different boundary condition is used on the top and bottom of the layer
(e.g. fixed temperature on one, fixed flux on another), then the system cannot be invariant
under a horizontal mirror such as (2.4). Or if one considers an inclined convection problem
where the gravity vector is at an angle to the vertical axis of the layer, then the problem
is not invariant under arbitrary rotations about a vertical axis (Reetz, Subramanian &
Schneider 2020).

A fluid dynamical problem that is invariant under the full group E(2) × C2 of isometries
of the layer, which will be used in many of the examples which follows, is Rayleigh–Bénard
convection in a fluid layer of constant viscosity with appropriately chosen symmetric
boundary conditions (e.g. both boundaries being fixed-flux and free-slip) and the
Boussinesq approximation. The gravity vector is assumed to be aligned with the vertical.
The natural field that describes the state of the system is the temperature. The governing
equations are invariant under the operations given in (2.1)–(2.5), provided that the
temperature perturbation θ (the difference in temperature from a conductive steady state)
transforms as

td, Rθ
z , mx : θ → θ, (2.6)

mz, 1̄ : θ → −θ. (2.7)

The sign change under horizontal mirror reflection is a manifestation of the symmetry
between hot, rising fluid and cold, sinking fluid. A more detailed discussion of the
symmetry of this problem can be found in Appendix A.

2.3. Solution symmetries
In general, the symmetries of solutions to the equations are not the same as symmetries
of the problem, although the solutions’ symmetries are generically subgroups of the set
of symmetries of the problem. Rayleigh–Bénard convection provides a natural example
of this: a planform of hexagons or squares is not invariant under any arbitrary translation
but only a subgroup of allowed translations. However, one can apply a general element of
the symmetry group of the problem to a given solution to yield another solution of the
equations.

Figure 1 illustrates the symmetries of a particular solution to Rayleigh–Bénard
convection, namely that of convective rolls. Unlike the governing equations, which have
a continuous translation symmetry in the x-direction, the rolls have a discrete periodicity.
Also unlike the governing equations, the solution is not invariant under a horizontal mirror
mz, but it is invariant when the horizontal mirror mz is combined with a translation by half
the width of the unit cell; this is an example of a glide reflection.

3. Crystallographic layer groups

This work focuses on particular subgroups of E(2) × C2 known as the crystallographic
layer groups. They are the sets of isometries of the layer that are doubly periodic in space:
that is, instead of having continuous translation symmetry in the horizontal as E(2) × C2
does, the translation symmetry is discrete. The layer groups are invariant under td in (2.1)
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x

z

Figure 1. An illustration of the symmetries of a simple convective flow, showing a temperature field from
a two-dimensional numerical simulation of constant-viscosity Rayleigh–Bénard convection with free-slip,
fixed-temperature boundary conditions. This can also be considered as a temperature field in three dimensions
for convective rolls if the field is continued into the page (the y-direction). The Rayleigh number is 104, and
the flow is steady. The flow pattern is periodic in the x-direction, and the repeating unit cell is identified by the
thin black lines. Thick black lines indicate vertical mirror planes (mx). Red ovals indicate twofold horizontal
rotation axes (2y). The red colouring of the oval is used to indicate that the symmetry involves a change of sign
of the temperature field (i.e. changing from hot upwelling in red, to cold downwelling in blue). The horizontal
dashed red line indicates a horizontal glide plane: the pattern is invariant after translating in the x-direction by
half the width of the unit cell, reflecting in the horizontal mid-plane, and changing the sign of the temperature
field. The rolls in three dimensions also have a continuous translation symmetry in the y-direction, and my
mirrors.

only for discrete lattice vectors satisfying

d = xa1 + ya2, (3.1)

where x, y ∈ Z, and a1, a2 are basis vectors for the lattice. Many pattern-forming problems
lead to steady fluid flows that can be described as having a layer group symmetry. For
example, planforms described as squares, hexagons, bimodal, triangles, are all doubly
periodic in space and are examples of layer group symmetry. The principal example
of a convective flow that is not a layer group symmetry is that of convective rolls:
this has a discrete translation symmetry in one horizontal direction, but a continuous
translation symmetry in another horizontal direction. Layer groups are an example
of a subperiodic group, i.e. a group where the dimension of the space is greater
than the dimension of the periodic lattice. For layer groups, the space in which the
group elements act is three-dimensional, but there is only a two-dimensional lattice of
translations. The layer groups are in a sense intermediate between full three-dimensional
space groups (three-dimensional groups with a three-dimensional translation lattice)
and the two-dimensional plane or wallpaper groups (two-dimensional groups with a
two-dimensional translation lattice).

There are 80 layer groups, and their properties are detailed in the International Tables
for Crystallography, volume E (Kopský & Litvin 2010) (hereafter referred to as ITE) and
in computer databases such as the Bilbao Crystallographic Server (de la Flor et al. 2021)
(hereafter referred to as BCS). Each layer group is identified by a unique number and
Hermann–Mauguin (HM) symbol. One example that we will focus on is the layer group
p4/nmm (layer group 64, illustrated in figure 2a). This group has a square lattice, a fourfold
vertical rotation axis, two conjugate sets of vertical mirror planes, and a glide reflection
n that combines reflection in a horizontal plane with a translation by (1

2 , 1
2 , 0). The first

letter of the Hermann–Mauguin symbol denotes the centring type of the conventional unit
cell: for layer groups, this is either p for primitive cell, or c for centred cell. The next one,
two or three elements of the symbol describe symmetry elements about different axes. For
p4/nmm, the three elements are 4/n, m and m. The 4/n element denotes the presence of
both the fourfold vertical rotation axis and the glide reflection n, whose glide plane also
has a vertical normal (the slash indicates that the rotational symmetry axis and the normal
to the glide plane are parallel). The next two elements labelled m represent vertical mirror
planes. Other possible Hermann–Mauguin elements found in other layer group symbols
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p4/nmm

(a)

(b)

(c)

pmmn

p4mm

Figure 2. Symmetry diagrams from ITE for (a) p4/nmm (origin choice 1), and two of its subgroups,
(b) pmmn and (c) p4mm. Shown here is the unit cell in a projection onto the horizontal mid-plane. Squares
indicate fourfold vertical rotation axes (4z), filled ovals are twofold vertical rotation axes (2z), circles are
inversion centres (1̄), and unfilled squares with filled ovals indicate a 4̄z vertical inversion axis (4̄z combines the
fourfold vertical rotation 4z with the inversion operation 1̄). Solid lines are vertical mirror planes, dashed lines
are vertical glide planes. The symbol in the top right refers to the horizontal glide plane n, where the symmetry
operation combines a vertical mirror mz with a translation by ( 1

2 , 1
2 , 0). Full arrows around the edge refer to a

horizontal twofold rotation axis; half-arrows refer to a twofold screw axis. Red colouring indicates symmetry
operations that send z → −z and will be associated with sign changes in the temperature field (hot to cold and
vice versa). Examples of convective flows with these symmetries are shown in figures 3(b), 4(b), 6, 7 and 8.

include the symbol 1̄ representing the inversion operation of (2.5), the symbols 3̄, 4̄ and
6̄ that combine threefold, fourfold or sixfold rotation with an inversion, and a or b for
glide reflections with translations parallel to the basis vectors of the lattice a1 and a2,
respectively.

