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DECAY ESTIMATES FOR SOME NONLINEAR SECOND ORDER
ORDINARY DIFFERENTIAL EQUATIONS

MiITsuHIRO NAKAO

Precise decay estimates as ¢ — oo are derived for a class of nonlinear second order ordinary
differential equations of the form

d dz de
Zh(E)+a(t 5) +f@=00n (0, 0)
where h, g and f are functions like
h(u) = [u|® u, g(t, w) = (1 +8)° [ulP o, f(u) = |u[

with > -1, 8 > -1 and v > —-1.

1. INTRODUCTION

In this paper we shall be concerned with the decay property of solutions of the
ordinary differential equations

(1.1) %{h(‘%’)} + g(t, %) + f(z) = 0 on (0, o)

where h, g, f are continuous functions defined on R or R* xR (R = [0, 00)) satisfying
specific conditions described below (see Section 2).

A typical example is
(12) h(u) = [u|® v, g(t,u) = (1 + 1) [ulPu, f(u) = Ju]"w

for some a > -1, 8> —1 and v > —1.

For the moment let us consider the case (1.2). As is easily seen,if a = =v=0
and = 0 the solutions of (1.1) decay exponentially as ¢ — co. Moreover, if a = 0,
820,720 and ~1<60<F+1 we know the following result (see [1, 2, 3, 6])

(i) fé=-1or@=F+1and 0<pP<7,then

1

— 5 =0 < CB(0)) {log (2 + 1)) ™

B(t) = 3 4 +
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with v = (y+2)/(By+B8 +7).
(i) H-1<6<pf+1and g+7>0,then

E(t) < CE0)1+1¢)7"
with

B+1-46

u=('y+2)min(1+0a ,H+1

)/ By +8+7).
(iii) If8 <1 and B =+v=0, then
E(t) < C(E(0))e*" !

with some k = k(E(0)) > 0.

The object of this paper is to extend these results to a class of more general
equations including the case (1.2) with a > —1, 8 > —1, and v > —1. As a particular
case we shall show that if -1 <6 <8+ 1 and a > >4 > —1, the solutions of (1.1)
decay much faster than exponentially, that is,

(1.3) B(t) = = O™ + 5 1=()]™ < O(B()e ™"

with some k = k(E(0)) > 0 and a certain v > 0.
An estimate like (1.3), which seems at a glance to be very curious, is already known
for a semilinear wave equation with singular nonlinearities

Uge — gz + || ue + [uffu=0,0<2<1,0<t< o

with 0 > a > 0 > —1 (see [4]). Our result tells us that such rapid decay is rather
common in second order nonlinear equations.

Although the class of equations we consider is somewhat artificial it is a very con-
venient model for understanding how the nonlinearities influence the solutions quanti-

tatively.

2. ASSUMPTIONS AND RESULT

Concerning the functions f, g and h appearing in (1.1) we make the following

assumptions

A;. h(-) belongs to C(R)N C*(R — {0}) and moreover satisfies
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i3] Decay for nonlinear differential equations 27

(2.1) ko |u|® < h'(u) < k1 |ul® (v # 0) and h(0) =0

for some a > —1 and positive constants k¢, k;.

A,. g(t,u) is a continuous function on Rt x R and satisfies

(2.2) koa(t) [ulP*? < g(t, u)u < kyb(t) [u®+?

for some 8 > —1, kg, k; > 0. Here a(t) and b(t) are nonnegative functions on R*

satisfying
t41
(2.3) a(t) > 0 a.e. and {/ a(s)Pde}/P < do(1 +1)7°
t

and

t+1
(2.4) / b(s)**2a(s) P 1ds < di(1 + £)°

¢

for some 0 < p < 0o and dy, dy > 0.
Aj;.  f(-) belongs to C(R) and satisfies

(2.5) ko "t < flu)u < ky Ju|"?

for some v > —1 and kg, ky > 0.
We could weaken a little the assumptions above, for example, we could employ,
instead of (2.2),

koa(t) [ul®*? < 9t u)u < ky {by(t) [u®* 2 + by(t) uf? 2.

To make the essential features clear, however, we restrict ourselves to the typical case
A; — A;.

Since h(u) may have a singularity at u = 0 we employ the following definition of
solution.

