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Abstract
We consider algebraic independence properties of series such as
o0
@)= 3z (r=2,3,4,..).
h=0

We show that the functions f,(z) are algebraically independent over the rational functions.
Further, if o, (r = 2,3,4, ...; s = 1,2, 3, ...) are algebraic numbers with 0<|x,|<1, we
obtain an explicit necessary and sufficient condition for the algebraic independence of the
numbers f (o) over the rationals.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 F 35.

1. Introduction

One of the goals of transcendence theory is to relate the arithmetic behaviour of
functions at appropriate values to the algebraic nature of the functions themselves.
For example, theorems of Hadamard and Fabry show that quite weak growth
conditions on the gaps between the terms of a power series force it to have a
natural boundary on its circle of convergence. (See, for example, Dienes (1957),
Ch. 11.) Such a series must represent a transcendental function. It is therefore
natural to expect that if such a gap series has algebraic coefficients, it will take
transcendental values at algebraic points in its domain of convergence. In practice,
this general question appears difficult, though arithmetic results can be obtained
when the gaps grow very rapidly (Mahler (1965), Cijsouw and Tijdeman (1973))
31
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and also when they exhibit certain kinds of regularity (Loxton and van der Poorten
(19771)). "

One of the earliest and simplest examples of a power series which cannot be
continued beyond its circle of convergence is the series

f@)=32.
h=0

This example certainly dates from the time of Weierstrass, but we follow Schneider
(1957) in calling f(z) the Fredholm series. It is easy to see that the series diverges
at all the points exp (27ih/2¥) and so it has the circle | z| = 1 as a natural boundary.
The Fredholm series is characteristic of those series with “regular” gaps. Schneider
(1957), p. 35, uses his refinement of Roth’s theorem to show that f(z) is transcen-
dental at a rational point p/g, subject to the condition 0<|p|<g?. However, much
earlier, Mahler (1929) had shown that f(z) is transcendental at every algebraic point
a with 0<|«| <1, by exploiting the functional equation

f@) =f(®)+z

Mahler’s method is very general. It can be used to determine the transcendence at
algebraic points of functions of several complex variables satisfying functional
equations of the shape

) 8(Tz) = R(g(2), 2),

where z=(z,,...,2,) is in C*, T'=(t;;) is an nxn non-negative integer matrix
defining a transformation on C* by

(o=l Q<i<n)
and R is a rational function of its arguments. Of course, a number of more or less
technical conditions must be imposed. (See our survey, Loxton and van der
Poorten (1977c).)

Mahler (1930a, b) extended the method to obtain results on the independence of
the values of such functions. Applied to the Fredholm series, the work yields the
following conclusions. First, if oy, ..., «, are multiplicatively independent algebraic
numbers with 0<|a;|<1, then the numbers 1,f(a,),...,f(x,) are linearly inde-
pendent over the algebraic numbers. Secondly, consider the series

d\A ®
06 = () fe = Ervat A=0,1,2,..),
dz =0
which satisfy the functional equations

SA(Z) =22 (z2) + 2,
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131 Independence properties of Fredholm series 33

These functions are algebraically independent over the rational functions and, if
a is an algebraic number with 0<|«|<1, then the numbers f‘A(x) (A =0, 1,2,...)
are algebraically independent over the rationals.

Recently, Kubota (1977a, b) and the authors have extended Mahler’s method in
various ways, obtaining some very general results about the transcendence and
algebraic independence of the values of functions satisfying functional equations
of the shape (1). The aim of this note is to show how some of these general theorems
can be used to give surprisingly precise results about the algebraic independence
properties of Fredholm-like series.

2. Algebraic independence of the functions
Let g(z) = g(z; r,a) denote a function of the complex variable z which is regular

in some neighbourhood of the origin and satisfies a functional equation of the
shapé

@ &(2) = ag(z")+b(2),

where r>1 is a positive integer, a is a non-zero complex number and 5(z) is a
polynomial. By iterating the functional equation (2), we see that

@ g(z)=a'°g(z'*)+:§ dbE) (k=1,23,..),
=0

so that the notation is slightly ambiguous, but this should cause no confusion.
By letting & tend to infinity in (3), we obtain the formula

@ g(2) =2(0) +;§; a{b(z")-b(O0)}, (1-a)g(0) = b(0).