From (2.7), we have that a symmetry operation that sends z → −z involves a change
in sign of the temperature perturbation (i.e. hot to cold or vice versa). There is a broader
class of crystallographic groups termed ‘black and white’, ‘magnetic’ or ‘Shubnikov’ that
have as a possible group element 1′, which changes the sign of a field without changing
position. With such groups, a combination of a horizontal mirror and a sign change would
be denoted as m′

z, and the black-and-white layer groups depicted in figures 2(a,b) would
be referred to as p4/n′mm and pmmn′ (Litvin 2013). However, here we will not denote
the symmetry operations with primes for two reasons. First, the fluid problems that we
consider are invariant only on combining the sign change in θ with the horizontal mirror;
they are not invariant under a sign change in θ alone, so the 1′ operator is not present.
Second, a general fluid dynamical problem can consist of more field variables that just one,
and each variable may transform in a different way under the isometries, e.g. the horizontal
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velocities and the toroidal potential do not change sign under mz (see Appendix A). We
will simply write mz as the group element corresponding to horizontal mirror reflection
and it should be understood that it acts on different fields in different ways (some change
sign, some do not).

Many of the plots in this paper show the temperature field in the horizontal mid-plane.
Position in the mid-plane is invariant under the horizontal mirror mz; the only action
of mz in the mid-plane is to change the sign of the temperature perturbation. The
mid-plane temperature fields can therefore be considered as belonging directly to one of
the two-dimensional black-and-white plane groups. There are 80 black-and-white plane
groups, which are isomorphic to the 80 layer groups. A mapping between the symbols
used for black-and-white plane groups and those for layer groups can be found in ITE.

4. Symmetry-breaking transitions

Suppose that as a control parameter (such as the Rayleigh number) is varied, a
symmetry-breaking transition occurs from a state with symmetry group G to a state with
a lower-symmetry group H. For simplicity, let us just consider steady states. Purely from
symmetry arguments alone there is often much that can be said about the nature of the
transition: e.g. one can often classify the nature of the bifurcation as being either pitchfork
or transcritical, and also write down the generic form of the equations describing the
amplitudes of the critical modes (§ 6). More generally, given an initial state with a group G,
one can determine the possible groups H that can arise in a symmetry-breaking transition.

The first requirement for H is that it is a subgroup of G. Subgroups of layer groups have
a particular structure and classification (Müller 2013) where the letters t and k refer to
the symmetries that are retained. A subgroup is termed a translationengleiche subgroup
or t-subgroup if it has the same translation symmetries as its parent. A t-subgroup has
a different point group to its parent so is necessarily a non-isomorphic subgroup with
a different layer group number and symbol. A subgroup is termed a klassengleiche
subgroup or k-subgroup if the translations are reduced but the order of the point group
remains the same. The k-subgroups can be further categorised into those that are isotypic
(have the same layer group number and symbol) and those that are non-isotypic (have a
different layer group symbol). Finally, a subgroup may have both the order of the point
group reduced and the translations reduced. However, in this case, there always exists an
intermediate subgroup M such that M is a t-subgroup of G, and H is a k-subgroup of M
(Hermann’s theorem). As such, any subgroup H of G can be described in terms of a chain
of t and k relationships.

A subgroup H of a group G is termed maximal if there is no intermediate subgroup M of
G such that H is a proper subgroup of M. Both ITE and the BCS provide comprehensive
lists of the maximal subgroups of the layer groups, from which parent group–subgroup
relationships can be described. An example of such subgroup information is given in
table 1 for the layer group p4/nmm, along with additional information useful for describing
symmetry-breaking bifurcations. Similar tables for all 80 layer groups can be found in
supplement 1. In table 1, each maximal subgroup is listed with its layer group number and
Hermann–Mauguin symbol. The index of the subgroup in the parent is given (the index
is the number of left cosets of the subgroup in the parent). The type of subgroup is given
as either t or k for translationengleiche or klassengleiche. The nature of the additional
information in table 1 on factor group, core, and bifurcation is described in §§ 5 and 6.

Group theory places more constraints on the group H than it simply being a subgroup of
G. In fact, for a generic steady-state symmetry-breaking bifurcation, the subgroup H must
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Subgroup HM symbol Index Type Factor group Core Core HM Image Bifurcation

46 pmmn 2 t C2 46 pmmn C1 Pitchfork
48 cmme 2 t C2 48 cmme C1 Pitchfork
52 p4/n 2 t C2 52 p4/n C1 Pitchfork
54 p4212 2 t C2 54 p4212 C1 Pitchfork
55 p4mm 2 t C2 55 p4mm C1 Pitchfork
58 p4̄21m 2 t C2 58 p4̄21m C1 Pitchfork
59 p4̄m2 2 t C2 59 p4̄m2 C1 Pitchfork
64 p4/nmm 9 k C2

3 � D4 5 p11a D4 Transcritical
64 p4/nmm 25 k C2

5 � D4 5 p11a D4 Pitchfork
64 p4/nmm 49 k C2

7 � D4 5 p11a D4 Pitchfork

Table 1. Maximal subgroups of p4/nmm (layer group no. 64).

be an isotropy subgroup of a particular absolutely irreducible representation of the group
G (Golubitsky & Stewart 2002; Hoyle 2006). Thus to understand symmetry-breaking
bifurcations of layer groups, we must understand their group representations, which we
turn to now.

5. Representations of layer groups

A representation of a group is simply a mapping of the group elements to a set of matrices
in a way that preserves the group operation (i.e. the mapping is a homomorphism onto
GL(V)). A representation acts on a certain vector space V of dimension n. An invariant
subspace of a representation is a vector subspace W that has the property that Dw ∈ W for
all w ∈ W and for all D in the set of representation matrices. The spaces W = {0} and W =
V are always invariant subspaces, known as the trivial subspaces. If the representation
contains a non-trivial invariant subspace, then it is said to be reducible; otherwise, it is
irreducible. A representation is absolutely irreducible if the only linear maps that commute
with the representation are multiples of the identity. For representations over C, there is
no distinction between being absolutely irreducible and just irreducible, but there is a
difference over R, where representations can be irreducible but not absolutely irreducible.
Irreducible representations (or irreps for short) are the building blocks of representation
theory. Any representation of a group can be written as a direct sum of its irreducible
representations (Maschke’s theorem).

Given a point v ∈ V , we can define its isotropy subgroup Σ as

Σ = {g ∈ G : gv = v} (5.1)

and its corresponding fixed-point subspace by

Fix(Σ) = {w ∈ V : gw = w, ∀g ∈ Σ}. (5.2)

An isotropy subgroup is said to be axial if the dimension of its fixed-point subspace is
1. Axial isotropy subgroups are of particular interest because the existence of solution
branches with the given isotropy subgroup is guaranteed under certain conditions by the
equivariant branching lemma (Golubitsky & Stewart 2002; Hoyle 2006).

Classifying the steady-state symmetry-breaking bifurcations of layer groups consists
of identifying their irreducible representations, and subsequently finding their isotropy
subgroups. The general theory of irreducible representations of layer groups in detail is
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somewhat involved, but it is known, and results can simply be looked up in textbooks
or extracted from computer databases. In many cases it is not necessary to invoke the full
general theory, as the appropriate irreps can be found quickly by lifting from an appropriate
factor group.

5.1. Lifting representations
Given a group G and a normal subgroup N, one can form the factor group (or quotient
group) G/N. The elements of G/N are the left cosets of N in G, which have a well-defined
multiplication operator when the subgroup N is normal.

