
Can. J. Math., Vol. XL, No. 1, 1988, pp. 248-256 

COMMUTATIVITY PRESERVING MAPS OF FACTORS 

C. ROBERT MIERS 

1. Introduction. By a von Neumann algebra M we mean a weakly 
closed, self-adjoint algebra of operators on a Hilbert space 3f which 
contains /, the identity operator. A factor is a von Neumann algebra 
whose centre consists of scalar multiples of / . 

In all that follows <j>:M —> N will be a one to one, *-linear map from the 
von Neumann factor M onto the von Neumann algebra N such that both 
<J> and <f>~ preserve commutativity. Our main result states that if M is not 
of type I2 then <j> = cO + \ where 6 is an isomorphism or an anti-
isomorphism, c is a non-zero scalar, and À is a *-linear map from M into 
ZN, the centre of N. 

Our interest in this problem was aroused by several recent results. In 
[1], Choi, Jafarian, and Radjavi proved that if S is the real linear space of 
n X n matrices over any algebraically closed field, n ^ 3, and \p a linear 
operator on S which preserves commuting pairs of matrices, then either 
$(S) is commutative or there exists a unitary matrix U such that 

xP(A) = cU*AU +f(A)I or xP(A) = cWA'U + f(A)I 

for all A in S. They proved an analogous result for the collection of 
all bounded self-adjoint operators on an infinite dimensional Hilbert 
space when \p is one to one. Subsequently, Omladic [7] proved that if 
\^:L(X) —> L(X) is a bijective linear operator preserving commuting 
pairs of operators where X is a non-trivial Banach space, then 

xP(A) = cUAU~x + f(A)I or >&A) = UA'U~l + f(A)I 

where U is a bounded invertible operator on X and A' is the adjoint 
of A. 

We viewed this problem as one involving mappings between the Lie 
algebras M and N which preserve the zero brackets. Our technique is to 
show, as in [6] where bracket preserving maps were studied, that on 
projections P in M, 

<f>(P) = 6(P) + X(P)I or 4>(P) = -0(P) + X(P)I 
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where 6 is a projection orthoisomorphism. This representation is harder to 
achieve than in [6], but once having it the techniques of [6] are applied 
together with results concerning the linear span of projections in a factor 
to give the result. A key tool used in [6] is a theorem of Dye [3] relating 
projection orthoisomorphisms to C*-isomorphisms. 

The techniques of this paper give the result as long as the dimension of 
the underlying Hilbert space is >4 . However, since the Choi, Jafarian, 
Radjavi theorem implies our theorem for all type In factors, n > 2, and 
since we would have to invoke their theorem for n = 3, 4, we shall assume 
that M is not a finite factor of type / . We use [2] as a general reference for 
the theory of von Neumann algebras. 

2. The decomposition <J> = 0 + X. 

LEMMA 1. N is a factor. 

Proof. Let ZM , ZN be the centers of M, N respectively. Since 
(j>(ZM) = ZN and ZM is 1-dimensional, ZN is 1-dimensional. 

LEMMA 2. We can assume, by dividing by an appropriate constant, that 

«I) = I-

Proof. Since ZN = CI and since <j> is one to one, <j>(I) = ftl for ft ¥= 0. 
Replace <j> by (\/p)4>. 

Definition. A von Neumann subalgebra M0 Q M is normal in M if 

M 0 = (M'0 n My n M 

where, for any subset S Q &(H), 

S' = {Y G âg(H) \XY = YX V X e S). 

LEMMA 3. If M0 is a normal subalgebra of M, then N0 = <1>(M0) is a 
normal subalgebra of N with the same linear dimension. 

Proof If S is any subset of M, 4>(S' n M) = $(Sy n JV. Since M0 is 
normal, M0 - (MQ n M)r n M so that 

« M 0 ) - (<f>(M0)
r n <>(M) )r n <f>(M) = (<J>(M0)

/ n N)' n TV. 

Since M0 is a self-adjoint collection, so is <f>(M0) which implies that 
(<J>(Mo)' n 7V)r n A^isa von Neumann algebra. Hence Â 0 = <J>(M0) is a 
von Neumann algebra and is normal in N. 

LEMMA 4. If P is a non-central projection in M, then <j>(P) = OLQ + XI 
where Q is a non-central projection in N and a ¥= 0. 