We begin by considering the possible algebraic relations between functions of this
type.

THEOREM 1. Let Y(r, a) be a family of functions satisfying functional equations of
the shape (2) with r and a fixed and let 4 be the union of a number of the families
Y(r,a). We choose the notation, as we may, so that logrflogr’ is irrational for any
two distinct transformation ratios r and r' appearing in the functional equations and
so that the pairs (r, a) are distinct.

(1) The functions of % are algebraically independent over the rational functions if
and only if the functions of each %(r,a) are algebraically independent.

(i) The functions gy(2),...,g/2) in a fixed family ¥(r,a) are algebraically
dependent if and only if there are constants d,, ...,d,, not all zero, such that the
Junction

q
24842
is a polynomial.
2

https://doi.org/10.1017/51446788700011472 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011472

34 J. H. Loxton and A. J. van der Poorten [4}

PRroOF. To prove the first part, we use induction on the number of distinct values
of the transformation ratio r. To illustrate the argument, suppose ¥ is the union
of just two sets ¥(r,a) and %(r’,a’), say, where logr/logr’ is irrational. Given a
non-trivial algebraic relation between the functions of &, we repeatedly apply the
transformation z— 2z and use the functional equations for the g(z; r,a) to obtain
a sequence of relations between the functions of %(r, a) and an increasing collection
of functions g(z; r’,a’). By hypothesis, the functions of %(r,a) are algebraically
independent, so we can eliminate them and thereby obtain a non-trivial relation
involving only functions with the transformation ratio r’. This reduction process
enables us to confine the search for algebraic relations in ¢ to the sets %(r, a) with
r fixed.

Suppose now that all the %(r,a) of the theorem have the same . We can now
apply Theorem 2 of Loxton and van der Poorten (to appear, a). If the functions
in & are algebraically dependent, then there are functions g;(z), ...,£,(2) in one
of the (r, a) and constants 4y, ...,d,, not all zero, such that the function

Wz) = 3d;g/2)
F=1

is a rational function. By replacing g;(z) by g;(z)—g40), we may suppose that
£40) = 0 for each j. Then, from (4),

hz) = 3 a3 d;bi("),
im0 j=1
where the by(z) are polynomials. By the Hadamard gap theorem, A(z) is either a
polynomial or a function with a natural boundary. The latter possibility is excluded

since A(z) is rational, so we have the second assertion of the theorem. The first
assertion follows easily from the second and the preceding remarks.

We now specialize the theorem to the case of Fredholm series. If r>1 and s>1
are positive integers, we define the Fredholm series

[- ]
5D =1z rs)=32z";
h=0
it satisfies the functional equation

Jr.(2) =fr(27) + 2
Further, for A=0,1,2, ..., we define the functions

fR@) =fP;r,s) = (’%)Aff.s(z) = hi“’”‘z"‘,
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which satisfy the functional equations
S(2) =rr () +s2 28

THEOREM 2. The algebraic relations between the functions f3)(z) over the rational
Junctions are generated by the trivial relations

z; r,8) = fA(z; r,sr)+52z
SNz 1,5) = fPNz; rysr)+52 20,

k-1
SAz;1,9) = Py N(z; r¥, sri).

ProoF. By employing the trivial relations to eliminate certain f{(z), we may
suppose that the family of functions f{}(z) under consideration is so normalized
that r.ts for each f2)(z) and that logr/logr’ is irrational for any pair f{3(2), fA)(2)

rl .3'
with r#r’. If this normalized set of functions is algebraically dependent, then
Theorem 1 yields a non-trivial linear combination

h(z) = jil d, fNz; 1, 5))

which is a polynomial. However, this is impossible when r}s;, since the exponents
appearing in the ¢ series for the fX(z; r,s;) are all distinct. Consequently, a
normalized set of Fredholm series must be algebraically independent and this
proves the theorem.