Suppose that we are interested in understanding a transition between a group G and
a subgroup H. We want to know the irrep of G associated with the transition. In
the crystallography literature, this is termed ‘the inverse Landau problem’ (Ascher &
Kobayashi 1977; Litvin, Fuksa & Kopsky 1986). One solution to this is as follows. We
first find the normal core N of the subgroup H in G, i.e. the largest normal subgroup
of G that is contained in H. In some cases, this may be the whole subgroup H, but not
in general. We then form the factor group G/N, and we refer to this as the factor group
associated with the transition. Table 1 gives the factor groups and normal cores associated
with each of the maximal subgroups of p4/nmm. The table also gives the image of the
subgroup H under the natural homomorphism onto cosets of N. The advantage of finding
the factor group G/N is that it is typically a small finite group, so finding its irreps is much
more straightforward than finding the irreps for the group G (which in the case of layer
groups is an infinite group). Moreover, the irreps of the factor group G/N can be lifted
to an irrep of the group G using the natural homomorphism onto cosets. Suppose that we
have an irrep ρ of the factor group,

ρ : G/N → GL(V), (5.3)

and suppose that q is the natural homomorphism

q : G → G/N, (5.4)

where q(g) = gN. Then the composition ρ ◦ q is the irrep of G lifted from G/N. Indeed,
it is an irrep of G with N in its kernel. Representations lifted from a factor group are
sometimes termed engendered representations in the crystallography literature.

All the t-subgroups of p4/nmm have the same factor group, namely C2. In this case, the
subgroups are all normal subgroups, so the normal core N is the same as the subgroup H.
The irreps associated with these transitions are very simple. They are one-dimensional and
just send each element of the subgroup H to 1, and all others to −1. As will be discussed
later, this is associated with a pitchfork bifurcation. Any index-2 subgroup necessarily has
a factor group of C2 and is associated with a pitchfork bifurcation.

5.2. The t-subgroups
The irreps associated with translationengleiche transitions, which preserve the translations
of the lattice, can be found by lifting from an appropriate factor group. The set of all
translations T of the lattice forms a normal subgroup of any layer group. Therefore the
irreps of G with the pure translations in the kernel can be found by lifting from the factor
group G/T . The factor group G/T is isomorphic to the isogonal point group associated
with the layer group, so the irreps are simply those of the corresponding point group.

The character table for the factor group G/T is shown for p4/nmm in table 2, and is the
same as that for isogonal point group 4/mmm (D4h). Similar tables for all 80 layer groups
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1 2z 4z 2y 2xy 1̄ mz 4̄z my mxy Axial subgroups

Size 1 1 2 2 2 1 1 2 2 2

A1g 1 1 1 1 1 1 1 1 1 1 p4/nmm (64)
A2g 1 1 1 −1 −1 1 1 1 −1 −1 p4/n (52)
B1g 1 1 −1 1 −1 1 1 −1 1 −1 pmmn (46)
B2g 1 1 −1 −1 1 1 1 −1 −1 1 cmme (48)
Eg 2 −2 0 0 0 2 −2 0 0 0 p21/m11 (15), c2/m11 (18)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1 p4212 (54)
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 p4mm (55)
B1u 1 1 −1 1 −1 −1 −1 1 −1 1 p4̄21m (58)
B2u 1 1 −1 −1 1 −1 −1 1 1 −1 p4̄m2 (59)
Eu 2 −2 0 0 0 −2 2 0 0 0 pm21n (32), cm2e (36)

Table 2. Translationengleiche character table of p4/nmm (no. 64). The column headings give the Seitz symbol
labels for a member of each conjugacy class. The number of elements in each conjugacy class is listed in the
first row of the table. Each irrep is given a label on the left using Mulliken notation. The rightmost column
gives the corresponding axial isotropy subgroups associated with each irrep. Note that the Seitz symbol labels
refer only to the point group part of the symmetry operations; the coset representatives of 2y, 2xy, 1̄, mz, 4̄z also
involve a translation by ( 1

2 , 1
2 , 0) (see the ITE description of p4/nmm, origin choice 1).

can be found in supplement 2. The character of a representation matrix is simply its trace.
Characters are independent of the basis used in the representation, and are the same for
group elements that are conjugate. A character table simply consists of a table of all the
characters for all the irreps of a group. For many applications of representation theory, it
is sufficient to know the characters of the representation and it is not necessary to know
the representation matrices themselves.

Each of the seven t-subgroups listed in table 1 is associated with one of the
one-dimensional irreps in table 2. There are also additional axial subgroups identified
in table 2 associated with the two-dimensional representations labelled Eg and Eu. These
subgroups are not in table 1 as they are not maximal subgroups. It should be stressed that
isotropy subgroups need not be maximal subgroups.

5.3. General theory of representations of layer groups
Irreps associated with k-transitions, where translation symmetries are lost, can also be
obtained by lifting from appropriate factor groups. An example is given in table 1, which
lists an index-9 k-transition from p4/nmm to p4/nmm where the associated irreps could
be found by considering the irreps of the corresponding factor group C2

3 � D4 (where
C2

3 denotes the direct product of C3 with itself, i.e. C3 × C3, and the symbol � denotes
the semi-direct product). A discussion of the irreps of this particular factor group can
be found in Matthews (2004) (see his figure 1). Such a transition is an example of a
spatial-period-multiplying bifurcation where the periodicity of the pattern is broken but
maintained on a larger scale: in this case, after the symmetry break, the lattice basis vectors
are scaled by a factor 3 in each direction.

An alternative approach is to exploit the general theory that describes the complete set
of irreps of layer groups. This theory is somewhat involved, but is understood, and one can
simply look up appropriate representations using published tables (Bradley & Cracknell
1972; Litvin & Wike 1991; Milosevic et al. 1998) or computer software (Aroyo et al.
2006a; Stokes, van Orden & Campbell 2016; de la Flor et al. 2021).
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The starting point for the general theory concerns the representations of the subgroup T
of all translations of the lattice. The subgroup T is a normal subgroup of any layer group.
It is also an Abelian group, so its irreps are one-dimensional. The irreps of T are simply
e−ik·d for a translation by a vector d, where k is a wavevector which labels the particular
irrep. Wavevectors that differ by a reciprocal lattice vector lead to identical irreps. As such,
the wavevectors for defining irreps are restricted to a region of reciprocal space known as
the Brillouin zone (a unit cell in reciprocal space) such that each irrep has a unique k label.

The irreps of the layer groups can be built up from the irreps of T using the theory of
induced representations (see Appendix B for a brief example, and Bradley & Cracknell
(1972), Aroyo et al. (2006a) and de la Flor et al. (2021) for the detailed theory). Each irrep
is labelled by a wavevector k, a symbol that represents the type of wavevector (the labels
Γ , Σ , Δ, and so on in figure 10 of Appendix B), and an index (1, 2, 3, . . .) referencing
a particular representation of the little group of the wavevector. For example, the index-9
k-transition from p4/nmm to p4/nmm is associated with two possible irreps of the parent
group: ∗Σ1 with k = (1/3, 1/3), and ∗Δ3 with k = (0, 1/3). The full matrices of these
representations are given in § B.2. The irreps associated with t-transitions have a zero
wavevector, k = (0, 0). These are sometimes labelled by ∗Γ and an index, rather than the
Mulliken symbols used in table 2, as they correspond to the Γ point in the Brillouin zone
(figure 10).