Proof. By [5, Theorems 1 and 4], a finite-dimensional subalgebra of a 
factor is normal. Let M0 = lin.sp.{7, P). M0 is a 2-dimensional subalgebra 
of M and is thus normal in M. By Lemma 3, <t>(M0) = 7V0 is a 
2-dimensional von Neumann subalgebra of TV, say 
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# M 0 ) = lin.SP.{/, Q} 

where g is a non-central projection. We have <XP) e cj>(M0) so 
<j>(P) = aQ + XI. If a = 0 then P would be central by the commutativity 
preserving property of <#>. 

LEMMA 5. If P is a non-central projection and 

<$>(P) = aQ + XI = a!Q + X7 

with a, a' ¥= 0, Q and Q non-central projections in N, then either (i) Q = Q' 
and a = af, or (ii) Q = I — Q and a = —a'. 

Proof. For an operator yl G âS{H\ let a(v4 ) be its spectrum. We have 

{a + X, X} = a O 0 + A/) = a(a'(?' + X7) = {a' + X\ X'}. 

If a + X = a' + X' then Q = Q. If Q = g ' then clearly X = X' so 
that a = a'. If a -f X = X' and a' + X' = X then a = — af and X ^ X' 
since a T̂  0. We would then have 

This forces 

If 2 = 7 — Q' it is easy to see that a = — a'. 

LEMMA 6. Let P l5 P2 be non-central orthogonal projections in M with 
Pj + P2 ¥= I There exist orthogonal non-central projections Qx, Q2 in N and 
non-zero scalars al5 a2, such that 

<KPj) = CL& + V I = 1, 2. 

Proof. Let M0 = lin.sp. {/, P b P2}. M0 is a 3-dimensional abelian 
subalgebra of M so that 7V0 = <j>(M0) is a 3-dimensional abelian subalgebra 
of N. We claim that 

Â 0 = lin.sp.{7, 6 „ Q2} 

where <£(/?) = atQt + X/ as in Lemma 4. Clearly (?i> Ô2 G Âo since 
I G N0, 4>(7>) G 7V0, and a,- ^ 0. Suppose 

ai + 0 g , + 7Ô2 = 0. 

Since 

<KI) = I and 6/ = 4>(^Pi - v ) > / = 1, 2, 
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we have 

0 = ai + jBg, + yQ2 = J(a - j8X, - y\2)I + ^Px + - I p A 

This implies 

£ y 
a\ a2 

since <£ is one to one. Since PXP2 = 0 and the Pt are non-central we have 
/? = y = 0. This forces a = 0. Thus {/, Ql9 Q2} is a linearly independent 
subset of the three-dimensional algebra N0. 

Case (1). QiQ2 = 0, and we need do no more. 
If 6162 ^ 0 then, since 6162 G ^0 w e n a v e 

(*) 6162 = «^ + yS^! + y<22 where not all of a, /?, y are zero. 
Multiplying (*) by 6162 we get a + /? + y = 1. Multiplying by 61 we see 
that 

(1 ~ 7)6162 = (1 - Y^i-
Case (2). 1 - y ¥= 0. Then 61 = 6162 or 61 ^ 62- I f Q\ = Q2 t h e n 

{/, 6 b 62} would span a two-dimensional subalgebra so we must have 
61 S 62- I n t r n s c a s e w e replace 62 by / — 62 a n d n o t e t n a t 

<*262 + V = a2(I - Q2) + (X2 - a2)/. 

If y = 1 then (*) becomes 6162 = « / + £61 + 62 s o t h a t 

(1 ~ £ ) 6 i 6 2 = (1 + «)Ô2-

Case (3). p * 1. Then 1 - 0 = 1 + a and 6162 = 62- A s i n (2)> 

Q\ ^ 62' a n d we replace Ql by / — 61 • 
Case (4). j8 = 1. Then « = - 1 and 6162 = _ / + 61 + 62- T h a t 

is, / — 61 -L ^ — 62 s o w e replace both 61 a n d 62 by ^ ~ 61 a n d 
I — Q2 respectively. 

LEMMA 7. If P\, P2> Q\, 62 a w ^ ai» a2 a r e as ^n arrima 6 f/iew 
ax = a2. 

Proof. Let M0 = lin.sp.{7, Pj 4- P2}. Then M0 is a 2-dimensional 
subalgebra of M, so that 4>(M0) = N0 is a two-dimensional subalgebra of 
TV, say 7V0 = lin.sp.{7, 6 } - Thus 

<KPX + P2) = ^ 6 1 + «262 + fti + ^ = « 6 + X/ 

where the at and 6/> i = 1,2 are as in Lemma 6. Since a ¥= 0 and 6 n o t 

central, the spectrum of aQ 4- XI consists of two points. Thus if 

A = «,61 + «262 + (*i + h)I> 

o(A) consists of two points. Since Qx _L 62 a n d 61 + 62 ^ ^ w e n a v e 
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o(A) = {ax -f Xx + X2, a2 + \\ + A2, ^l "̂  ^2} 

and so two of these points coincide. Now ax, a2 =£ 0 so we must have 

ax + \x + \2 = a2 + \x + A2 

and s o « | = a2. 