DEFINITION 1: A function z(-) defined on [0,T),0 < T < oo, is said to be a
solution of the equation (1.1) on [0,T) with the initial value (zo,z1) € R? if z(-) €
c([0,T)), h(z(-)) € C*([0,T)) and equation (1.1) is satisfied on (0,T) together with
the initial condition z(0) = z¢, (0) = z;.

Concerning the global existence of solution we have:
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THEOREM 1. For each (zo,z1) € R? the problem (1.1) with z(0) = z¢, #(0) = z,
admits a global solution z(-), that is, a solution on [0,0).

PROOF: Setting y; = h(z) and y; = z the problem is equivalent to the system
{ 9= -g(t, h_l(yl)) — f(y2)
g2 = h7 (1)

with y1(0) = h(z1) and y2(0) = zo.
Setting also

(2.6)

h1 /(1) v2
(2.7 V(y1,v2) =/ B (u)udu +/ Flu)du
0 0
we have easily
Vs, 1) > € (11" + [12"*) and V(11,32) < 0.

Thus, V is a Lyapunov function for the system (2.1). The result follows immediately
from this fact. O

Our result on the decay property of the solutions of (1.1) reads as follows.

THEOREM 2. Let z(t) be a solution of (1.1) on [0,00) and set

E(t) = /:(t) h'(w)udu + AZ(t) f(u)du
(> c(ls@*? + 1)),

We set also

at+2 (y+2)(a+1) (v+2)(B+1)
B+27 (v+1)(B+2) (v+1)(B +2)

}-

n = max{—4, ——0;} and ¢ = min{

B+1
(I) Assume that § = —1 or 3+ 1 and let ¢ < 1. Then we have
(2.8) E(t) < C(E(0){log (2 + 1)},

with v = o /(1 - o).
(II) Assume that ~1 <8 < +1 and o < 1. Then

(2.9) E(t) < C(E)(1+) ™,

with v=(1 - 7)o /(1 — o).
(III) Assume that —1 <@ <pf+1andlet a=fF>~ or a > B =+. Then
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(2.10) E(t) < C(E(0))e* "

where k is a positive constant depending on E(0) and other known constants.
(IV) Assume that -1 <8< f@+1 and ¢ > 1, thatis, a > >~. Then

(2.11) E(t) < C(E(0))e~*" ™™, 0<e<u,

with v = log o(> 0), where k is a positive constant depending on E(0) and €. We can
takee=0if §=0.

Remark. When 6 = -1 or §+1 and o =1 we can show, instead of (2.11),
B(T) < C(E(©)(1+ 1)~
for some v > 0 depending on E(0).

3. SOME LEMMAS

The following lemma is essential for precise estimation of the solutions.

LEMMA 1. Let ¢(t) be a nonnegative function on Rt = [0,00), satisfying the
difference inequality

(3.1) S $(3)"F < Co(1 + )°(B(¢) — $(t + 1)) + 6(2)

for some Cy > 0, 8 <1, r > 0 and §(t) a bounded function on R*. Then, ¢(t) has
the following decay property

() iff#=1,r>0 and §(t) = o((logt)-‘-l/”) as t — oo. then
$(t) < C(¢(0)){log (2 + )} 1/7;
(i) if8<1,r>0 and §(t) =0(t~C~O1+1/7)) a5 ¢ — 0o, then
$(t) < C(#(0)(1 + )77
(i) ifO<1,r=0 and §t)= o(e-“") as { — 0o, then
$(t) < C($(0))e™

for some k = k(¢(0)) > 0.

For the proof of Lemma 1 see [2] or Redheffer and Walter {5]. Using Lemma 1 we
can obtain
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LEMMA 2. Let ¢(t) be a decreasing function on R, satisfying

(3:2) $(£) < Co Y (1+1)%(4(t) — #(t +1))™,
=1
for some Cy > 0. Then ¢(t) has the following decay property
(i) ifo< lxé)‘,léln{a,'} =0 <1 and lnggn{ﬁi/a.-} =n=1, then

$(t) < C($(0)){log (2 + )} ™

with v =0/(1 - 0);
(ii) if 0 < ¢ <1 and n < 1, then ¢(t) < C($(0))(1+¢)"" with v =

(1-n)e/(1-0);
(ili) if ¢ = 1 and n < 1, then ¢(t) < C(¢(0))exp{—kt'~"} for some k =

k(¢(0)) > 0.