Further specialization gives the following quotable results. We write here

-]

@)=z (r=23,4,..).
h=0

COROLLARY 1. The functions f(z) (r = 2,3,4,...) are algebraically independent
over the rational functions.

COROLLARY 2. The functions f(z) (r = 2,3,4,...) are “hypertranscendental”, that
is, they do not even satisfy any algebraic differential equation.

3. Algebraic independence of the values of a single function
Throughout this section, we write

f@) = 327,
h=0

where r>1 is a positive integer. We seek the possible algebraic relations between
the values of f(z) at distinct algebraic points in the unit disc.
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We begin with some definitions. We call two numbers « and B equivalent if.
a™ = B* for some integers 4 and k. We say the numbers o, ..., o, are r-dependent
if each «; is equivalent to y¢,, say, where y is fixed and &; is a root of unity, and
there are numbers d; not all zero such that

©) ﬁ:ldifg“=o (h=0,1,2,..).
i=

THEOREM 3, Let oy, ..., o, be algebraic numbers with 0 <|o;|<1.

(1) The numbers f(«), ...,f(«,) are algebraically dependent over the rationals if
and only if 1, f(ay), ..., f(e,) are linearly dependent over the algebraic numbers.

(i) The numbers 1, f(ay),...,f(a,) are linearly dependent if and only if some
subset of «y, ..., o, is r-dependent, and the relations obtained in this way generate all
the algebraic relations between f(«y), ..., f(ay).

We observe that trivially the relation (5) together with the functional equation
for f(z), implies that Y, d, f(o;) is an algebraic number. The converse is much more
difficult and necessitates some lemmas on functions of several complex variables.

LEMMA 1. Let g(zy, ..., 2,,) (1 i< p) be functions regular in some neighbourhood
of the origin in C™ and satisfying the respective functional equations

821, .. 25) = a; 825, ..., 20) + b(Zy, .- 2,),

where r> 1 is an integer, the a; are non-zero complex numbers and the bz, ...,z,)
are polynomials. Let S(i) = {j: a; = a}. If the functions g(z;, ..., z,,) are algebraically
dependent over the rational functions then there are an index i and constants d; not
all zero such that the function

2 djgj(zla ey Zp)

JinS)
is a polynomial.

Proor. This follows from Theorem 2 of Loxton and van der Poorten (to appear,
a). (Compare the argument used for functions of one variable in the course of the
proof of Theorem 1 above.)

LEMMA 2. Suppose that the functions described in Lemma 1 are algebraically
independent and, in addition, that the polynomials by(z,, ..., z,,) and the power series
expansions of the g2y, ...,2,) about the origin all have algebraic coefficients. Let
ay, ..., o, be multiplicatively independent algebraic numbers with 0< | a,-] <1(l<gj<n).
Then the numbers g oy, ..., &,) are algebraically independent over the rationals.

ProoF. This is a (slightly) special case of the main theorem of Loxton and
van der Poorten (to appear, b).
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LEMMA 3. Let w,...,o, be algebraic numbers with 0<|o;|<1. Then there are
multiplicatively independent algebraic numbers B,, ..., B, with 0<|B;|<1 such that

©) a= 118y (1<i<y),
A

where £ is a root of unity and the p; and p;; are non-negative integers.

Proor. First, we can choose n multiplicatively independent numbers y; with
0<|y;|<1 such that

n
4= Iy (1<i<g),

where £ is a root of unity and the v; and v;; are integers. Let 5 be the n-tuple with
components 7; = —log|y;|. Next, choose n linearly independent n-tuples u; = (u;;)
with rational components such that each w; is close to 7 in the sense described below
and, in addition, each n-tuple v; = (v;;) of the dual basis to the basis #; has a
positive projection on 7. Determine numbers §; by

n n
Bf=kl_11yz”% that is vi= 1 B (1<j<n).