Much information can be obtained about the irreps and isotropy subgroups associated
with transitions by querying computer databases (Aroyo et al. 2006a; Perez-Mato, Aroyo
& Orobengoa 2012; Stokes et al. 2016; de la Flor et al. 2021; Iraola et al. 2022). Given
a parent group and a subgroup, one can ask the software tools to provide the associated
irreps and the corresponding fixed-point subspaces of the isotropy subgroups. For a given
parent group, one can also obtain from the tools a complete listing of all possible isotropy
subgroups and the corresponding irreps. Most of these software tools are designed for
use on full three-dimensional space groups, rather than layer groups. However, each layer
group can be associated with a corresponding space group (Litvin & Kopský 2000). Given
a three-dimensional space group S, and Tz as the one-dimensional subgroup of S of the
vertical translations, the factor group S/Tz is isomorphic to a layer group. The irreps of
layer groups can be obtained from the irreps of space groups where the wavevector is
constrained to lie in a particular plane.

6. Equivariant bifurcation theory

Once the irrep associated with a particular transition is known, the nature of the
bifurcation can be understood using equivariant bifurcation theory (Hoyle 2006; Crawford
& Knobloch 1991; Golubitsky & Stewart 2002). The full dynamics, which is described by a
set of partial differential equations, can be reduced in the neighbourhood of the bifurcation
point to simple ordinary differential equations of the form

dy
dt

= f ( y;μ) (6.1)

using methods such as centre manifold reduction or Lyapunov–Schmidt reduction. Such
equations are termed amplitude equations. Here, y is the vector of mode amplitudes
(which would be referred to as an order parameter in crystallography), and is of the same
dimension as the irrep. Also, μ is the bifurcation parameter, which for convection problems
can be related to the Rayleigh number. Bifurcation occurs when μ passes through zero.
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The function f ( y;μ) is equivariant under the action of the matrices of the given irrep,
i.e.

f (gy;μ) = g f ( y;μ) (6.2)

for all matrices g in the given irrep. Equivariance places strong constraints on the form of
the amplitude equations, and in turn on the nature of the bifurcation. Equivariance under a
non-trivial irrep implies that f (0;μ) = 0, hence y = 0 is always an equilibrium solution
(although not necessarily a stable one). Steady-state bifurcations without symmetry
constraints are generically saddle-node bifurcations; it is the constraints from symmetry
that lead to pitchfork or transcritical bifurcations instead.

The simplest example of the consequences of equivariance are in a one-dimensional
system, invariant under C2 = {1, −1}. Equivariance under C2 implies that the function f
is odd ( f (−y;μ) = −f ( y;μ)), which in turn implies that in a Taylor expansion of f ( y;μ)

about y = 0, no even-order terms in y will appear. It follows from the symmetry alone that
the associated bifurcation must be a pitchfork.

A common method of analysing amplitude equations is to consider their Taylor
expansion in powers of y, and to truncate at some particular order. Much generic behaviour
about the bifurcation can be described by these truncated forms. Moreover, symmetry
places constraints on the number of independent parameters needed to describe the
truncated form: for the C2 example, there are no quadratic or other even-order terms
present. The dimension of the space of equivariants of given degree can be obtained
purely using the characters of the representation (see Appendix C and Antoneli, Dias &
Matthews 2008). This can be used to show, for example, that the faithful irrep of D3 has
a quadratic equivariant, unlike C2. The faithful irrep of D3 is generically associated with
a transcritical bifurcation, although for a particular problem there is always the possibility
that the coefficient associated with the quadratic equivariant is zero due to some particular
feature of the governing equations (e.g. self-adjointness; Golubitsky, Swift & Knobloch
1984) that would then cause the bifurcation to be a pitchfork.

The final column of table 1 classifies the type of generic steady-state bifurcation
associated with each of the maximal subgroups of p4/nmm. Only the index-9 k-transition
is associated with a transcritical bifurcation; all others are pitchforks. The bifurcations
can generically be classified depending on whether the dynamics when restricted to
the fixed-point subspace has a quadratic term: pitchfork if not, transcritical if so.
The classification of bifurcations is discussed further in supplement 3, which provides
character tables of several small finite groups and the dimensions of their spaces of
equivariants.

7. Convection

We will now apply the theory discussed in the previous sections to transitions in fluid
layers, and in particular to thermal convection. Consider a layer of fluid, heated from
below and cooled from above. As the Rayleigh number is increased past some critical
value, the system begins to convect. Depending on choices of boundary conditions and
rheology, different planforms of the flow are possible: common planforms seen at onset
are rolls, hexagons and squares. Each of these convective planforms can be classified using
crystallographic notation, e.g. squares have layer group symmetry p4/nmm (layer group
64), as illustrated in figure 3(b).

The physical state of the fluid can be described by its temperature field. Figure 3 shows
examples of possible temperature fields that can occur at the initial onset of convection.
Each panel shows the mid-plane temperature field with red/blue colouring for hot/cold,
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(a) Rolls

p4/nmm (layer group 64) 

p4/nbm (layer group 62)

p3–/m1 (layer group 72) 

p622 (layer group 76)

p6mm (layer group 77)

cmme (layer group 48)(b)

(d)

( f )

(c)

(e)

(g)

Phase

–π –π/2 0 π/2 π

Figure 3. Examples of crystallographic classification for convective flows consisting of a single horizontal
wavenumber: (a) rolls, (b) squares (checkerboard), (c) rectangles (patchwork quilt), (d) triangles,
(e) down-hexagons, ( f ) anti-squares, (g) anti-hexagons. Each pattern, with the exception of rolls, is labelled by
its Hermann–Mauguin layer group symbol. The pattern of rolls does not correspond to a layer group, as it has
one axis with a continuous translation symmetry (its symmetry may be referred to as paνbma2; Kopský 2006).
The left-hand plot of each panel shows the mid-plane temperature field; the right-hand plot shows its Fourier
transform (reciprocal space plot). In reciprocal space, the size of the dots shows the amplitude, the colour of
the dots shows the phase (colour bar in top right). Grid lines indicate the reciprocal lattice, although note that
some mode patterns are consistent with more than one type of lattice (e.g. both hexagonal and rectangular).
The lattice shown is that used in ITE for the given layer group. With a single horizontal wavenumber, all modes
must lie on a circle in reciprocal space (grey line). All of these patterns represent a single-parameter family:
once the origin and orientation is specified, the only remaining parameter is the amplitude.

along with the corresponding reciprocal space (Fourier domain) pattern, where each dot is
coloured according to phase, and the size of the dot indicates its amplitude. At the onset of
convection, there is typically a single critical horizontal wavenumber kc, and the horizontal
variation is described by a planform function f (x, y) satisfying ∇2

h f = −k2
c f (Ribe 2018).

When constrained to a periodic lattice, the planform function is a superposition of modes
of the form exp(i(kxx + kyy)), where k = (kx, ky) is the horizontal wavenumber vector,
and |k| = kc. Thus in the reciprocal space plots of figure 3, all the dots lie on a circle of
radius kc.
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(c) cmm2 (layer group 26)
(d ) p3m1 (layer group 69)

(b)
pmmn (layer group 46)

(a)
c2/m11 (layer group 18)

Figure 4. Further examples of crystallographic classification for convective flows consisting of a single
horizontal wavenumber. These examples form two-parameter families, and each pattern may be considered
as a superposition of two of the single-parameter patterns shown in figure 3: (a) trapezoids (a combination
of squares (64) and triangles (72)), (b) bimodal (a combination of squares (64) and rolls, or two orthogonal
sets of rolls), (c) up-rectangles (a combination of rectangles (48) and hexagons (77)), (d) down-triangles (a
combination of triangles (72) and hexagons (77)).

