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SPATIAL BRANCHING PROCESSES AND SUBORDINATION

Dedicated to Professor Fukushima on his 60th birthday.

JEAN BERTOIN, JEAN-FRANÇOIS LE GALL AND YVES LE JAN

ABSTRACT. We present a subordination theory for spatial branching processes. This
theory is developed in three different settings, first for branching Markov processes,
then for superprocesses and finally for the path-valued process called the Brownian
snake. As a common feature of these three situations, subordination can be used to
generate new branching mechanisms. As an application, we investigate the compact
support property for superprocesses with a general branching mechanism.

1. Introduction. The goal of this work is to develop a subordination theory in the
context of spatial branching processes. This theory applies in particular to the measure-
valued branching processes called superprocesses. One of the most interesting features
of subordination is that, starting from a superprocess with a given branching mechanism,
it can be used to generate other superprocesses with different branching mechanisms.

We present our subordination theory in three different settings, first for branching
Markov processes (where the branching phenomenon occurs only on a discrete set
of times), then for superprocesses and finally for the path-valued process called the
Brownian snake. These three cases are presented in Sections 2, 3, 4 respectively. There
are obvious connections between the three situations. However, we believe that it is
interesting to treat each case separately in detail. The case of branching Markov processes
is elementary in the sense that the relevant objects can be defined and understood very
easily. However, the key ideas of our subordination procedure are present in this discrete
setting and the explicit formulas derived in that case are already nontrivial and interesting.
The treatment of superprocesses is formally very similar to the case of branching Markov
processes. This is not surprising since superprocesses can be viewed as limits of branching
Markov processes. We obtain in particular a simple formula for the branching mechanism
function of the subordinate superprocess, and, on a number of examples, we show how
this formula can be used to get explicit calculations. However, the theory here is much
less elementary as we need to use the machinery developed for studying superprocesses.
In particular the exit measures studied by Dynkin [9], [11] play a fundamental role.
Finally, the case of the Brownian snake corresponds to a special case of superprocesses
(namely superprocesses with a finite-variance branching mechanism). One advantage of
the Brownian snake is that it gives a more trajectorial understanding of the basic objects
such as the exit measures. Our subordination theory for the Brownian snake also yields
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a path-valued process approach for superprocesses with a (rather) general branching
mechanism, including the å-stable branching. Until now, such an approach was only
available for finite-variance superprocesses [17].

Let us now explain the basic ideas of our subordination method for branching pro-
cesses. We start from a càdlàg Markov process ò = (òtÒ t ½ 0) with values in a Polish
space E. We assume that ò has a regular recurrent point r and denote by L = (LtÒ t ½ 0) a
local time of ò at r. Consider a branching Markov process with spatial motion ò where
all particles start at r. This means that at time t = 0 we have a finite number of particles
located at r, that start moving independently with the law of the Markov process ò,
die at rate ï Ù 0 and give rise when they die to new particles (according to a certain
reproduction law), which in turn move independently with the law of ò, die at rate ï,
etc. For each particle alive at t we can consider the total local time at r accumulated by
this particle and its ancestors up to time t. For every s ½ 0, denote by Xs the number
of particles which (at any time) have accumulated a local time s at the point r. Then,
(XsÒ s ½ 0) is also a (continuous-time) branching process, corresponding to the evolution
of a population where the individuals die at a new rate ï̃ and with a new reproduction
law. Both ï̃ and the new reproduction law can be evaluated explicitly.

At this stage, we have not constructed the spatial motions of the individuals of this
new branching process. This is however easy to do. If we want the new spatial motions to
be given by another independent Markov process ç with values in E0, we simply replace
the process (òtÒ t ½ 0) by the pair

�
(òtÒ çLt )Ò t ½ 0

�
. We then consider instead of Xs the

random measure Ys which is defined as the sum, over all particles having accumulated
a local time s, of the Dirac masses at the positions in E0 of these particles. A detailed
account of this construction is given in Section 2 (for technical reasons, we use the triple
(òÒLÒ çL) rather than the pair (òÒ çL)).

Let us now briefly explain the analogous construction for superprocesses (Section 3).
We consider again the Markov process ò and denote by Px the law of ò started at x 2 E.
If ñ is a measure on E and g a nonnegative measurable function on E we denote by hñÒ gi
the integral of g with respect to ñ. We introduce a branching mechanism function of the
type

†(u) = au + bu2 +
Z

(0Ò1)
(e�us � 1 + us)n(ds)(1)

where aÒ b ½ 0 and n is a measure on (0Ò1) such that
R
(s ^ s2)n(ds) Ú 1. The

superprocess with spatial motion ò and branching mechanism † is the Markov process
(ZsÒ s ½ 0) with values in the space Mf (E) of all finite measures on E, whose transition
kernel can be described as follows: If Pñ denotes the law of Z started at ñ 2 Mf (E), then
for any bounded nonnegative measurable function g: E ! R+,

Eñ(exp�hZtÒ gi) = exp�hñÒ vtiÒ
where the function (vt(x)Ò t ½ 0Ò x 2 E) is the unique nonnegative solution of the integral
equation

vt(x) + Ex

�Z t

0
†
�
vt�s(òs)

�
ds
�

= Ex

�
g(òt)

�
(2)
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The case †(u) = bu2 corresponds to the finite-variance superprocess.
Loosely speaking, Zs is uniformly distributed on a cloud of infinitesimal particles

that move independently according to the law of ò and are (continuously) subject to
a branching mechanism governed by the function †. This interpretation suggests that
it should be possible to adapt the construction explained above for branching Markov
processes. However, it is not clear how to measure the “number of particles” that have
accumulated a local time s at the regular point r. The right tool for this is the notion of
exit measures [9], [11]. More precisely, we first replace the process ò by the pair (òÒL),
taking values in Eð [0Ò1), and we define Xs as the total mass of the exit measure from
the open set E ð [0Ò s). The process (XsÒ s ½ 0) is a continuous state branching process
whose branching mechanism function †̃ can again be computed rather explicitly. By a
trick similar to the one we used in the discrete case, we can also construct a superprocess
with spatial motion ç and branching mechanism †̃ (X then corresponds to the total mass
process of this superprocess). We have treated a number of examples that show that the
function †̃ can effectively be computed. For instance, if ò is a stable Lévy process on the
real line with index ã 2 (1Ò 2] and †(u) = cu1+å for å 2 (0Ò 1], then †̃(u) = c0u1+å(1�1Ûã).

In Section 4, we present our subordination procedure from the point of view of the
Brownian snake. The usual Brownian snake with spatial motion ò [17], [18] is a Markov
process W = (WsÒ s ½ 0) in the space of E-valued stopped paths. The connection with
superprocesses can be stated by saying that the process W generates the historical paths
of a superprocess with spatial motion ò and branching mechanism †(u) = 2u2 (see [17]
for more precise statements).

For definiteness, we specify the process ò as follows. We let S = (StÒ t ½ 0) be
a subordinator in R+ and define ò as the associated residual lifetime process: òs =
inffSt � sÒ St Ù sg. We consider the regular point r = 0 and the corresponding local
time is Ls = infftÒ St Ù sg. Let ç be as previously an independent Markov process
with values in E0. Our main result says that the Brownian snake with spatial motion
(òÒ çL) is connected to a superprocess with spatial motion ç and with a new branching
mechanism †̃ in much the same way as the usual Brownian snake is connected to the
finite-variance superprocess. Moreover, the function †̃ is expressed explicitly in terms
of the Lévy measure of S (see Theorem 8). In particular, if S is a stable subordinator with
index ã 2 (0Ò 1], then †̃(u) = cu1+ã.