Then the B; are multiplicatively independent algebraic numbers and the requirement
on the dual basis v; ensures that 0<|B;|<1. The equations (6) hold with the u;;
given by

n
My = kz vy, (1<i<q, 1<j<n).
=1

The construction makes the y;; rational and w,; is close to

n n
X v = — 2 vixlog|y| = —log| o] > 0.
k=1 k=1

So we can achieve u;;>0 by choosing each u;;, sufficiently close to 7;. Finally, by
taking roots of the B;, we can make the u;; in (6) integers.

A lemma of this nature is used for a somewhat similar purpose by Ritt (1927).

ProOF OF THEOREM 3. Suppose that f(«y), ..., f(«,) are algebraically dependent.
By Lemma 3, we can find multiplicatively independent algebraic numbers B,, ..., 8,
with 0<|B;|<1, so that the «; have the shape given in (6). By replacing the o
by of', we may suppose that the root of unity, £, in (6) is a primitive Nth root of
unity with N and r relatively prime. We denote the order of rmod N by ¢ and
write ri=s.
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Now consider the functions
n .
gi(zla seey zn) =f(§l‘".l—[12;‘f) (1 < ’<¢1),
]=
which satisfy the respective functional equations

-1 n r
8o nza) = 8ef )+ 3 (5 TLap)
h=0 Jj=1
By Lemma 2, the numbers f(«;) = g,(B,, ..., B,,) are algebraically dependent if and
only if the functions gz, ..., z,) are algebraically dependent. By Lemma 1, this
is the case only if there are constants d;, not all zero, such that

q @ q n ™
zdigi(zli ""zn) = 3 Zdi(fﬂ‘ Hz;"‘j)
i=1 h=0 i=1 J=1
is a polynomial. The terms of high degree in the above expression must therefore
all vanish. The assertions of the theorem now follow without difficulty.

By the same method, but with some additional complications of notation, we
can extend Theorem 3 to more general functional equations. Suppose g(z) is
regular in some neighbourhood of the origin and satisfies the functional equation

@) g(z) = ag(z") +b(2),

where r>1 is a positive integer, a is a non-zero complex number and b(z) is a
polynomial. By replacing g(z) by g(z)—g(0) and rearranging the series represen-
tation (4) for g(z), we can replace the functional equation (7) by a normalized
functional equation for g(z) of the same shape in which #0) =0 and &(z) has
degree less than r. .

THEOREM 3 BIS. Let g,(2), ..., 8,(2) be algebraically independent functions satisfying
the respective normalized functional equations

®) 842) = a;2(zN+b2) (1<i<p),

where r>1 is a positive integer, the a; are non-zero algebraic numbers, the by(z) are
polynomials with algebraic coefficients and, in addition, the power series expansions
of the g{(z) about the origin have algebraic coefficients. Let a;; (1<i<p, 1<j<q;) be
algebraic numbers with 0<| 0| <1.

(i) Split the functions g{z) into groups corresponding to the distinct values of the
multiplier a; in (8). The numbers g«;;) are algebraically independent if and only if
the numbers g(«;;) corresponding to each group of the functions g(z) are algebraically
independent.
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(ii) Now suppose that the a; in (8) are all equal. The numbers gy(x,;) are alge-
braically dependent if and only if some subset of the oy; has the following properties:
oy is equivalent to y;; = y&;; where £;; is a root of unity and there are constants d;;
not all zero so that

Sdbyy) =0 (h=0,1,2,..).

%2

4. Algebraic independence of the values of functions with different ratios

In this and the following section, we state and prove the main result of this
note. As before, we write

Jil(2) = T (r= 2,3,4,...).
h=0

The results here complement Theorem 3 and provide complete arithmetic infor-
mation on the values of Fredholm series at algebraic points.

THEOREM 4. Let r;>1 be positive integers such that logr,flogr; is irrational
for i#j. Let oy be algebraic numbers with 0<|oy;|<1. Then the numbers
Sfifoaij) (57 = 1,2,3,...) ate algebraically independent over the rationals if and only if,
Sfor each fixed i, the numbers f.(oy;) (j = 1,2,3,...) are algebraically independent
over the rationals.