PROOF: All cases can be proved similarly, and we give the proof only for case
(ii). First, note that if o; < a; and 6; < §; for some ¢, j we can remove the term
(14 )% (4(t) — $(t + 1))% from the right-hand side of (3.2). Therefore, without loss
of generality, we may assume

ay>ay>...>a,and 6y >80, >...>6,.
Then, from (3.2) we have

\Zin ()™ < Con max (1+0%/%(4(t) - (¢ +1)

and hence

$(t)
s1:p #(s)

< {B(2)/$(0)}1/= $(0)"/ " (¥5)
< C($(0))(1 +1)"((t) — d(t + 1))

(3.3) ORMES! }/en sup ¢(s)"/"

with 7 = max 0:/a;.

KRN

Thus, applying Lemma 1 (ii) to (3.3) we have the desired estimate. 0

LEMMA 3. Let ¢(t) be a nonnegative decreasing function on R, satisfying

#(2) < Coe ™" fort ¢ R*

https://doi.org/10.1017/5S0004972700003464 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003464
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with some Cqy, kg > 0 and 8 < 1, and the difference inequality

n

(3.4) d(t+1)< Cy Z (1+ t)"i B(t)™

=1
with C; > 0 and 8;, o; such that

o= min {ai}>landn= Irg?sxn{a;/ﬁ.-} < 1.

1€ign

Then, for any 0 < ¢ << 1 there exist C. = C(e, $(0)) and k = k(e, $(0)) such
that

(3.5) #(t) < Cee ™™ fort >0
where we set v = logo(> 0). When 71 =0 we can take e = 0 in (3.5).

Proor: It follows from (3.4) that

i ai o 6/
Jmin 4t +1) 7 < Cin max (1+1)"776(1)

and hence
(3.6) $(t+ 1) < C(1 +t)"¢(t)

for some C > 0.
By the assumption on the decay of ¢(t) as t — co we see that for any € > 0, there
exists T, > 0 such that

(3.7) CoL+t)"¢(t)” < ¢(8)”™° ift>T..
Therefore we have from (3.6) that
$(t) <Pt -1 <g(t-m) " ift-m>T,

and
—Te
(3.8) #(t) < ST re>T
where [t — T,] denotes the integer part of t — T, . Since we may assume ¢(T.) < e™! it
follows from (3.8) that

_elt~Te}log (o —¢) (0<e<o)

$(t) <e
<e* ift> T,
with v, = log(o — €) > 0. Changing the notation yields (3.5).
It is clear that when 7 = 0 we can take ¢ = 0 and T, = 0 in (3.7) and the estimate
(3.5) holds with v, = v = logo. 1]
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4. PROOF OF THEOREM 2
Let z(-) be a solution of (1.1) (in the sense of Definition 1) and let us recall that

2(t) 2(t)
E(t) =./o‘ h(uv)udu + i f(u)du.

We note again that

(4.1) "+ + —l——lz(t)l’“}

atz 1 2
< E(t) < kl{-——! Ol ‘Y+2 ()"}

(ko, ki > 0)
Multiplying the equation (1.1) by #(t) and integrating over [t, ¢ + 1] we have

t+1 2
(4.2) /t 9(s, #(s))(s)ds = E(t) — E(t +1) = D(¢)**
and by the assumption A,
t+1
(4.3) o / o(s) [4(s)P+? ds < D(t)P*2.

In what follows C will denote generous positive constants, in particular C(¢(0))
will denote constants depending on ¢(0) continuously. ‘

Now, with the use of the assumption on a(-) we have, for any r > 0,

t+1 t+1
[ tsrds= [ atsy e afep o fa(o)r
t t
t+1 41
< {/ a(s)"’ds}l/("“){/ a(s) l:i:(s)]r(p"'l)/" ds}"/("“)

< C(1 4 1) P/ r¥1)y / a(s) |&(s)[P*? ds}/(#+Y)

Im(s)l'“ p(B+2)/(p+1)

(4.4)

sup
t<ast+1

<C(1+ t)—P9/(p+1)D(t)p(ﬁ+2)/(p+1)

sup E(s){r(p+1)~p(ﬁ+2)}/(a+2)(p+1)’

t<a<t+1

where we have assumed that r(p+ 1) = p(5 + 2).
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Taking r =p(B + 2)/(p+ 1) in (4.4) we see that
t+1
/ [5(s)PE+DEHD gy < ©(1 4 £) PO/ @D (4P B+ (p+1)
¢

and hence there exist £, € [¢t,t + 1/4], ¢, € [t + 3/4,t + 1] such that
(4.5) lz(t:)l < C(1+)" P D(), i =1, 2.