An informal description of our construction can be given as follows. For every s ½ 0
we consider a path ç(s) of the Markov process ç stopped at a random time ës, and
simultaneously a path S(s) of the subordinator S stopped at the same random time ës.
The jumps of S(s) should be interpreted as point masses distributed along the path ç(s),
and in particular S(s)

ës
=: ês is the “total mass” of the path ç(s). In contrast with the usual

Brownian snake, it is the total mass process (êsÒ s ½ 0), and not the “lifetime process”
(ësÒ s ½ 0), that evolves according to the law of reflecting Brownian motion onR+. Thus,
between times s and s0 Ù s, the path ç(s) will first be “erased” from its tip in such a way
that its total mass becomes inf[sÒs0] êr, and then it will be extended (with a creation of
point masses on the new part of the path) in order to arrive at a total mass equal to ês0 .
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The paths ç(s) generated in this way are the historical paths of a superprocess with spatial
motion ç and branching mechanism †̃. The instants of occurrence of point masses along
the paths ç(s) correspond to discontinuity times for this superprocess.

We believe that this construction will be useful to investigate path properties of general
superprocesses, in the same way as the usual Brownian snake has proved a powerful
tool for studying super-Brownian motion (see e.g. [21]). As a typical application, we
give in Section 4 sufficient conditions that ensure that the compact support property
holds for superprocesses with a (rather) general branching mechanism. We refer to [4],
[5] (Chapter 8) and [6] for previous results about the compact support property and the
continuity properties of the support process.

Let us finally mention a related previous work of Kaj and Salminen [16], who consider
for a one-dimensional branching Brownian motion started at the origin, the numberXx of
particles that hit each level x ½ 0. They prove that the process (XxÒ x ½ 0) is a branching
process, compute its offspring distribution and also investigate scaling limits of X. Via
the famous Lévy theorem relating the supremum of linear Brownian motion to its local
time at 0, the results of [16] correspond to a special case of the situation treated in
Sections 2 and 3 (in this special case, the process ò is reflecting Brownian motion, see
subsection 3.2.2).

ACKNOWLEDGMENT. We thank the referee for his careful reading of this paper.

2. Discrete branching.

2.1. Notation. Let E be a Polish space. We denote by Mp(E) the space of finite point
measures on E. As in Section 1, we consider a Borel right Markov process ò = (òtÒ t ½ 0)
taking values in E. We denote its law started at ò0 = x by Px. We will assume moreover
that the sample paths of ò are right-continuous and have left-limits (càdlàg).

Let Π be a sub-critical probability measure on N, that is
P

n nΠ(n) � 1. The moment
generating function

Π̂(s) =
X
n2N

snΠ(n)Ò s 2 (0Ò 1]

is then a Lipschitz function which satisfies Π̂(s) ½ s.
For every parameter ï Ù 0, one can construct a branching Markov process letting the

paths of ò branch at rate ï with reproduction law Π. This process is viewed as a Markov
process Z = (ZtÒ t ½ 0) taking values in Mp(E); in particular the mass process hZÒ 1i is
a Galton-Watson process on N. For every ñ 2 Mp(E), we denote by Pñ the law of Z
started at Z0 = ñ. For every measurable function f : E ! (0Ò 1], put g = � log f and

Φt[f ](x) = Eéx (expf�hZtÒ gig)Ò x 2 EÒ

where éx stands for the Dirac point mass at x. The law of Z is determined by the branching
property

Eñ(expf�hZt+tnÒ gig j Zt1 Ò    ÒZtn ) = expfhZtnÒ log Φt[f ]ig(3)
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(for every 0 � t1 � Ð Ð Ð � tn and t ½ 0) and by the equation

Φt[f ](x) = Ex

�
f (òt) + ï Z t

0

n
Π̂
�
Φt�s[f ](òs)

�
� Φt�s[f ](òs)

o
ds
�

(4)

which has a unique solution, thanks to Gronwall’s lemma. Equation (4) can be deduced
from the more intuitive identity

Φt[f ](x) = Ex

�
e�ïtf (òt) + ï

Z t

0
e�ïsΠ̂

�
Φt�s[f ](òs)

�
ds
�

(5)

which is obtained by considering the first branching time. A detailed argument for the
derivation of (4) will be given in a more general context in the proof of Lemma 1. We
sometimes call Z the branching Markov process associated with (ΠÒ ïÒ ò).

2.2. Exit measure. Our next goal is to associate with every closed set F � E an exit
measure, which, informally, is obtained by freezing each particle as it enters F. To give a
rigorous definition, we first introduce the so-called historical process. For every t ½ 0, let
Dt be the space of càdlàg paths °: [0Ò t] ! E and D =

S
t½0 Dt . The set D0 is naturally

identified with E. We will refer to D as the space of finite paths. Replacing ò by the path
valued process (ò�tÒ t ½ 0), where ò�t = (òsÒ 0 � s � t), one can construct a branching
Markov process H = (HtÒ t ½ 0) taking values in the space of point measures on finite
paths. Assuming that H0 is supported on E = D0, the measure Ht is supported on Dt for
every t ½ 0. We denote by p: D ! E the function that maps a finite path on its endpoint,
i.e. p(°) = °(t) for ° 2 Dt . If p(ñ) stands for the image of a measure ñ under p, then the
process p(H) =

�
p(Ht)Ò t ½ 0

�
is distributed as the branching Markov process Z. With a

slight abuse of notation, we still denote by Pñ the law of H started at H0 = ñ.
For every closed set F � E, denote by DF the subset of D consisting of finite paths

for which the lifetime coincides with the first passage time in F

DF =
[
t½0
f° 2 Dt : °(s) 2 Fc for 0 � s Ú t and °(t) 2 Fg

The set of times TF = ft ½ 0 : Ht(DF) Ù 0g is a.s. finite. We then define the exit measure
ZF by

ZF = p
�X

t2TF

1DF
Ð Ht

�
Ò

where 1DF
Ð Ht stands for the restriction of the point measure Ht to DF.

For every measurable function g ½ 0 on E, we write for f = e�g

ΦF[f ](x) = Eéx (expf�hZFÒ gig) and UF[g] = � log(ΦF[f ])
Note that UFg = g on F. The following property of branching type is intuitively obvious,
though the formal proof is quite tedious. A closely related result is stated as Proposi-
tion 2.1 in Chauvin [3]. Given a decreasing family of closed sets Fk � Fk�1 Ð Ð Ð � F1,
we have for every measurable function g ½ 0

Eñ(expf�hZFk Ò gig j ZFk�1 Ò    ÒZF1 ) = expf�hZFk�1 ÒUFk [g]ig(6)
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In particular, (6) implies the simple identity

UF1 (UF2 ) = UF2 (7)

(write Eñ(exp�hZF2Ò gi) = Eñ
�
Eñ(exp�hZF2Ò gi j ZF1 )

�
).

Denote by TF = infft ½ 0Ò òt 2 Fg the first passage time of ò in F. By considering
the first branching time, one gets that for every measurable function f : E ! (0Ò 1] and
every x 2 E

ΦF[f ](x) = Ex

�
e�ïTFf (òTF) +

Z TF

0
ïe�ïsΠ̂

�
ΦF[f ](òs)

�
ds
�
(8)

LEMMA 1. Assume that Px(TF Ú 1) = 1 for every x 2 E. Then we have

ΦF[f ](x) = Ex

�
f (òTF) + ï

Z TF

0

n
Π̂
�
ΦF[f ](òs)

�
� ΦF[f ](òs)

o
ds
�


PROOF. Set D = Fc, and introduce the Poisson and resolvent kernels

HF
ï f (x) = Ex

�
expf�ïTFgf (òTF)

�

VD
ï f (x) = Ex

�Z TF

0
e�ïsf (òs) ds

�


We rewrite (8) as

ΦF[f ] = HF
ïf + ïVD

ï

�
Π̂(ΦF[f ])

�
(9)

Hence,

(I � ïVD
ï )ΦF[f ] = HF

ï f + ïVD
ï

�
Π̂(ΦF[f ]) � ΦF[f ]

�


Applying (ï � ï0)VD
ï0 , we get by the resolvent equation and the Markov property

(ïVD
ï �ï0VD

ï0)ΦF[f ] = HF
ï0 f �HF

ïf +ïVD
ï0

�
Π̂(ΦF[f ])�ΦF[f ]

�
�ïVD

ï

�
Π̂(ΦF[f ])�ΦF[f ]

�


Then let ï0 ! 0+, note that ï0VD
ï01 ! 0 (since TF Ú 1 a.s.); we obtain

HF
0 f + ïVD

0

�
Π̂(ΦF[f ]) � ΦF[f ]

�
= HF

ïf + ïVD
ï

�
Π̂(ΦF[f ])

�
= ΦF[f ]Ò

by (9). This establishes Lemma 1.