As already remarked in Section 2, the condition that logr,/logr; is irrational
for i#j represents no real loss of generality, and some such condition is necessary
to avoid trivial relations between the functions f(z). Kubota (1976, 1977b) has
stated results of this type under more restrictive conditions. For example, his
methods give Theorem 4 when, for each i, the numbers |u.,-,-| (G=12,3,..) are
multiplicatively independent.

The proof of Theorem 4 follows exactly the proof of Theorem 3, except that
Lemma 2 must be replaced by the following proposition.

THEOREM 5. Let r; (1 <i<p) be positive integers such that r;> 1 and logr,flogr; is
irrational for i+#j. Let g;(z,, ..., 2,) (1<i<p, 1<j<q;) be functions having power
series expansions with algebraic coefficients at the origin and satisfying the respective
Junctional equations

(9) gij(zl’ rery zn‘) = gij(zii’ ceey Z::‘) + bij(zl’ ceey Zn‘),

the by; being polynomials with algebraic coefficients, and suppose that, for each fixed i,
the g;; (1<j<gq;) are algebraically independent over the rational functions. Let
o (1<i<p, 1<j<n,) be algebraic numbers such that 0<|«g|<1 and, for each
fixed i, the numbers oy (1<j<ng) are multiplicatively independent. Then the
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numbers g;(o, ..., 0,) 1<i<p, 1<j<q;) are algebraically independent over the
rationals.

To prove Theorem 5, we use a modification of the method of Loxton and van
der Poorten (to appear, b). At the cost of some additional notational complexity,
even more general results can be obtained. For example, we can replace the
functional equations (9) by the equations

gij(zl, ceey Zn‘) = aijgij(z{‘, cery Z;:‘) + bi]'(zl, veey zn‘),

the a; being non-zero algebraic numbers. This, in turn, gives the following
strengthening of Theorem 4.

THEOREM 4 BIS. Let 9(r) be a family of functions having power series expansions
with algebraic coefficients at the origin and satisfying functional equations of the shape

8(z) = ag(z") +k(2),

where r > 1 is a fixed integer, a is a non-zero algebraic number and b(z) is a polynomial
with algebraic coefficients. Let 9 be the union of a number of the families 4(r).
(We choose the notation, as we may, so that logr/logr’ is irrational if 9(r)+ 9(r').)
For each function g in 9, let ol (i=1,2,3,...) be algebraic numbers with
0<|af?|<1. Then the numbers g(o?)(gin ¥;i=1,2,3,...) are algebraically
independent over the rationals if and only if, for each fixed r, the numbers g(o{?)
(gin 9(r); i=1,2,3,...) are algebraically independent.

5. Proof of Theorem 5

We begin by developing a more compact notation. For 1 <i<p, let

z,= (Zﬂ, eeny zi‘n;)

denote a point of C™ and set z=(z,...,2,), giving a point of C* with
n=ny+...+n, In the same way, we write a; = (0, ..., %), @ = (ay,..., ;)
and 8(z) = (gn(z), ..., £ig (%)) Next, set T; =r;L,, where I, denotes the sxs
identity matrix. The matrix T; defines a transformation on C™ by z;; > 2 (l<j<ny).
We write T = diag(T;, ..., T,), using block diagonal notation; T defines a trans-
formation on C™ in an analogous way. If k = (k,, ...,k,) is a p-tuple of non-
negative integers, we write T* = diag(T4, ..., Th).

Now suppose that the numbers g;(a;) (1<i<p, 1<j<q;) are algebraically
dependent. Thus there is a relation

G(o; w) = %l w, gi(a)* ... g(ap) =0,
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where the components w, of w are rational numbers, not all zero, indexed by
@ = (). (As before, we write p.i (41> ---» Big), and gy (@)™ in the usual multi-
index notation means g4'...g#«.) The components p,;; of p are non-negative
integers with 0< pu;;<my;, say, and we denote the total number of them by m.
We introduce m new variables w = (w,), indexed in the same way as w, and we
define a linear transformation (X(u) of the variables w = (w,) by

Qww), = z{ fi f 'z)u"“—l“ﬁ}w

where the sum is over all v = (v;;) with 0<v;;<m;; and
u=(u;: 1<i<p, 1<j<qy).