Figures 3( f,g) show examples of superlattice patterns (Dionne, Silber & Skeldon 1997;
Dawes, Matthews & Rucklidge 2003; Hoyle 2006). These are patterns where the critical
wavenumber kc is larger in magnitude than the basis vectors describing the reciprocal
lattice. For example, in figure 3( f ), the basis vectors of the reciprocal lattice are k1 =
(0, 1) and k2 = (1, 0), and the critical circle has kc = √

5 > 1. Superlattice patterns show
periodicity on one scale (in figure 3( f ), periodicity in x and y with period 2π), but features
in the pattern occur on a smaller scale (in figure 3( f ) with wavelength 2π/

√
5.)

Each of the patterns illustrated in figure 3 is a single-parameter family: once the origin
and orientation of the pattern are specified, the only remaining parameter that describes
the flow is the amplitude. Figure 4 illustrates two-parameter examples that still have a
single horizontal wavenumber (e.g. bimodal flow). The initial onset of convection and the
selection of convective planform has been very well studied (see e.g. the extensive studies
by Buzano & Golubitsky 1983; Golubitsky et al. 1984; Knobloch 1990); we simply note
here that each of the convective planforms that are typically described in the convective
literature by a name (such as hexagons, bimodal flow, patchwork quilt) can be given a
Hermann–Mauguin symbol that specifies its symmetry unambiguously.

7.1. Numerical simulations
As the Rayleigh number is increased, the initial convective planforms of hexagons, rolls,
squares and so on undergo a series of further symmetry-breaking transitions. Typically,
such transitions are investigated using numerical simulations. Ideas from group theory
can both illuminate the results of the numerical simulations and be used to make the
computations more efficient.

As a concrete example, consider a three-dimensional numerical simulation of fixed-flux
convection in a constant-viscosity fluid layer at infinite Prandtl number with the
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Boussinesq approximation (the governing equations can be found in § A.1). At the onset
of convection, the expected planform is squares (Proctor 1981), so it is natural to consider
a computational domain that is a box with periodic boundary conditions in the horizontal.
The temperature field within the box is described in terms of coefficients with respect to
some finite set of basis vectors. The particular calculations here use spectral basis elements
of the form

θ(x, y, z) =
K∑

k=−K

L∑
l=−L

M∑
m=0

cklm exp(i(kx + ly)) Tm(z), (7.1)

i.e. a basis of Fourier modes in the horizontal, and Chebyshev polynomials in the
vertical (Burns et al. 2020). However, the same group theory ideas can be exploited
whatever choice of basis is made. Since θ (the temperature perturbation) is a real variable,
c∗

klm = ck̄ l̄ m.
Suppose that there is an N-dimensional set of coefficients describing the given state.

Each symmetry can be represented by an N × N matrix that describes the action of
that symmetry on the basis coefficients (here, the set of cklm). In general, this N × N
representation is reducible, and it is possible to change basis such that in the new basis,
the components transform according to the irreducible representations of the given group.

The change of basis is achieved using projection operators. To project onto the
components that transform according to the Jth irrep of a group G, we apply the operator
PJ defined by

PJ = dim J
|G|

∑
g∈G

(χJ(g))∗g, (7.2)

where dim J is the dimension of the irrep, |G| is the order of the group, χJ(g) is the
character of the element g, and g is the matrix representing the action of the element g
in the given representation. Moreover, it should be noted that through a change of basis,
the representations can be made unitary (orthogonal in the case of real representations)
using Weyl’s unitary trick. In turn, an orthogonal projection matrix can be used to
give an orthogonal set of basis vectors corresponding to a particular irrep using a QR
decomposition.

An illustration of an isotypic decomposition into basis vectors that transform according
to the irreps is given in figure 5. This example considers the c210 coefficient, and the
coefficients to which it can be related using the layer symmetry p4/nmm. The periodicity
of the computational domain is assumed to align with the principal lattice of translations
of p4/nmm. As such, the basis vectors cklm are invariant under the group T of lattice
translations, so one need only consider the factor group G/T whose character table is
given in table 2. There are 8 coefficients that are related by symmetry to c210, and the
8 dimensional space can be decomposed into the irreps given in table 2 as the direct
sum A1g ⊕ A2g ⊕ B1g ⊕ B2g ⊕ 2Eu (see Dionne et al. (1997) for an application of this
particular decomposition).

The isotypic decomposition can be used to simplify the numerical study of
symmetry-breaking bifurcations. An example of this is shown in figures 6, 7 and 8, which
illustrate the breaking of a p4/nmm pattern of squares into two different planforms with
less symmetry, one of pmmn and one of p4mm. The computational domain is a box, with
aspect ratio such that the distance between rising and sinking regions is 8 times the layer
depth. The heat flux is fixed on the top and bottom boundaries, and both boundaries
are free-slip. Fixed-flux convection with free-slip boundaries in an infinite layer formally
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A1g

B1g

Eu

Eu

A2g

B2g

Eu

Eu

Figure 5. An example of an isotypic decomposition for the wavevector star generated by k = (2, 1) with no
z-dependence, i.e. the decomposition into the irreps of p4/nmm given in table 2. The star decomposes as
A1g ⊕ A2g ⊕ B1g ⊕ B2g ⊕ 2Eu.

has k = 0 as the most unstable wavenumber, with critical Rayleigh number Rac = 120
(Chapman & Proctor 1980; Rieutord 2015). For the finite horizontal scale of the numerical
problem, the critical Rayleigh number is slightly higher, Rac = 126. Figure 6(a) shows the
planform near onset, at Ra = 200, which is dominated by the four modes on the critical
circle |k| = kc although there are also small contributions from higher modes.

As the Rayleigh number is increased, there is more power in higher modes
(figures 6b,c) and sharper features are seen. However, the solution shown in figure 6(c)
(and also figures 7(a) and 8(a)) at Ra = 1500 is actually unstable to perturbations that
break the symmetry. The unstable solution can be computed by imposing the p4/nmm
symmetry on the numerical scheme, either by restricting the set of basis vectors used to
those associated with the trivial irrep A1g, or by projecting the solutions onto that irrep
at each iteration using the projection operator. Restricting the set of basis vectors used
is more advantageous in terms of computational efficiency, as one then solves a problem
with a much smaller set of unknowns.

Figures 6, 7 and 8 illustrate the same symmetry-breaking transitions, but do so using
different projections of the numerical solutions. Figures 6(c), 7(a) and 8(a) show the
unstable p4/nmm solution; figures 6(d), 7(b) and 8(b) show the symmetry break to a
pmmn solution; figures 6(e), 7(c) and 8(c) show the symmetry break to a p4mm solution.
Both figures 6 and 8 show the mid-plane plane temperature field and its corresponding
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(a)

(b)

(c)

(e)

(d)

Figure 6. Examples of symmetry-breaking bifurcations in fixed-flux convection in a fluid layer, as images of
the mid-plane temperature field, both in real space (contour plots) and in reciprocal space (dot patterns). At
the onset of convection, a square planform is seen, with p4/nmm symmetry (layer group 64). The left-hand
plots show the evolution of the p4/nmm solution as the Rayleigh number is increased from (a) Ra = 200,
(b) Ra = 700, and (c) Ra = 1500. The p4/nmm solution at Ra = 1500 is unstable to perturbations that break
the symmetry. (d,e) New solutions at Ra = 1500 that emerge from pitchfork bifurcations from the p4/nmm
solution: (d) has symmetry pmmn (layer group 46), and (e) has symmetry p4mm (layer group 55).

reciprocal space plot; the only difference is the choice of origin. Figure 6 uses what is
given in ITE as origin choice 1 for p4/nmm, the same as used in the symmetry diagrams
of figure 2. Figure 8 uses an origin that is shifted by (1

4 , 1
4 , 0) and referred to as origin

choice 2 in ITE. Figure 7 give a three-dimensional rendering of the isotherms in origin
choice 1 coordinates.