We can apply Lemma 1 with g = ï, f = e�ï. Since Π̂(s) ½ s, we get ΦF(e�ï) ½ e�ï

and it follows that

Eéx (hZFÒ 1i) = lim
ï#0

ï�1Eéx (1 � exp�hZFÒ ïi) � 1(10)
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2.3. Subordination. We assume from now on that r 2 E is a regular recurrent point for
ò, and that it has zero potential; see also the remark at the end of this subsection when
the latter assumption is relaxed. We denote by Tr = infft Ù 0Ò òt = rg the first hitting
time of r. Notice that Tr = Tfrg, Pr a.s. since r is regular. Let L = (LtÒ t ½ 0) be a local
time at r (so that L is a continuous additive functional that increases only when ò = r,
and L1 = 1 a.s.) and ús = infft : Lt Ù sg the inverse local time. Finally, we denote by
PÊ

r the excursion measure of ò away from r associated with L (as usual this excursion
measure is normalized so that Er(exp�ïú1) = exp(�EÊ

r (1 � exp�ïTr)), and by m the
occupation measure under PÊ

r , that is

m(A) = EÊ
r

�Z Tr

0
1fòs2Ag ds

�
(11)

It is well-known that m is õ-finite and invariant, see e.g. [7], p. 122.
An important role will be played by the functionßx defined as the moment generating

function of hZfrgÒ 1i under Péx :

ßx(s) = Eéx (s
hZfrgÒ1i) = Φfrg[s](x)Ò s 2 (0Ò 1]

Lemma 1 with f = s entails the identity

ßx(s) = s + ïEx

�Z Tr

0

n
Π̂
�
ßòt (s)

�
�ßòt (s)

o
dt
�
(12)

By (8) we have also

ßx(s) = Ex

�
se�ïTr +

Z Tr

0
ïe�ïtΠ̂

�
ßòt (s)

�
dt
�
(13)

Introduce an independent Borel right process with càdlàg paths, ç = (çtÒ t ½ 0),
taking values in a Polish space E0. We will write E0 for expectations relative to the
process ç. We now replace ò by ò̄ = (ò̄tÒ t ½ 0), ò̄t =

�
òtÒL(t)Ò çL(t)

�
, and denote by Z̄ the

corresponding branching Markov process. For every u½ 0, the exit measure Z̄frgð[uÒ1)ðE0

is a.s. supported on frg ð fug ð E0, provided that Z̄0 is supported on E ð [0Ò u] ð E0.
Therefore, under the latter assumption, we can define a random measure Z̃u on E0 by

ér 
 éu 
 Z̃u = Z̄frgð[uÒ1)ðE0 

The function ßx introduced above can also be written in terms of Z̃0: For any y 2 E0,

ßx(s) = Eé(xÒ0Òy) (s
hZ̃0Ò1i)

We can now state the main result of this section.

THEOREM 2. Let y 2 E0. Under Pé(rÒ0Òy) , Z̃ = (Z̃uÒ u ½ 0) is a branching Markov process
on E0 started from éy, associated with the Borel right process ç, with branching rate

ï̃ = EÊ
r (1 � e�ïTr)(14)
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and reproduction law Π̃ characterized by its generating function

ˆ̃Π(s) =
X
k2N

skΠ̃(k) =
Λ(s)

ï̃ + sÒ s 2 (0Ò 1](15)

where
Λ(s) = ï Z

E

�
Π̂
�
ßx(s)

�
�ßx(s)

�
m(dx)(16)

REMARK. The finiteness of ï̃ follows from excursion theory: As we already pointed
out, ï̃ is the Laplace exponent, evaluated at ï, of the inverse local time (úsÒ s ½ 0). The
fact that Λ(s) Ú 1 for every s 2 (0Ò 1] will be established in the course of the proof of
Theorem 2.

LEMMA 3. Let ï̃ and Λ be defined by formulas (14) and (16). Then,

ï̃ = lim
¢#0+

" EÊ
r

�
1 � Eò¢ (expf�ïTrg)ÒTr Ù ¢

�

and
Λ(s) = lim

¢#0+
" EÊ

r

�
ßò¢ (s) � sÒTr Ù ¢

�


PROOF OF LEMMA 3. We use (11), then the Markov property under the excursion
measure and finally (12) to get

Λ(s) = ïEÊ
r

 Z Tr

0

�
Π̂
�
ßòt (s)

�
� ßòt (s)

�
dt
!

= lim
¢#0+

" ïEÊ
r

 Z Tr

¢

�
Π̂
�
ßòt (s)

�
� ßòt (s)

�
dtÒTr Ù ¢

!

= lim
¢#0+

" EÊ
r

�
ßò¢ (s) � sÒTr Ù ¢

�


The argument for ï̃ is similar.

PROOF OF THEOREM 2. The intuitive idea of the result is as follows. Under Pé(rÒ0Òy) ,
Z̄ starts with one particle located at (rÒ 0Ò y). Let ê be the first branching time, which
is exponentially distributed with parameter ï. Then, the first branching time for Z̃ is
the local time of the initial particle at time ê, and is therefore exponentially distributed
with parameter ï̃. Moreover, the branching distribution is the law of the number of
descendants of the initial particle that eventually come back to frg ð [0Ò1) ð E0. This
suggests the expression

ˆ̃Π(s) = Er

�
ï
Z 1

0
dte�ïtΠ̂

�
ßòt (s)

��
(17)

One can easily check that the latter formula is equivalent to (15). First, by standard
excursion theory, the right-hand side of (17) coincides with

1

ï̃EÊ
r

�Z Tr

0
ïe�ïtΠ̂

�
ßòt (s)

�
dt
�

=
1

ï̃ lim
¢#0

" EÊ
r

�Z Tr

¢
ïe�ïtΠ̂

�
ßòt (s)

�
dtÒTr Ù ¢

�
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Then, by the Markov property under the excursion measure and (13), the last displayed
quantity can be written as

1

ï̃ lim
¢#0

" EÊ
r

�
ßò¢ (s) � sEò¢(e

�ïTr)ÒTr Ù ¢
�

=
1

ï̃
�
Λ(s) + ï̃s

�
Ò

by Lemma 3.
For the rigorous proof, we will use a different argument that can be generalized to the

continuous branching case treated in the next section. Let f : E0 ! (0Ò 1] be a measurable
function and for (xÒ uÒ y) 2 Ē, set

Φx
u[f ](y) = Eé(xÒ0Òy) (expfhZ̃uÒ log f ig)

Recall that ú stands for the inverse local time. We then apply Lemma 1 with F =
frg ð [uÒ1) ð E0. Then TF = úu� = úu a.s. We can split [0Ò úu] into excursion intervals
and apply the compensation formula to obtain

Φr
u[f ](y) = E0

y

�
f (çu)

�
+ ïEr 
 E0

y

�Z úu

0

n
Π̂
�
Φòs

u�Ls
[f ](çLs )

�
� Φòs

u�L(s)[f ](çL(s))
o

ds
�

= E0
y

 
f (çu) + ïEr

� X
0�vÚu

Z úv

úv�

n
Π̂
�
Φòs

u�v[f ](çv)
�
� Φòs

u�v[f ](çv)
o

ds
�!