By iterating the functional equations (9), we obtain the further equations

k1
£2) = 8y(TF2)+b(2), bf(z) = 5 biff).

We write
@) = Q((bgf"(ag))) w, k=(k,...,kp,).

An easy calculation shows that the function

G(z; w) = § w,B(Z)" ... g,(Zp)¥

is invariant under the transformation z,—>T% z;, w—> Q((6{% (z))) w. In particular,
(10) G(Tka; w*) =0

for every non-zero p-tuple k = (k;, ..., k,,) of non-negative integers.

Let K be the algebraic number field generated over the rationals by the oy;.
Denote by & the ring of polynomials in w = (w,) with coefficients in K and by
P(w) the subset of & comprising those polynomials p(w) such that p(Q(u) w) is
identically zero in u= (u;;). Further, denote by &/ the ring of power series
E(z; w) = X, p,(W)z* in z with coefficients p,(w) in & and converging in some
neighbourhood of the origin. We define the index of E(z; w) at w to be the least
non-negative integer h for which there is a coefficient p,(w) of E(z; w) with
|A| = 3| ;| = k and such that p,(W) is not in P(w).

The first step in the proof proper is the construction of the auxiliary function, as
follows.

Lemma 4. For every sufficiently large integer p, there are polynomials
Po(z; W), ...,p(2; W) of degree at most p in each of the variables z;; and w, with
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coefficients in K and with p,(z; W) having finite index at w, such that the function
’. )
(11 E (z; w) = 5.2_.:opj(1; w) G(z; w)l = gB,‘(w) >

is not identically zero, but its index at w is at least 2—3-™/n pl+1/n,

ProoF. For this, see Lemma 6 of Loxton and van der Poorten (to appear, b).
The construction depends on balancing the number of free coefficients in the
pi(z; w) and the number of conditions imposed on E (Z; W).

The next stage in the proof is a uniqueness theorem (Lemma 6). In what follows,
r>1is a fixed integer and, for each integer s, we define the p-tuple of integers

(12) k(s) = (ky, ... k), ky=[slogr/logr;].

LEMMA 5. Let 8 = (0,;) be an algebraic point of C™ with
[05]=1 (<i<p, 1<j<ny).

Suppose that for some £>0 and some infinite sequence of positive integers & there
is a polynomial p(z) with coefficients in K and not identically zero such that

(13) P(TE® Q) = O(exp (— er®)

as s> along &. Then, for some fixed i, the 0,; (1<j<n,) are multiplicatively
dependent.

PROOF. Let .# be the ideal of all such polynomials p(z) satisfying (13). We note
that if p(z) is in #, then so is p(T%® z) for each s in &. We can therefore carry
through the proof of Lemma 14 of Loxton and van der Poorten (1977a), which
shows that there is an n-tuple A = (A, ..., A,) such that (T%(® 8)* = 1 for infinitely
many s. If we write @; = 6}, this gives

gh.en =1,
where k(s) = (ky, ..., k), for infinitely many s. But logr;/logr; is irrational for i#j,
so these equations imply that each ¢, is a root of unity. This proves the lemma.
LeMMA 6. Let a = (ay;;) be an algebraic point of C™ with
O<|oy;|<1 (A<igp, 1<j<qy)

and suppose that, for each fixed i, the o;; (1 <j<gq;) are multiplicatively independent.
Let g(z) be a power series in z = (z;;) with coefficients in K which is convergent in
some neighbourhood of the origin and not identically zero. Then there are infinitely
many positive integers s such that g(T*® a)#0, with k(s) given by (12).
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ProOF. Let g(z) = X a, z*. Choose an infinite sequence & of positive integers
such that the fractional part of slog r/logr; tends to a limit s;, say, as s—>c0 along &%.
As s—>o0 along &,