The loss of symmetry is perhaps clearest to see in the origin choice 2 mid-plane images
of figure 8. The loss of the fourfold rotation axes in going from figure 8(a) (p4/nmm) to
figure 8(b) (pmmn) is particularly apparent. The loss of symmetry in going from figure 8(a)
(p4/nmm) to figure 8(c) (p4mm) is more subtle, as it involves the loss of the glide reflection
about the horizontal mid-plane. The upwellings in figure 8(c) are no longer related by
symmetry to the downwellings as they are in figure 8(a). This change can be seen in
the differences between the shapes of the blue contours (cold downwellings) and the
red contours (hot upwellings) in figure 8(c): there are narrow connections between the
blue downwelling regions, but no connections between the red upwelling regions. These
connections can also be seen in the three-dimensional rendering of figure 7(c), coming
through the middle of each side of the box as light blue contours.

The stability of the p4/nmm solution as a function of Rayleigh number can be assessed
using standard linear stability analysis, but the calculations can be made more efficient
by exploiting the symmetry. A good general introduction to the numerical methods
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(a)

(b)

(c)

Figure 7. Three-dimensional rendering of the convective flows shown in horizontal cross-section in
figures 6(c–e), showing equally-spaced contours of the temperature field. All flows have Ra = 1500, with
symmetries (a) p4/nmm, (b) pmmn, (c) p4mm. The loss of the fourfold vertical rotation symmetry 4z about
the centre of the box in going from (a) to (b) can be seen clearly. The loss of symmetry between (a) and (c)
is more subtle: the upwellings are now not related by symmetry to the downwellings. Image (c) has lost the
horizontal glide reflection n, the twofold rotations about horizontal axes, and the twofold screw rotations about
horizontal axes (see figure 2).

for performing linear stability and bifurcation analysis can be found in Tuckerman &
Barkley (2000). The stability analysis relies on the calculation of the eigenvalues of an
appropriate Jacobian matrix. When an eigenvalue has a real part that goes from being
negative to being positive, there is instability and an associated bifurcation to a new flow
pattern. The isotypic decomposition aids the linear stability analysis by allowing one
to block-diagonalise the Jacobian according to the irreps. This has several advantages:
(i) there are smaller linear systems to deal with in the individual blocks; (ii) the eigenvalues
in the individual blocks may be more widely separated that those of the full problem,
speeding up convergence of numerical eigenvalue techniques; (iii) one can directly identify
the symmetries that are broken and the corresponding active irrep.

Figure 9 illustrates the linear stability analysis of the p4/nmm solution in figure 6(b)
at Ra = 700, showing the eigenmodes with largest real part corresponding to the irreps
B1g and A2u. At Ra = 700, eigenvalues of both modes are real and negative. However,
for slightly larger Ra, at Ra = 756 for B1g and Ra = 815 for A2u, the eigenvalues
become positive, leading to bifurcations and the solutions with broken symmetry seen in
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A crystallographic approach to symmetry-breaking

(a)

(b)

(c)

Figure 8. Plots identical to those in figures 6(c–e) but with the origin of the coordinate system shifted by
( 1

4 , 1
4 , 0) (the coordinate system given as origin choice 2 for p4/nmm in ITE). The corresponding symmetry

diagrams (with origin shifted from figure 2) are shown on the left. All flows have Ra = 1500, with symmetries
(a) p4/nmm, (b) pmmn, (c) p4mm. Some of the symmetry losses are clearer to see with this choice of origin as
the rotation axes are moved away from the edges of the box. The loss of the fourfold inversion axes (4̄z) in going
from (a) to (b) or (c) can be seen clearly. The temperature perturbation is necessarily zero on the mid-plane at
a fourfold inversion axis.
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J.F. Rudge and D. McKenzie

(a)

(b)

Figure 9. Examples of eigenmodes in a linear stability analysis of the p4/nmm solution depicted in figure 6(b),
with Ra = 700 (using origin choice 1). (a) The mid-plane temperature field for the eigenmode with eigenvalue
with largest real part that transforms according to the irrep B1g in table 2, associated with the bifurcation to
the pmmn solution in figure 6(d). (b) The corresponding eigenmode that transforms according to irrep A2u in
table 2, associated with bifurcation to p4mm in figure 6(e).

figures 6(d,e) (and also figures 7(b,c) and 8(b,c)). Given the irreps involved, these
bifurcations are necessarily pitchfork bifurcations.

Symmetry can also be exploited to calculate the new equilibrium states after a
bifurcation. The solution without the symmetry break can be used as an initial condition,
with a small perturbation added in the form of the symmetry-breaking eigenmode of the
linear stability calculation. One can use the projection operators to constrain the solution
to have the appropriate symmetry (e.g. for figure 6(d), imposing the group pmmn or
restricting to only those basis vectors corresponding to the irreps A1g and B1g of p4/nmm
in table 2). Once the eigenmodes associated with the bifurcations have been calculated, it is
possible to systematically perform a centre manifold reduction to determine the amplitude
equations (Carini, Auteri & Giannetti 2015), although we have not done this here.

7.2. Further examples
There are many examples of flow transitions in fluid layers in the literature, but almost
none use the crystallographic notation that has been adopted here. One study that does is
McKenzie (1988), which describes a wide variety of transitions in convection, particularly
those in the experimental studies of a temperature-dependent viscosity fluid by White
(1988). A convective system with a temperature-dependent viscosity is not invariant under
reflection in a horizontal mirror plane. As such, the layer groups involved are those
without such mirror planes, which are equivalent to those of the 17 plane or wallpaper
groups. Many of the examples discussed by McKenzie (1988) are pitchfork bifurcations,
although it should be noted that the bifurcations that he discusses with factor group D3 are
generically transcritical, and not pitchforks.
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A crystallographic approach to symmetry-breaking

8. Conclusions

Our aim in this work has been to demonstrate the utility of the extensive databases
in crystallography for understanding transitions in fluid layers. For simplicity, we
have focused on steady states, doubly periodic in space, that are described by
the crystallographic layer groups. We have not discussed transitions that break the
time-translation symmetry (Hopf bifurcations), which involve spatio-temporal group
elements that combine space group elements with time translations. The bifurcation
theory for such cases is well understood, but it would be helpful to have a standardised
crystallographic notation for describing such transitions. Translations in time can
be associated with a fourth dimension. Hopf bifurcations lead to solutions that are
time-periodic, thus the natural groups to consider will be the subperiodic groups in four
dimensions with a three-dimensional lattice of translations (the two horizontal space
dimensions and one time dimension). We have also made no attempt here to describe
the representation theory for the initial onset of convection; formally, this would involve
a study of the representations of E(2) × C2, which is a non-compact Lie group. The
difficulty of dealing with such a group is usually side-stepped in the literature by
considering instead a problem on a compact domain (the two-torus). The analysis of
pattern-forming problems is considerably more straightforward when they are forced to be
periodic with respect to a lattice, as they have been in this paper. The spectrum of modes
is discrete, and techniques like centre manifold reduction can be used. Patterns that are not
exactly periodic are more challenging to analyse, but there are techniques available (see,
for example, Chapters 7–11 of Hoyle 2006). Such methods are required for understanding
phenomena such as defects, dislocations, the zig-zag and cross-roll instabilities, spirals
and quasi-patterns.