= E0
y

 
f (çu) + ï

Z u

0
EÊ

r

�Z Tr

0

n
Π̂
�
Φòs

u�v[f ](çv)
�
� Φòs

u�v[f ](çv)
o

ds
�

dv
!

= E0
y

�
f (çu) + ï

Z u

0

Z
E

n
Π̂
�
Φx

u�v[f ](çv)
�
� Φx

u�v[f ](çv)
o

m(dx) dv
�


Moreover, by (7) applied to F1 = frgð [0Ò1)ðE0 and F2 = frgð [uÒ1)ðE0, we have

Φx
u[f ](y) = ßx

�
Φr

u[f ](y)
�
Ò(18)

since Lt � 0 on [0ÒTr]. Recall that Λ has been defined by (16). We thus get

Φr
u[f ](y) = E0

y

�
f (çu) +

Z u

0
Λ
�
Φr

u�v[f ](çv)
�

dv
�

(19)

Next, note that
Péx (hZ̃0Ò 1i = 1) ½ Ex(expf�ïTrg)(20)

since hZ̃0Ò 1i = 1 when there has been no branching before time Tr. This entails

ßx(s) � s � Péx (h1Ò Z̃0i 6= 1) � Ex(1 � expf�ïTrg)

The finiteness of Λ then follows from Lemma 3 (and ï̃ Ú 1).
Moreover, by Lemma 3 again,

Λ(s)

ï̃ + s = lim
¢!0+

EÊ
r

�
ßò¢ (s) � sEò¢ (e

�ïTr)ÒTr Ù ¢
�

EÊ
r

�
1 � Eò¢ (e�ïTr)ÒTr Ù ¢

� 
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The functions in the right-hand side are moment generating functions since the coeffi-
cients of their series expansion are nonnegative (use (20) for the coefficient of s) and
their value for s = 1 is 1. Also their limit is trivially bounded from below by s. It easily
follows that this limit is the moment generating function of a probability measure on the

integers, Π̃. Note that Π̃ is sub-critical since ˆ̃Π(s) ½ s. We can then rewrite (19) as

Φr
u[f ](y) = E0

y

�
f (çu) + ï̃ Z u

0

n ˆ̃Π
�
Φr

u�v[f ](çv)
�
� Φr

u�v[f ](çv)
o

dv
�
(21)

We thus recover an equation of the type (4). It is then easy to complete the proof of
the theorem. For 0 � t0 Ú t1 Ú Ð Ð Ð Ú tk, we can apply (6) to the branching Markov
process Z̄ and the closed sets Fi = frg ð [tiÒ1) ð E0. For g = � log f we get

Eé(rÒ0Òy) (exp�hZ̃tk Ò gi j Z̃t1 Ò    Ò Z̃tk�1 ) = exp�hZ̃tk�1 Ò ŨFk (g)iÒ

where, using the additivity property of the local time,

ŨFk (g)(y) = � log Eé(rÒtk�1 Òy) (exp�hZ̃tk Ò gi)
= � log Eé(rÒ0Òy) (exp�hZ̃tk�tk�1 Ò gi)
= � log Φr

tk�tk�1
[f ](y)

This gives both the Markov property of Z̃ and (using (21)) the fact that the Laplace
transform of its semigroup has the desired form.

REMARKS. 1. It is straightforward to extend the result of Theorem 2 to the case
when the initial value of Z̄ is ë 
 é0 
 éy, for any point measure ë on E. The conclusion
is the same, except that the initial value of Z̃0 is now random, Z̃0 = hZ̃0Ò 1iéy, where the
moment generating function of hZ̃0Ò 1i is

Eë
é0
éy (s
hZ̃0Ò1i) = exp

�Z
log

�
ßx(s)

�
ë(dx)

�


2. When r has a non-zero potential, we may assume for the sake of simplicity that
the local time is given by

Lt =
Z t

0
1fòs=rg ds

We can follow the same calculation as in the proof of Theorem 2 after splitting the time-
interval [0Ò úu�] into the excursion intervals of ò away from r and fs � úu� : òs = rg. We
then find that, in the previous notation, Z̃ is a branching Markov process under Pé(rÒ0Òy) ,
with branching rate ï + ï̃ and with reproduction law (ïΠ + ï̃Π̃)Û(ï + ï̃). Observe that
ï + ï̃ is the value of the Laplace exponent of the inverse local time evaluated at ï.

2.4. Example. We assume here that ò is a residual lifetime process. Specifically, let ϒ
be a Radon measure on (0Ò1) with

R
(1^x)ϒ(dx) Ú 1 and S = (StÒ t ½ 0) a subordinator

with no drift and Lévy measure ϒ. Next, consider

òt = inffSs � t : Ss Ù tgÒ t ½ 0
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The regular point is r = 0 and the potential measure of ò killed when it hits 0 is

Ex

�Z T0

0
f (òt) dt

�
=
Z x

0
f (t) dt

Suppose also that for some å 2 (0Ò 1]

Π̂(s) =
1

1 + å (1 � s)1+å + s

Fix s 2 (0Ò 1] and write g(x) = ßx(s). Equation (12) is then an integrated Ricatti equation

g(x) = s +
ï

1 + å
Z x

0

�
1 � g(t)

�1+å
dt

The solution is

g(x) = 1 �
� åï

1 + åx + (1 � s)�å
��1Ûå

On the other hand, the occupation measure m under the excursion measure of ò is

m(dt) = ϒ̄(t) dtÒ where ϒ̄(t) = ϒ((tÒ1))

We finally obtain by (16)

Λ(s) =
ï

1 + å
Z 1

0

� åï
1 + å t + (1 � s)�å

��(1+å)Ûå
ϒ̄(t) dt

and
ï̃ =

Z
ϒ(dt)(1 � e�ït) = ï Z 1

0
ϒ̄(t)e�ït dt

3. Continuous branching.

3.1. Main result. Let† be a nonnegative function on [0Ò1) of the type (1). Notice that
† is locally Lipschitz. One can find, in many different ways, a family (Π¢Ò ¢ Ù 0) of
reproduction laws and a family (õ¢Ò ¢ Ù 0) of positive constants such that

†(u) = lim
¢!0+

õ¢
¢
�
Π̂¢(1 � ¢u)� (1 � ¢u)

�
Ò(22)

uniformly on compact subsets of [0Ò1). It is known (see [12], Theorem I.3.1) that if Z(¢)

denotes the branching Markov process associated with (Π¢Ò õ¢Ò ò) and with initial value
given by a Poisson distribution with intensity ¢�1ñ, then ¢Z(¢) converges in law, in the
sense of finite dimensional distributions, towards the superprocess Z started at ñ, with
spatial motion ò and branching mechanism †, whose law has been characterized in the
introduction.