10g|ay(TX9 M| ~r* X rit Ay log gl = — 5,
4
say, with £, >0. Now write
g(z) = Xgr(®), gr(®)= X a,7%
R =R

the notation being chosen so that none of the gp(z) vanishes identically. Each
gr(2) is a polynomial and the index of summation R runs through a discrete set
say OSRy<R,<R;<.... Now

gr(T* a) = exp(—Rr®) hg(T*6),

where 8 = (0;,) is an algebraic point of C* with | 6;;] = 1 and hx(z) is a polynomial.
By Lemma 5, g5 (T’ &) dominates the series for g(T*® a) infinitely often as
s—>o0 along & and the lemma follows. (Compare Theorem 4 of Loxton and
van der Poorten (1977a).)

PRrOOF OF THEOREM 5. The remainder of the proof is quite straightforward. First,
using the fact that the B,(w) in (11) satisfy B,(w'®) = 0 for | A| < p'+¥/", we see that

if p is a sufficiently large integer and each k; is sufficiently large compared to p,
then

(19) log|Ep(T" o; w(k))l <—¢ P1+1/n min ,-ga’
1<i<p

where k = (k,, ..., k,) and ¢; is a positive constant independent of p and k. (See
Lemma 7 of Loxton and van der Poorten (to appear, b).) Next, by (10) and (11),
E(T* a; W) = p(T*a; w®), so it is easy to compute the size of the algebraic
number E (T* a; w®). By applying the fundamental inequality, we see that if p
and k are chosen as before and E (T* a; w®)30, then
(15 log| E (Tka; w®)|> —c; p max rf,

1<i<p
where k = (k;, ..., k,) and ¢, is a positive constant independent of p and k. (See
Lemma 12 of Loxton and van der Poorten (to appear, b).) Now consider the
numbers O, = E (T*® a; w*)) with k(s) given by (12). From the definition of
the w®, we obtain

E(T*a; w®) = py(T a; o®) = P(g,(T*a), ...,g,(Tk &); Tk a),

where P(u; z) is a polynomial in u = (i;;) and z = (z;;) with coefficients independent
of k. If ©, =0 for all sufficiently large s, then P(gy(2),...,8,(2); z) is identically
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zero by Lemma 6. Since the functions g;;(z,) are algebraically independent, it
follows that P(u; z) is identically zero and so py(z; Q(u) w) is identically zero in u
and z, that is p,(z; w) has infinite index at w, in contradiction to the construction
of Lemma 4. Consequently, ©,5 0 for infinitely many s. It now follows that the

inequalities (14) and (15) conflict for suitable p and k. This contradiction establishes
Theorem 5.

6. Concluding remarks

There are two interesting ways in which our results might be extended, though
we are not able to effect these improvements at present.

Firstly, it should be possible to obtain more precise results for functions of
several complex variables satisfying functional equations of the shape (1). The
main obstruction here is the uniqueness theorem (Lemma 6). Probably the following
is true: Let 7 be an n x n nonsingular non-negative integer matrix with no roots of
unity as eigenvalues and let & be an algebraic point of C* such that T*a—0 as
k—o0 and the coordinates of & are multiplicatively independent. Then, for every
function f(z) which is regular in some neighbourhood of the origin in C” and not
identically zero, there are infinitely many integers k such that f(T*a)7#0. The
work of this note is confined to functions of one complex variable because we are
only able to prove the above uniqueness theorem for diagonal matrices 7.

It should also be possible tc obtain algebraic independence results for functions
satisfying chains of functional equations. (See Loxton and van der Poorten (1977b).)
More specifically, Mahler’s series (Mahler 1929),

0

fo2) = 3 [ho] 2,

h=1

where w is a real irrational number, and certain gap series
o
f@)= X a2,
E=0

where A, | A4, say, fall into this class of functions. It should be possible to show
that if « is an algebraic number with 0<|a|<1, then the set {f,(a): 0<w<1}
contains uncountably many algebraically independent numbers. However, there
are difficulties even in obtaining precise results on the algebraic independence of
the functions admitted here.
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