There is a wealth of useful information that lies within the crystallographic databases,
and we encourage fluid dynamicists to exploit it.

Supplementary materials. Three supplements with additional group theory tables are available at https://
doi.org/10.1017/jfm.2024.482.
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Appendix A. The symmetries of Rayleigh–Bénard convection

Consider Rayleigh–Bénard convection in a fluid layer, with x and y as horizontal
coordinates, and z as a vertical coordinate. The system has a natural Euclidean symmetry
in the horizontal plane, represented by the group E(2). However, depending on boundary
conditions and rheological choices, there may be additional symmetries in the problem.
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A.1. Governing equations
For Boussinesq, infinite Prandtl number, thermal convection the governing equations are

∇ · v = 0, (A1)

∇ · σ = −ρ0gαT ẑ, (A2)

∂T
∂t

+ v · ∇T = κ ∇2T, (A3)

where v is the fluid velocity, σ is the stress tensor, ρ0 is the reference density, g is the
acceleration due to gravity, α is the thermal expansivity, T is the temperature, and κ is the
thermal diffusivity. The Newtonian constitutive law relating stress to strain rate is

σ = −pI + η
(∇v + ∇vT)

, (A4)

where p is the pressure. Let θ represent the temperature perturbation from a conductive
steady state, where the steady-state temperature gradient is �T/a, and a is the layer
thickness. The governing equations (A1), (A2) and (A3) can be rewritten as

∇ · v = 0, (A5)

∇ · σ̃ = −ρ0gαθ ẑ, (A6)

∂θ

∂t
+ v · ∇θ − �T

a
v · ẑ = κ ∇2θ, (A7)

where σ̃ is a modified stress tensor that represents the difference from the conductive state.
The equations can be made dimensionless by scaling all lengths by the layer thickness a,
and all times by the diffusion time a2/κ . The behaviour is controlled by the dimensionless
Rayleigh number Ra = ρ0gα �T a3/(η0κ). The temperature can be scaled by �T/Ra, the
velocity by κ/a, and the pressure by ρ0gαθ0d, to yield

∇ · v = 0, (A8)

−∇ · σ̃ = θ ẑ, (A9)

1
Ra

(
∂θ

∂t
+ v · ∇θ − ∇2θ

)
= v · ẑ. (A10)

A.2. Mid-plane reflection
If boundary conditions top and bottom are identical, then provided that the viscosity is
constant (or depth-dependent with mid-plane symmetry), the equations are invariant under
the mid-plane symmetry (where z = 0 is the mid-plane)

mz : (x, y, z) → (x, y, −z), (A11)

provided that the variables in the equations transform as

mz : u → u, v → v, p → p,

θ → −θ, w → −w,

}
(A12)

where the velocity vector is v = (u, v, w), and p is the pressure perturbation. Here, (A12)
represents the symmetry between hot upwellings and cold downwellings.
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A.3. Poloidal-toroidal decomposition
For three-dimensional flows represented by poloidal and toroidal potentials S and T (and
neglecting any mean-field flow), we have

v = ∇ × (ẑ × ∇S) + ẑ × ∇T,

u = − ∂2S

∂x ∂z
− ∂T

∂y
, v = − ∂2S

∂y ∂z
+ ∂T

∂x
, w = −∇2

hS,

⎫⎪⎬
⎪⎭ (A13)

so the potentials must transform under mid-plane reflection as

mz : S → −S, T → T. (A14)

This is different from their transformation under vertical mirrors, which is

mx : S → S, T → −T (A15)

as mx : u → −u. For the constant-viscosity example in figure 6, the flow is purely
poloidal (T = 0). The poloidal potential S transforms in the same way as the temperature
perturbation θ under the symmetry operations.

While this work uses the Cartesian coordinates of the plane layer, it should be noted
that poloidal–toroidal decompositions are commonly used in problems of spherical
geometry, such as the study of convection in a spherical shell in mantle dynamics (Ribe
2018). Indeed, symmetry arguments can be similarly exploited in a spherical geometry
to understand the nature of the bifurcations (Chossat, Lauterbach & Melbourne 1991;
Matthews 2003).

A.4. Time dimension
This work focuses on steady states, thus there is little discussion of the time dimension.
However, it is worth noting that while the governing equations are invariant under
any time translation, they are not invariant under time reflection mt owing to the
diffusion term.

A.5. Self-adjointness
If (A1), (A2) and (A3) are linearised about a conductive steady state (i.e. neglecting the
v · ∇θ term), then the equations themselves have an important symmetry: namely, they
are self-adjoint provided that the viscosity is constant or purely depth dependent, and
appropriate boundary conditions are applied.

Appendix B. Representations of layer groups with non-zero wavevector

The general theory of representations of layer groups with a non-zero wavevector is
somewhat involved, and a full account can be found in e.g. Bradley & Cracknell (1972),
Aroyo et al. (2006a), de la Flor et al. (2021) and Grenier & Ballou (2012). In this appendix,
we give some simple examples of representations with a non-zero wavenumber that are
associated with spatial-period-multiplying bifurcations.

Consider the layer group p4mm (no. 55). This group can be generated by unit translations
tx and ty in the x- and y-directions, along with point group element 4z representing a 90◦
rotation about the z-axis, and point group element mx̄y representing a reflection in a vertical
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X

Y

M

kx

ky
Δ

Σ

Γ

Figure 10. The Brillouin zone for p4/nmm from the BCS (de la Flor et al. 2021). The irreps are specified by a
wavevector lying in the labelled triangular region, known as the representation domain. The origin is at the Γ

point. The special point M is at ( 1
2 , 1

2 ). Software that uses text labels will refer to Γ as GM, Δ as DT, and Σ

as SM.

mirror plane parallel to the line y = x. A representation of the group can be described by
a mapping of the generators to a set of matrices.

In the general theory of representations of layer groups, each irreducible representation
is described by a wavevector k and a label for a particular small representation of the
wavevector. For this example, we consider a wavevector of the form

k = ua∗
1 + ua∗

2, (B1)

where u < 1/2, and a∗
1, a∗

2 are basis vectors for the reciprocal lattice, defined such that
ai · a∗

j = 2πδij, where a1 and a2 are the space domain basis lattice vectors. The wavevector
lies in a subset of the Brillouin zone known as the representation domain (figure 10).

The chosen wavevector in (B1) lies within the part of the Brillouin zone labelled Σ

(written as SM in software that uses text labels). The tool LKVEC (de la Flor et al.
2021) on the BCS can be used to identify the position of a wavenumber vector in the
representation domain and the corresponding little co-group Ḡk. The little co-group is
the set of point group elements that leaves the wavevector unchanged. The little co-group
associated with wavevectors along Σ is ..m, which has just two elements: the identity and
the mirror mx̄y.

From the little co-group Ḡk, one can form the little group Gk of k, which is a subgroup
of G containing those elements that have the point group elements of the little co-group
in their rotational part. We first need to obtain representations of the little group. Such
representations must be small (or allowed) representations, which are the representations
of the little group that map a pure translation by a vector d to exp(−ik · d) times an identity
matrix. In this simple example, the small representations are one-dimensional, and there
are just two of them. The small group is generated by the unit translations and the mirror
element mx̄y. Since the representations of the translations have been prescribed, all that
remains is to describe the mapping of the mirror element. There is a trivial representation
Σ1 that maps the mirror element mx̄y to 1, and another representation Σ2 that maps the
mirror element to −1.