Simultaneously with the superprocess Z, we can construct, for every closed subset F
of E, the exit measure ZF. The intuitive idea is the same as in the discrete setting, but
the rigorous construction is much more involved (see [12]). For simplicity, we consider
only closed sets F such that Px(TF Ú 1) = 1 for every x 2 E. Then, the exit measure ZF
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is a random measure on E which satisfies the following properties. For every measurable
function g: E ! [0Ò1),

Eñ(expf�hZFÒ gig) = expf�hñÒUF[g]igÒ(23)

where
UF[g](x) = � log

�
Eéx (expf�hZFÒ gig)

�
Ò x 2 E

solves the equation

UF[g](x) + Ex

�Z TF

0
†
�
UF[g](òs)

�
ds
�

= Ex

�
g(òTF)

�
(24)

The bound UF[g](x) � Ex

�
g(òTF)

�
easily implies

Eñ(hZFÒ gi) � Eñ

�
g(òTF)

�
(25)

The analogue of (6) holds (see [12], Theorem I.1.3): If Fk � Fk�1 Ð Ð Ð � F1 is a
decreasing family of closed sets, then

Eéx (expf�hZFk Ò gig j ZF1 Ò    ÒZFk�1 ) = expf�hZFk�1 ÒUFk [g]ig(26)

This property is known as the special Markov property for superprocesses.
These properties being granted, it is now fairly easy to follow the route described in

Section 2. Suppose that ò has a regular recurrent point r of zero potential (see the remark
at the end of this section for the case when r has a positive potential). As previously, we
denote by m the occupation measure under the excursion measure PÊ

r of ò away from r
(the latter is specified by the normalization of the local time L). For u Ù 0, set

vx(u) = Ufrg[u](x) = � log Eéx (expf�uhZfrgÒ 1ig)
By (24), vx satisfies the identity

u = vx(u) + Ex

�Z Tr

0
†
�
vòs(u)

�
ds
�
(27)

As in the previous section, we introduce an independent Markov process ç, and the
process ò̄ = (òÒLÒ çL). We denote by Z̄ the superprocess with spatial motion ò̄ and
branching mechanism †. Let us fix x 2 E and y 2 E0. By (25), for every s ½ 0, the exit
measure Z̄frgð[sÒ1)ðE0 gives no mass to frg ð (sÒ1) ð E0, Pé(xÒ0Òy) a.s. Hence, Pé(xÒ0Òy) a.s.,

we can define a random measure Z̃s by the formula

ér 
 és 
 Z̃s = Z̄frgð[sÒ1)ðE0 

A similar argument shows that Z̃0 = hZ̃0Ò 1iéy, Pé(xÒ0Òy) a.s. Also note that the distribution of
hZ̃0Ò 1i underPé(xÒ0Òy) coincides with the law of hZfrgÒ 1i underPéx , by a simple “projection”

argument. We have in particular Z̃0 = éy, Pé(rÒ0Òy) a.s.
The main result of this section is:

https://doi.org/10.4153/CJM-1997-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-002-x


36 J. BERTOIN, J. LE GALL AND Y. LE JAN

THEOREM 4. Under Pé(rÒ0Òy) , Z̃ is a superprocess started at éy, with spatial motion ç
and branching mechanism †̃ given by

†̃(u) =
Z

E
†
�
vx(u)

�
m(dx) = lim

¢#0
" EÊ

r

�
u � vò¢ (u)Ò ¢ Ú Tr

�
(28)

The function †̃ is of the type

†̃(u) = ãu +
Z

(0Ò1)
(e�ut � 1 + ut)ñ(dt)(29)

where ã ½ 0 and ñ is a measure on (0Ò1) such that
R
(t ^ t2)ñ(dt) Ú 1.

PROOF. We have already noticed that Pé(rÒ0Òy) (Z̃0 = éy) = 1. Let 0 � t1 Ú t2 Ú Ð Ð Ð Ú tp.
Then (26) (applied to the superprocess Z̄ and the closed sets Fi = frg ð [tiÒ1) ð E0)
and a simple translation argument give, for every measurable function g: E0 ! [0Ò1),

Eé(rÒ0Òy) (exp�hZ̃tp Ò gi j Z̃t1 Ò    Ò Z̃tp�1 ) = exp�hZ̃tp�1Ò Ũr
tp�tp�1

[g]iÒ

where, for x 2 E, y 2 E0, t ½ 0,

Ũx
t [g](y) = � log Eé(xÒ0Òy) (expf�hZ̃tÒ gig)

It remains to check that the function (tÒ y) ! Ũr
t [g](y) solves an integral equation of the

type (2) where † is replaced by the function †̃ defined in the theorem.
By (24) (with F = frg ð [tÒ1) ð E0) and the same argument as in the proof of

Theorem 2, we have

E0
y

�
g(çt)

�
= Ũr

t [g](y) + Er 
 E0
y

� Z út

0
†
�
Ũòs

t�Ls
[g](çLs )

�
ds
�

= Ũr
t [g](y) + E0

y

 
Er

� X
0�uÚt

Z úu

úu�
†
�
Ũòs

t�u[g](çu)
�

ds
�!

= Ũr
t [g](y) + E0

y

 Z t

0
EÊ

r

�Z Tr

0
†
�
Ũòs

t�u[g](çu)
�

ds
�

du
!

= Ũr
t [g](y) + E0

y

�Z t

0

Z
E
†
�
Ũx

t�u[g](çu)
�
m(dx) du

�


Moreover, using the remarks preceding the statement of the theorem,

Eé(xÒ0Òy) (exp�hZ̃tÒ gi) = Eé(xÒ0Òy)

�
Eé(xÒ0Òy) (exp�hZ̃tÒ gi j Z̄frgð[0Ò1)ðE0)

�
= Eé(xÒ0Òy) (exp�hZ̃0Ò Ũr

t [g]i)
= Eé(xÒ0Òy)

�
exp

�
�hZ̃0Ò 1iŨr

t [g](y)
��

= exp�vx
�
Ũr

t [g](y)
�
Ò

which gives the identity
Ũx

t [g](y) = vx
�
Ũr

t [g](y)
�


https://doi.org/10.4153/CJM-1997-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-002-x


SPATIAL BRANCHING PROCESSES AND SUBORDINATION 37

It follows that

E0
y

�
g(çt)

�
= Ũr

t [g](y) + E0
y

�Z t

0
†̃
�
Ũr

t�u[g](çu)
�

du
�

(30)

where
†̃(u) =

Z
E
†
�
vx(u)

�
m(dx)

is as in the statement of the theorem. We have thus derived the desired integral equation
for Ũr

t [g](y). Using (11), (27) and the Markov property under EÊ
r , we have also

†̃(u) = EÊ
r

�Z Tr

0
†
�
vòs(u)

�
ds
�

= lim
¢#0

" EÊ
r

�Z Tr

¢
†
�
vòs(u)

�
dsÒ ¢ Ú Tr

�

= lim
¢#0

" EÊ
r

�
u � vò¢(u)Ò ¢ Ú Tr

�


To complete the proof, we have to check that †̃ can be written in the form (29) (at
the present stage, we do not even know that †̃(u) Ú 1 for every u ½ 0). It follows
readily from (23) that for every closed set F, the mass of the exit measure, hZFÒ 1i, has
an infinitely divisible distribution. Applying this to F = frg, we see that

vx(u) = uax +
Z

(0Ò1)
(1 � e�ut)ñx(dt)

for some ax ½ 0 and some measure ñx on (0Ò1) with
R
(1 ^ t)ñx(dt) Ú 1. On the other

hand, we know from (25) and the definition of vx that

(vx)0(0) = Eéx (hZrÒ 1i) � 1

and therefore
ax +

Z
(0Ò1)

tñx(dt) � 1 for all x 2 E

Using the second expression for †̃ in (28), we have

†̃(u) = lim
¢#0

" EÊ
r

�
u � uaò¢ �

Z
(0Ò1)

(1 � e�ut)ñò¢ (dt)ÒTr Ù ¢
�

= lim
¢#0

"
�

uã¢ +
Z

(0Ò1)
(e�ut � 1 + ut)ñ¢(dt)

�

where

ã¢ = EÊ
r

�
1 � aò¢ �

Z
(0Ò1)

tñò¢ (dt)ÒTr Ù ¢
�

and ñ¢(dt) = EÊ
r

�
ñò¢ (dt)ÒTr Ù ¢

�


From the last expression for †̃(u), we see that either †̃(u) = 1 for every u Ù 0 or
†̃(u) Ú 1 for every u Ù 0. The first case cannot occur, because otherwise the equation
(30) written with g = ï Ù 0 could have no solution. Thus †̃(u) Ú 1 for every u Ù 0.
By a standard argument (see e.g. Gnedenko and Kolmogorov [15], Section 19) †̃(u) has
necessarily an expression in the form (29).
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REMARKS. 1. More generally, if ñ is a finite measure on E, then one can check that
Theorem 4 remains valid under Pñ
é0
éy , but the initial value of Z̃ is now z0éy, where
z0 ½ 0 is a random variable with Laplace transform

� log Eñ
é0
éy (expf�uz0g) =
Z

E
vx(u)ñ(dx)

2. When r has a non-zero potential, we assume as usual that the local time L is
simply the time spent at r. A straightforward variation of the argument in the proof
of Theorem 4 shows that under Pé(rÒ0Òy) , Z̃ is a superprocess with spatial motion ç and
branching mechanism † + †̃.