LEMMA 8. If Px, P2 are non-central, orthogonal, equivalent projections in 
M with Pi + P2 ¥= I there exist non-central, orthogonal, equivalent 
projections Qx, Q2 in N and a ^ 0 such that <f>Ĉ ) = aQt + \tI. 

Proof. Let the Qt and a be chosen as in Lemma 1, let F be a partial 
isometry in M such that V*V = Px, VV* = P2, and let s/ be the 
non-commutative 5-dimensional von Neumann subalgebra of M generated 
by {/, Px, P2, V, F*}. Then <% = (j>(s#) is a 5-dimensional von Neumann 
subalgebra of TV generated by 

{/, aQx + XXI, aQ2 + A2/, X, **} 

where X = (j>(V). We have that 

Z ^ = lin.sp.{/, Qx + G2} 

since 

Z^ = lin.sp.{/, A + P2}. 

Since ^ is a non-commutative 5-dimensional von Neumann algebra, 

^ - M , 9 M 2 = C 0 M2(C) 

where M2(C) is the algebra of 2 X 2 matrices over C. Let Ix and I2 be the 
central projections of £$ which are the identities of Mx and M2 

respectively. We have Ix + I2 — I. Now Qx + Q2 is a non-zero central 
projection in <% so either (^ + Q2 = Ix or Qx 4- g 2 = 72. But /j is not 
the sum of non-zero orthogonal projections so we have Qx H- Q2 = 72. 
This implies that Qx and Q2 are in M2 and so are equivalent since they are 
non-central. 

LEMMA 9. Let M be a factor of type 1^, II, or III and let P e M be a 
non-central projection. There exists a e C, a ^ 0, independent of P and 
a non-central projection Q e N such that <j>(P) = ccQ + \7 . 

Proof Let P = Px and let P2 ^ Pj be any other non-central projection 
in M. One of Px V P2, (7 - Px) V P2, Px V (/ - P2) or (/ - P,) V (/ - P2) 
has codimension ^ 2 . Suppose it is Px V P2, the other cases being similar. 
Thus I — (PXV P2) is the sum of two orthogonal projections. (In the type 
II and III cases we need only that / — (P2 V P2) ¥= 0 and then could 
"halve" / — (P] V P2) to get equivalent orthogonal projections. In the type 
I case the codimension ^ 2 as long as the dimension of J4? ^ 5.) Let P3 be 
one of them. Then Px _L P3 and Px + P3 ¥= L Applying Lemma 7 to Px and 
P3 we get 
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Applying Lemma 7 to P2 and P3 we get 

<HP2) = «'Ô2 + ^ <^ 3 ) = «'63 + A^-

Applying Lemma 5 to the two representations of <j>(P3) we get a' = zta. If 
a' = —a, write 

<t>(P2) = a(I - Q!2) -f (X£ - a)/ . 

We now replace <#> by (l/a)<J>. 

LEMMA 10. Le? M Z>e a factor of type 1^, II, 6>r III, #«d P a non-central 
projection. Then <t>(P) can be expressed uniquely in one of two ways 

(i) </>(P) = 0(P) + A(P)7, or 

(ii) #/>) = - 0 ' ^ ) + V(P)/ 

where 6(P), 0'(P) are non-central projections in N, and X(P), X'(P) #f*e 

Proof. With the above normalization 

# P ) = Q + A/ = - ( / - Ô) 4- (1 + \)I 

so we let 0(P) = g, A(P) = A, 0'(P) = / - Ô, X'(^) = 1 + A. If 

e + \i = Q! + \'i 

where Q commutes with Q' then 

(A - A')2/ = (Q' - Qf = Q + Q- 2QQ'. 

This happens if and only if Q — Q'. 

3. The C*-isomorphism theorem. 

LEMMA 11. 6(1 - P) = / - 0(P), 0'(I - P) = I - 0\P). 

Proof. See [6, Lemma 4], 

LEMMA 12. If P and Q are orthogonal projections in M then either 

0(P) JL 0(Q) or I - 0(P) ±1 - 6(Q). 

Proof. This follows from Lemma 5 and Lemma 9. 