Next, multiplying the equation (1.1) by z(¢) and integrating over [i1, ;] we have

t2

(4.6) Flala)z(a)ds = = [ ha()i(e)ds — hs(t2))o(a)

4

T h((t))e(t) - / " g(s,(5))a(s)ds
< ¢f [2 |&(s)|*** ds

2
+ 3 |a()*H sup a(s)]
i=1

t<at+1

+ / " b(s) [4(s)P*" [2(s)] ds}.

1

Each term of the righthand side of (4.6) is treated as follows.
First, without loss of generality, we may assume p is sufficiently small and we can
take 7 = o + 2 in (4.4) to get

t
/ T 5(8)[2 2 ds < C(1 4+ 1) TPYEHD p(yypE+/+D)
4

X sup E(s)'"PEFD/ @t
tgsst+l

By (4.5),

2
Y 1E)PH sup  Ja(s) < C(1 + ¢)THEFNEFD p(yatt
t

i—1 Lat+1

x sup E(s)"/0*?),
tgagt+1

https://doi.org/10.1017/5S0004972700003464 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003464

34 M. Nakao [10]

Finally,

/, " b(s) 12() P+ Ja(s)] da

1

1 2 ts
< {/ a(s) Idr(s)]ﬁ"'z ds}(ﬁ+l)/(/3+2){/ b(s)ﬁ+2a(3)—ﬂ—1ds}l/(ﬁ+2)
4 4

x sup |z(s)]
t<a<t+1

< C,'D(t)ﬁ'H(l + t)"/(ﬁ+2) sup E(s)l/(ﬂ'z).
t<at41

Thus, we have from (4.6)
(4.7)

B(t2) < /{

1
a+ 2

] o 1
l&(s)]*** + porey |z(s)|"*?}ds

t<sst+]

<C {(1 + t)—PO/(p+l)D(t)p(ﬁ+2)/(p+l) sup E(s)x—p(ﬂ+z)/(a+z)(p+1)

+(1+ t)-e(a""'l)/(ﬁ"'z)D(t)""H sup E(s)(l/ﬂ'z)
t<a<t+1

+ (1 +t)9/(ﬁ+2)D(t)ﬂ+l sup E(s)l/(‘7+2)} = A(f).
t<a<t+1

Furthermore, by (4.2) and (4.7),

t41
sup FE(s) < E(t,) + 1 g(3, (s)z(s))ds

t<agt+1
< A(t)+ D),

and consequently

(4,8) E(t) = sup E(s) £C {(1 + t)—9(a+2)/(ﬂ+2)D(t)a+2
t<s<t+1

(1 4 £)~HEFDOED/OH1B42) py (@t )(r+2)/(r+1)
4 (1 4 £/ B p 4y (BHD(3+2)/(r+1)

+D(t)‘3+2} .
From (4.7) we obtain also

(49) Et+1)<C {(1 + ¢) PO/ gy el A (et (pt)
+ (1 + t);9(a+1)/(p+2)E(t)(a+1)/(ﬁ+2)+]/(_¥+2)
+(1+ t)e/(/3+2)E(t)(ﬁ+1)/(p+2)+]/(.7+2).
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[11] Decay for nonlinear differential equations 35

Now, we can apply Lemma 2 to the inequality (4.8) to get the estimates (I)-(III) in
Theorem 2. When o > 1, namely, a > § > « it is first verified from (4.8) and Lemma
2 (iii) that

(4.10) E(t) < C(E(0))e™™

with some k > 0 under the condition —1 < 8 < #+1, and hence application of Lemma
3 to (4.9) yields the estimate (IV) in Theorem 1. The proof of Theorem 2 is now
completed. 0
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