3.2. Examples. We now present detailed calculations in some special cases to obtain
explicit expressions for the functions vx and †̃ which appear in Theorem 4. We will
always suppose that the measure-valued process Z is governed by a stable branching,
viz

†(u) = kuå+1

for some å 2 (0Ò 1] and k Ù 0.

3.2.1. Residual lifetime process. We assume here that ò is as in subsection 2.4. Fix
u Ù 0 and write g(x) = vx(u). Equation (27) is then an integrated Ricatti equation

g(x) + k
Z x

0
g(t)å+1 dt = u

The solution is
g(x) = (åkx + u�å)�1Ûå

Recall that the occupation measure m is m(dt) = ϒ̄(t) dt, where ϒ̄(t) = ϒ((tÒ1)). We
finally obtain by (28)

†̃(u) = k
Z 1

0
ϒ̄(t)(åkt + u�å)�(å+1)Ûå dt

REMARK. If we had taken the age process, infft�Ss : Ss � tg, instead of the residual
lifetime, then equation (27) would have given

u = g(x) +
k

ϒ̄(x)

Z 1

x
g(t)å+1ϒ̄(t) dt

This does not seem easy to solve except for å = 1 and ϒ̄(t) = t�ö for some ö 2 (0Ò 1) (in
other words, ò is a stable (ö) age-process). Indeed, we deduce that in that case,

g0(x) � kg(x)2 � ög(x)x�1 + uöx�1 = 0

and putting g = �f 0Û(kf ), we obtain

f 00 � öf 0Ûx = kuöfÛx
The latter equation can be solved in terms of modified Bessel functions.
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3.2.2. Reflecting Brownian motion. Assume now that ò is a reflecting Brownian
motion in [0Ò1). Writing again g(x) = vx(u), we have that equation (27) reads

g(x) + 2k
Z 1

0
(t ^ x)g(t)å+1 dt = u

It follows that g is a non-increasing function and it is then clear that g(1) = 0. The
integral equation gives g00 = 2kgå+1, then 2g0g00 = 4kg0gå+1, and finally there exists some
real number c such that

(g0)2 =
4k
å + 2

gå+2 + c

It follows that g is the inverse function of

f (x) =
Z u

x

� 4k
å + 2

så+2 + c
��1Û2

dsÒ 0 Ú x � u

The function f must be defined for all x 2 (0Ò u] and satisfy f (0+) = 1, which forces
c = 0. Hence

f (x) =
1
å

vutå + 2
k

(x�åÛ2 � u�åÛ2)Ò g(x) =
 
å
vuut k
å + 2

x + u�åÛ2
!�2Ûå



On the other hand, the occupation measure under the Brownian excursion law is simply
the Lebesgue measure and equation (28) gives

†̃(u) =
Z 1

0
k
 
å
vuut k
å + 2

t + u�åÛ2
!�2(å+1)Ûå

dt =

vuut k
å + 2

u1+åÛ2

REMARK. If we had taken a Brownian motion on a finite interval, say [0Ò a], with
instantaneous reflection at the boundary points, we would have gotten the same equation,
except that the boundary condition g(1) = 0 would have been replaced by g0(a) = 0.
The solution would have satisfied

x =
Z u

g(x)

� 4k
å + 2

så+2 + c
��1Û2

ds

for some non-zero constant c which can be specified by the latter condition. For example,
if å = 1, the solution would have involved Weierstrass functions. These calculations are
closely related to Neveu [22].

3.2.3. Use of the scaling property. We will show here that †̃ can be specified up to a
constant factor when the Markov process ò satisfies a certain scaling property. Typically,
suppose that ò takes values in [0Ò1), that for some ó Ù 0

the Px-law of (ïòtï�ó Ò t ½ 0) is PïxÒ 8ï Ù 0(31)

and for some ö Ú 1
m(dt) = t�ö dt(32)
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(in fact, it can be seen that (32) always holds under (31)). We claim that then

†̃(u) = cu1+å+å(ö�1)Ûó(33)

for some constant number c Ù 0.
To establish (33), we first consider a discrete branching Markov process associated

with (Π¢Ò õ¢Ò ò) as described in Section 2 and the beginning of subsection 3.1. We choose
Π¢ = Π independently of ¢, with

Π̂(s) =
1

1 + å (1 � s)1+å + sÒ

as in subsection 2.4, and õ¢ = ¢�å. Then, (22) holds with

†(u) = (1 + å)�1u1+å
Denote by n(¢) the mass of the exit measure at f0g for this branching Markov process.
Loosely speaking, the scaling property (31) implies that if we modify the space-scale by
a factor ï = 1Ûx and the time-scale by a factor x�ó, then the law of the spatial motion
of each particle is unchanged, while the branching rate becomes xóõ¢ = õ¢x�óÛå . In other
words, we have the identity

(n(¢)Ò Péx )
(d)
= (n(¢x�óÛå)Ò Pé1 )

Let î(¢Òx) be the cumulant of n(¢) under Péx , so that

Eéx (expf�un(¢)g) = expf�î(¢Òx)(u)g = expf�î(¢x�óÛåÒ1)(u)gÒ u Ù 0
Next, consider an independent Poisson variable N(¢) with parameter ¢�1, so that

� log EN(¢)éx (expf�u¢n(¢)g) = ¢�1
�
1 � expf�î(¢Òx)(u¢)g

�
= ¢�1

�
1 � expf�î(¢x�óÛåÒ1)(u¢)g

�


According to Theorem I.3.1 of Dynkin [12], the distribution of ¢n(¢) under PN(¢)éx con-
verges as ¢ ! 0+ towards that of the mass of the exit measure at f0g of a superprocess
started at éx, with spatial motion ò and branching mechanism †. We thus have in the
notation of the previous subsection

vx(u) = lim
¢!0+

¢�1
�
1 � expf�î(¢x�óÛåÒ1)(u¢)g

�

= lim
ë!0+

(xóÛåë)�1
�
1 � expf�î(ëÒ1)(uxóÛåë)g

�

= x�óÛåv1(uxóÛå)
Equation (28) now gives

†̃(u) = (1 + å)�1
Z 1

0
t�ö

�
vt(u)

�å+1
dt

= (1 + å)�1
Z 1

0
t�öt�ó(å+1)Ûå

�
v1(utóÛå)

�å+1
dt

= (1 + å)�1uå+1+å(ö�1)Ûó
Z 1

0
s�ös�ó(å+1)Ûå

�
v1(sóÛå)

�å+1
ds
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which proves (33).
Let us discuss some special cases. First, ifò is a Bessel process of dimension d 2 (0Ò 2),

then ó = 2, ö = 1 � d and †̃(u) = cu1+å(1�dÛ2). For d = 1, ò is a reflecting Brownian
motion and this agrees with subsection 3.2.2. Next, if ò is the age process or the residual
lifetime process associated with a stable subordinator with exponent ã 2 (0Ò 1), then
ó = 1 and ö = ã. It follows that †̃(u) = cu1+ãå, which agrees with subsection 3.2.1.
Finally, it is immediate to adapt the argument leading to (33) to processes taking values
in (�1Ò1). If ò is a stable Lévy process of index ã 2 (1Ò 2], then ó = ã, ö = 0 and
†̃(u) = cu1+å(1�1Ûã). The Brownian case ã = 2 of course agrees with subsection 3.2.2.