Definition. If M is a von Neumann algebra let MP be the collection of 
projections in M. A projection orthoisomorphism between von Neumann 
algebras M and N is a map 0\MP —» NP which is one to one, onto, and such 
that if P, Q G MP with P<2 = 0 then 0(P)0(Q) = 0. 
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LEMMA 13. Ifs/ is an abelian von Neumann subalgebra of M of dimension 
^ 3 then either 0 or 0f is an orthoisomorphism on stfP and these possibilities 
are mutually exclusive. If 0 is an orthoisomorphism then both 0 and X are 
additive on mutually orthogonal projections ins/P. A similar statement holds 
for 0' and X'. 

Proof See [6, Lemma 6]. 

LEMMA 14. Let Ph . . . , Pn, n ^ 3 be mutually orthogonal equivalent 
projections in M. If the 0(Pt) are orthogonal then they are equivalent in N. If 
the 0(Pt) are mutually orthogonal then they are equivalent in N. 

Proof Applying Lemma 8 we have that if 0(PX) _L 0(P2) then 
0(PX) ~ 0(P2) in N9 etc. 

THEOREM 1. Let 4>:M —> N be a commutativity preserving map of the 
infinite factor M onto the von Neumann algebra N. Then N is an infinite 
factor and if P e Mp, <i>(P) = 0(P) -f X(P) where 0 is an orthoisomorphism, 
or 

<KP) = -0>(P) + X'(P) 

where 9f is an orthoisomorphism. If M is a finite factor, so is N and a similar 
conclusion holds for (p. 

Proof If M is infinite choose mutually orthogonal equivalent projec
tions Pj, i = 1, 2, 3, 4 such that 

and assume the 6(Pi) are orthogonal. Then the 0(1]) are equivalent. Since 
Px — p3 ~ px + p2 we have, from Lemma 8 and the additivity of 0, that 
0(PX) — 0(PX) + 0(P2) so that N is infinite. Now 

4 4 / 4 \ 

/ = #/) = 2 <t>(pt) = S 0(pt) + 2 x(pl))i 
1=1 / = i v = i / 

which implies 

4 4 

2 0(Pt) = / and 2 X(Pt) = 0 
/ = i i=\ 

since the 0(P;) are orthogonal. Thus 0(1) = I. In the 0' case, 0'(I) = —I. 
The proof in the infinite case now follows [6, Theorem 2]. 

If M is finite, and hence of type \\x since we are ruling out the type In 

case, then so is JV since the above reasoning could be applied to <f>-1 if TV 
were infinite. TV cannot be of type / since <£~ preserves linear dimension. 
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Hence N is also of type II{. The proof for M and N being II rfactors now 
follows [6, Theorem 3]. 

THEOREM 2. Let <j>:M -* N be a commutativity preserving map from the 
factor M onto the von Neumann algebra N. Then <f> = cO + X where c e C, 
c' ¥= 0, 6 is an isomorphism or an anti-isomorphism of M onto N, and X is a 
*-linear map from M into ZN = CI. 

Proof On projections 

<(>(P) = 0(P) + X(P)I or <j>(P) = -0'(P) + X'(P)I 

as in Theorem 1. Taking the case where 6 is an orthoisomorphism there is, 
by a theorem of Dye [3, Theorem 1], a C*-isomorphism 6 of M on TV which 
agrees with 0 on Mp. By [8, Theorem 6] every self-adjoint operator in a 
properly infinite von Neumann algebra is a real linear combination of 
eight projections, and it was proved in [4] that every operator in a 
II !-factor is a linear combination of projections. Thus for any factor M, if 
A G M then 

n 

A = 2 «,/>. 
7 = 1 

We have 

«A) = J 2 <*̂ ) - 2 <*,W) + MW 
Vi = l / 1 = 1 

= 2 «#(^) + ( 2 a,A(/î))/ 
1=1 v = i / 

= ?(^) + (2alA(^/))/-
That is, <£(/!) - 0(A) e Z^ = C/ for each ,4 <E M. Setting 
4>(/l) — 0{A) = X(A) we see that X(A) is a *-linear map from M into Zw, 
and 

<X^) - 0(,4) + \(A). 

A similar argument applies in the 0' case to give 

<$>(A) = -0( ,4) + A(,4). 

We recall that <J> was normalized in Lemma 2 and after Lemma 9 so what 
we have really proved is 

-à = ±S + X 
cf 

where 8 is a C*-isomorphism. Since a C*-isomorphism on a factor is either 
an isomorphism or an anti-isomorphism we have the result. 
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