The star of the wavevector is the set of possible wavevectors that can be obtained by
applying all the point group operations to the given wavevector. In this example, the star
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has four arms:

k1 = (u, u), (B2)

k2 = (−u, −u), (B3)

k3 = (u, −u), (B4)

k4 = (−u, u). (B5)

The left cosets of Gk in G are in one-to-one correspondence with the star of the wavevector.
A representation of the full group G can be obtained as an induced representation from
the little group Gk. The induced representation is of dimension md, where d is the
dimension of the little group representation (here d = 1), and m is the number of left
cosets of Gk in G (which is identical to the number of arms in the star of the wavevector,
here m = 4).

In the induced representation, a general translation by a vector d = (d1, d2) is
represented by a diagonal matrix of the form

⎛
⎜⎝

exp(−ik1 · d) 0 0 0
0 exp(−ik2 · d) 0 0
0 0 exp(−ik3 · d) 0
0 0 0 exp(−ik4 · d)

⎞
⎟⎠ , (B6)

where k1, k2, k3 and k4 are the arms of the star.
The induced representation ∗Γ1 of the full space group G is given in terms of the

generators as

tx =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 ω 0
0 0 0 ω∗

⎞
⎟⎠ , ty =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 ω∗ 0
0 0 0 ω

⎞
⎟⎠ ,

4z =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠ , mx̄y =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

where ω = exp(−2πiu). The representation ∗Γ2 has identical generators, except for
mx̄y, which has −1 in place of 1 in each entry. The above representation has
complex entries, but by a change of basis, an equivalent real representation can be
found.

If the wavevector of form (B1) is chosen with u = 1/2, then it lies at a special point in the
Brillouin zone labelled M. The little co-group is then 4mm, and the induced representation
∗M1 from the trivial representation of the little group is simply the one-dimensional
representation that maps the generators as

tx = −1, ty = −1, 4z = 1, mx̄y = 1. (B8a–d)

There are four additional representations induced from the little group, including a
two-dimensional representation ∗M5, but these will not be considered further.
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B.1. Application to spatial-period-multiplying bifurcations
The representations ∗Γ1 and ∗M1 with matrices given in (B7) and (B8a–d) can be used
to describe spatial-period-multiplying bifurcations for p4mm. The simplest case is when
u = 1/2, and the one-dimensional representation ∗M1 in (B8a–d) provides a mapping onto
the group C2. There is an isotropy subgroup that consists of all those elements that map
to 1. This subgroup is also p4mm (as all the point group elements are retained), but it
has a reduced set of translation elements (it is an index-2 klassengleiche subgroup). For
the subgroup, a new basis for the lattice can be obtained using the translations by (1, 1)

and (1, −1). This isotropy subgroup is the maximal isotypic subgroup of lowest index for
p4mm.

For the representation ∗Γ1, suppose that u = 1/p, where p is a prime number equal
to 3 or greater. Then ωp = 1, and the matrix group described by (B7) is the finite
group D4 � C2

p of order 8p2. There is a klassengleiche axial isotropy subgroup of this
representation of p4mm that is also p4mm but with the basis vectors of the lattice scaled
by factor p in each direction (the index of the subgroup in the parent group is p2).
All the point group operations are retained in the subgroup. In the representation in
(B7), this can be recognised explicitly by the fixed-point subspace (a, a, a, a), which is
invariant under 4z and mx̄y (retaining the point group) and the translations for which
(d1, d2) ≡ (0, 0) (mod p). There are also non-isotypic axial isotropy subgroups of ∗Γ1 with
fixed-point subspaces (b, b, 0, 0) and (0, 0, c, c). For these isotropy subgroups, the point
group is reduced to mm2, consisting of the diagonal mirrors and 2z. The translation group
is reduced, but retains the diagonal translation with multiples of either (1, −1) or (1, 1).
The corresponding layer group is cmm2 (index-2p subgroup).

For the particular case p = 3, the character table for the group D4 � C2
3 is given in

supplement 3, and further discussion of its role in spatial-period-multiplying bifurcations
can be found in Matthews (2004) (see his figure 1).

B.2. An example of p4/nmm
A slightly more complicated, but closely related, example is given by p4/nmm (no. 64).
This is a non-symmorphic layer group. It can be generated by the same operations as
p4mm, i.e. tx, ty, 4z and mx̄y, but in addition is generated by a glide reflection n that
reflects in a vertical mirror mz and then translates by (1

2 , 1
2 , 0). An index-9 k-transition

from p4/nmm to p4/nmm can be obtained as an isotropy subgroup of two different irreps:
the irrep ∗Σ1 with wavevector k = (1

3 , 1
3 ) given by

tx =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 ω 0
0 0 0 ω∗

⎞
⎟⎠ , ty =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 ω∗ 0
0 0 0 ω

⎞
⎟⎠ ,

4z =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠ , mx̄y =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , n =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B9)
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where ω = exp(−2πi/3), and the irrep ∗Δ3 with wavevector k = (0, 1
3) given by

tx =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω∗

⎞
⎟⎠ , ty =

⎛
⎜⎝

ω 0 0 0
0 ω∗ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

4z =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠ , mx̄y =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ , n =

⎛
⎜⎝

ω∗ 0 0 0
0 ω 0 0
0 0 ω∗ 0
0 0 0 ω

⎞
⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B10)

For both representations (B9) and (B10), (a, a, a, a) is the fixed-point subspace
corresponding to the axial isotropy subgroup p4/nmm. Note that for both cases, t3x , t3y and
n3 map to the identity and so are elements of the isotropy subgroup. Here, n3 represents a
reflection in a vertical mirror followed by a translation by (3

2 , 3
2 , 0), so is the same as the

original glide reflection n but with the translation vector scaled by 3.

Appendix C. Equivariants and character theory

Much of the key information about symmetry-breaking bifurcations can be obtained
from a series of routine mechanical calculations using character tables. As described by
Matthews (2004) and Antoneli et al. (2008), these calculations can be automated using the
computational algebra package GAP (The GAP Group 2021).

Many key results follow from the trace formula that states that for a group G acting
linearly on a vector space V , the dimension of the fixed-point subspace is

dim Fix(G, V) = 〈χV , 1〉, (C1)

where χV is the character of the representation of G on V , 1 is the trivial character, and
angle brackets represent the scalar product on characters. This formula can be used to
determine whether a subgroup is an isotropy subgroup (Matthews 2004). Note that V
in the trace formula can be any vector space, not just Rn. By applying this formula to
appropriately symmetrised parts of tensor product spaces, Antoneli et al. (2008) show
how it can be used to work out the dimensions of the spaces of invariant and equivariant
polynomials (their (3.9) and (3.10)). If I(k) is the dimension of the space of invariant
polynomials of degree k, and E(k) is the corresponding space of equivariants of degree k,
then the trace formula yields

I(k) = 〈
χSkV , 1

〉
, (C2)

E(k) = 〈
χSkVχV , 1

〉
, (C3)

where SkV refers to the symmetric part of the tensor product of k copies of V .
As an example, suppose that we want to work out the number of quadratic equivariants

for the faithful irrep of D3. The character of the irrep can be written as χV = (2, 0, −1),
where the identity corresponds to 2, the mirrors correspond to 0, and the rotations
correspond to −1. The symmetric part of V ⊗ V has character χS2V = (3, 1, 0). Thus
χS2VχV = (6, 0, 0). The inner product with the trivial character then yields E(2) = 6/6 =
1 (since the order of D3 is 6). Supplement 3 provides tables of I(k) and E(k) for a series
of small finite groups.
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