4. Subordination via the Brownian snake. In this section, we show that the general
subordination method for superprocesses that is developed in Section 3 can be interpreted
in terms of the path-valued process called the Brownian snake. We treat only a special
situation, corresponding to the residual lifetime process of subsection 2.4. This case is
already interesting as it yields a path-valued process approach for superprocesses with
a rather general branching mechanism, including the å-stable branching mechanism for
1 Ú å � 2. The usual Brownian snake [17], [18], [13] applies only to the case å = 2.
This section can be read independently of the previous ones, although ideas are similar.
In subsection 4.1 below, we state some basic facts about the Brownian snake, which are
mainly simple extensions of results in [17], [18].

4.1. The Brownian snake with a discontinuous spatial motion. Let ò be as in the
previous sections a càdlàg Borel right Markov process with values in a Polish space E.
We denote by dE a (complete) metric on E compatible with the topology on E. We may
and will assume that the process ò is defined on the Skorokhod space D([0Ò1)ÒE). The
mapping x ! Px is then measurable from E into the space of all probability measures
on D

�
[0Ò1)ÒE

�
.

A killed path in E is a càdlàg function w: [0Ò ê) ! E, where ê = ê(w) 2 (0Ò1) is
called the lifetime of w. Note that the limit w(ê�) need not exist. It is also convenient to
agree that every point x of E is a killed path with lifetime 0. We let W be the set of all
killed paths and, if wÒw0 2 W , we define

d(wÒw0) = dE

�
w(0)Òw0(0)

�
+ jê � ê0j +

Z ê^ê0

0

�
du(w�uÒw0

�u) ^ 1
�

duÒ

where w�u stands for the restriction of w to [0Ò u], and du denotes the distance on the
Skorokhod space Du = D([0Ò u]ÒE) (defined as in [2], p. 111 for instance). In particular,
if xÒ x0 2 E, d(xÒw) = dE

�
xÒw(0)

�
+ ê(w), d(xÒ x0) = dE(xÒ x0). It is easy to check that d is

a distance on W and that (W Ò d) is a Polish space.
We can then define the Brownian snake with spatial motion ò in much the same way

as in [17] (where we dealt with a continuous spatial motion and considered stopped paths
instead of killed paths). Let us fix x 2 E and denote by Wx the set of all killed paths
with initial point x. Let w 2 Wx with lifetime ê Ù 0. If 0 � a Ú ê, and b ½ a, we let
QaÒb(wÒ dw0) be the unique probability measure on Wx such that
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(i) ê0 = b, QaÒb(wÒ dw0) a.s.
(ii) w0(t) = w(t), 8t 2 [0Ò a], QaÒb(wÒ dw0) a.s.

(iii) the law under QaÒb(wÒ dw0) of
�
w0(a + t)Ò 0 � t Ú b� a

�
is the law of (òtÒ 0 � t Ú

b � a) under Pw(a).
In particular, Q0Ò0(wÒ dw0) = éx(dw0) and Q0Òb(wÒ dw0) is the law of (òtÒ 0 � t Ú b) under
Px. The latter law will be denoted by P b

x (dw0). By convention, we also set Q0Òb(xÒ dw0) =
P b

x (dw0).
Denote by íês(dadb) the joint distribution of (inf[0Òs] årÒ ås) whenå is a one-dimensional

reflecting Brownian motion with initial value å0 = ê ½ 0:

íês(dadb) =
2(ê + b � 2a)p

2ôs3
exp�

 
(ê + b � 2a)2

2s

!
1(0ÚaÚê^b) da db

+ (2Ûôs)1Û2 exp�
 

(ê + b)2

2t

!
1(0Úb) é0(da) db

PROPOSITION 5. There exists a continuous strong Markov process in Wx, denoted by
(WsÒ s ½ 0), whose transition kernels are given by the formula

Qs(wÒ dw0) =
Z

[0Ò1)2
íês(da db)QaÒb(wÒ dw0)

If ês denotes the lifetime of Ws, the process (êsÒ s ½ 0) is a reflecting Brownian motion in
R+.

Loosely speaking, the path Ws is erased from its tip when the lifetime ês decreases
and, on the other hand, it is extended (independently of the past) when ês increases, using
the law of the underlying spatial motion ò for the extension. It is easy to check that a.s.
for every s Ú s0, the killed paths Ws, Ws0 coincide for t Ú m(sÒ s0) := inf[sÒs0] êr (they also
coincide at t = m(sÒ s0) provided that m(sÒ s0) Ú ês ^ ês0).

The proof of Proposition 5 is much similar to that of Theorem 2.1 in [17]. The
process (Ws) is constructed from the Kolmogorov extension theorem. The existence of a
continuous version is much easier here than in [17], where we used a different (stronger)
metric. Indeed, the form of the metric d shows that, for a � ê,

d(wÒw0) � jê � ê0j + jê ^ ê0 � ajÒ QaÒb(wÒ dw0) a.s.

and therefore, if (åsÒ s ½ 0) is as previously,
Z

Qs(wÒ dw0) d(wÒw0)k � ck(E[jås � å0jk] + E[jås ^ å0 � inf
[0Òs]

årjk]) � c0kskÛ2Ò

so that the classical Kolmogorov lemma yields the desired result. Finally, the strong
Markov property is proved by the same argument as in [17].

We may and will assume that the process W is the canonical process on the space
C(R+ÒWx) of all continuous functions from R+ into Wx. We also let CK(R+ÒWx) be the
subset of C(R+ÒWx) determined by the condition Ws = x for s large enough (equivalently
ês = 0 for s large). We denote by Pw the law of (Ws) started at w.
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It is clear that x is a recurrent regular point for W. We denote by Nx the associated
excursion measure. The law under Nx of (êsÒ s ½ 0) is Itô’s measure of positive excursions
of linear Brownian motion. We assume that Nx is normalized so that

Nx(sup
s½0

ês Ù ¢) =
1
2¢

We also set õ = inffs Ù 0Ò ês = 0g, which represents the duration of the excursion. Then,
for any nonnegative measurable function G on Wx,

Nx

Z õ

0
dsG(Ws) =

Z 1

0
dtEt

x(G)(34)

(see [18] Proposition 2.4).
Let D be an open subset of E such that x 2 D and let F = Dc. We may construct the

exit local time of W from the set D along the lines of [18], Section 3. For w 2 W , or
w 2 D

�
[0Ò1)ÒE

�
, we set ú(w) = infft ½ 0Òw(t) Û2 Dg. In order to avoid trivialities, we

assume that Px(ú Ú 1) Ù 0. Then, as in Proposition 3.1 of [18], one easily sees that, if

Us =
�
ês � ú(Ws)

�+Ò ës = inf
²

tÒ
Z t

0
1fú(Wu)Úêug du Ù s

¦
Ò

the process (Uës Ò s ½ 0) is under Pw a reflecting Brownian motion in R+. From this it
follows that the limit

LD
s = lim

¢#0

1
¢
Z s

0
1fú(Wu)ÚêuÚú(Wu)+¢g du

exists for every s ½ 0, Pw a.s. and Nx a.e., and defines a continuous increasing process.
By passing to the limit in (34) (see [18], Proposition 3.4 for details) we get that for any
nonnegative measurable function G on Wx,

Nx

Z õ

0
dLD

s G(Ws) = ED
x (G)(35)

where ED
x denotes the law of (òsÒ 0 � s Ú ú) under Px(Ð \ fú Ú 1g).

Before introducing the exit measure in the Brownian snake setting, we make an
additional assumption:

(H) For every y 2 D, the process ò is continuous at s = ú, Py a.s. on fú Ú 1g.
This assumption is not really necessary, but it simplifies the theory and will hold in the
applications we have in mind.

For every w 2 W , set ŵ = lims"ê w(s) = w(ê�) when the limit exists, and otherwise
ŵ = ] , where ] denotes a cemetery point added to E as an isolate point. By convention,
x̂ = x. By using (H) and (35) applied to the function Φ(w) = 1En]D(ŵ), we get that
Ŵs 2 ] D, dLD

s a.e., Nx a.e. The exit measure from D, denoted as ZF (recall that F = Dc,
we use a notation different from [18], [19], but which is consistent with the previous
sections), is the random measure on ] D = ] F defined by

hZFÒ gi =
Z õ

0
dLD

s g(Ŵs)
As an immediate consequence of (35) we have, for any bounded function G on ] D,

Nx(hZFÒ ßi) = Ex

�
ß(òú)1fúÚ1g

�
(36)
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PROPOSITION 6. Let ß be a bounded nonnegative measurable function on ] D, and
for every x 2 D set

u(x) = Nx(1 � exp�hZFÒ ßi)
Then,

u(x) = Ex(ß(òú )1fúÚ1g) � 2Ex

�Z ú

0
dtu(òt)

2
�
(37)

For the proof, see Theorem 4.2 of [18]. Our setting is more general than in [18], but
the arguments are exactly the same. The connections between the Brownian snake and
superprocesses (see below and [17]) show that (37) may be interpreted as a special case
of (24).

The last ingredient that we need is the special Markov property for the Brownian
snake (which is closely related to the formula (26) for superprocesses). We first define
the excursions of W outside D. By the properties of the Brownian snake, the set

fsÒ ú(Ws) Ú êsg = fsÒ ú(Ws) Ú 1g
is open Nx a.e. We denote by (aiÒ bi), i 2 I its connected components. For every i 2 I,
the paths WsÒ s 2 (aiÒ bi) must coincide up to their exit time from D (see the proof of
Proposition 3.1 in [18]). Denote by úi their common exit time and by xi their common
exit point. We define Wi 2 CK(R+ÒWxi ) by

Wi
s(t) = W(ai+s)^bi (úi + t)Ò

for 0 � t Ú êi
s = ê(ai+s)^bi � úi.

Let CK(R+ÒW ) =
S

y2E CK(R+ÒWy), which is equipped with the topology of uniform
convergence with respect to the metric d. The measure

P éWi is a point measure on
CK(R+ÒW ), that accounts for the behavior of the paths Ws after their exit time from D.
The goal of the special Markov property is to explicit the conditional distribution of this
point measure knowing the õ-field that contains the information given by the paths Ws

before they exit D.
To define the latter õ-field, we set for every s ½ 0

îs = inf
²

tÒ
Z t

0
du1fú(Wu)=1g Ù s

¦

and WD
s = Wîs . Under Nx, the process (WD

s ) is continuous a.e. It is obtained by removing
the values of W over all intervals (aiÒ bi), and pasting together the remaining pieces. We
let ED be the õ-field generated by (WD

s Ò s ½ 0) and by the collection of all sets that are
negligible for every measure Ny, y 2 E.

PROPOSITION 7. The random measure ZF is ED-measurable. If G is any nonnegative
measurable function on CK(R+ÒWx),

Nx

�
exp�X

i2I
G(Wi) j ED

�
= exp� Z

ZF(dz)Nz(1 � e�G)

In other words, conditionally given ED,
P éWi (dW) is a Poisson measure on CK(R+ÒW )

with intensity
R ZF(dz)Nz(dW).
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See [19] for the special case when ò is Brownian motion in Rd and [20] for the general
statement.

We finally explain the connections between the Brownian snake and superprocesses
[17]. We assume for simplicity that ò has no fixed discontinuities (for every x 2 E,
t ½ 0, s ! òs is Px a.s. continuous at s = t). By replacing the underlying process (òt)
by (tÒ òt), we can easily extend the definition of the exit measure to space-time domains
D ² [0Ò1) ð E. For every t Ù 0, denote by Zt the exit measure from the domain
[0Ò t)ðE (notice that assumption (H) holds for this special domain). In this special case,
the exit local time LD

s coincides with the usual local time of the process (ês) at level t. As
an immediate consequence of (35), we get that Zt is a.e. supported on ftgðE. Therefore
we may and will identify Zt with a random measure on E.

The laws under Nx, x 2 E of the process (ZtÒ t Ù 0) are the canonical measures of
the superprocess with spatial motion ò and branching mechanism †(u) = 2u2 (see [5],
Chapter 3 and [14], Section 4 for canonical measures of superprocesses). This means
that, if ñ is a finite measure on E and

P
i2I éWi (dW) is a Poisson measure on CK(R+ÒW )

with intensity
R ñ(dx)Nx(dW), the process

Xt =
X
i2I

Zt(W
i)Ò (t Ù 0)Ò X0 = ñ

is a superprocess with spatial motion ò and branching mechanism†, started at ñ. In fact,
the (time-homogeneous) Markov property follows from Proposition 7 and, on the other
hand, if f is a bounded nonnegative measurable function on E,

E(exp�hXtÒ f i) = exp� Z ñ(dx)Nx(1 � e�hZtÒf i) = exp�hñÒ utiÒ

where, by Proposition 6, the function ut(x) = Nx(1 � exp�hZtÒ f i) is the (unique)
nonnegative solution of the equation

ut(x) = Ex

�
f (òt)

�
� 2Ex

�Z t

0
dhut�h(òh)2

�
(38)

4.2. Subordination. We now assume that ò is the residual lifetime process of subsec-
tion 2.4, òt = inffSs � tÒ Ss Ù tg, where S is a subordinator. However, we allow the
subordinator S = (StÒ t ½ 0) to have a nonzero drift. Specifically, the Laplace transform
of St is given by

E0(exp�ïSt) = exp�të(ï)Ò
where

ë(ï) = bï +
Z 1

0
ϒ(dh)(1 � e�ïh)Ò

where b ½ 0,
R
(1 ^ h)ϒ(dh) Ú 1. The local time of ò at 0 is Lt = inffsÒ Ss Ù tg. To

avoid trivial cases, we also assume that b Ù 0 or ϒ((0Ò1)) = 1, which implies that the
process (Lt) is continuous.

As in the previous sections, let ç be an independentcàdlàg Borel right Markov process
with values in a Polish space E0. We assume here that ç has no fixed discontinuities.
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We can apply the construction of subsection 4.1 to the Markov process ò̄t = (òtÒLtÒ çLt ),
taking values in Ē = R+ ðRð E0. We write Ē for expectations relative to the process ò̄.
To simplify the notation, we set Γt = çLt .

Following subsection 4.1 we denote by (Ws) the Brownian snake with spatial motion
ò̄. For w 2 W , we write w(t) =

�
òt(w)ÒLt(w)ÒΓt(w)

�
. For every h Ù 0, let Dh be the

domain Dh = R+ ð [0Ò h) ð E0, Fh = Dc
h, and let úh(w) be the exit time from Dh for a

killed path w:
úh(w) = infftÒLt(w) ½ hg

As previously, we also write úh for the exit time from Dh of the process ò̄.
Note that assumption (H) holds for the domain Dh, essentially because ç has no fixed

discontinuities. We can thus define ZFh and, by formula (36), we have for a 2 Dh

Na(hZFh Ò gi) = Ēa

�
g(ò̄úh)

�


This formula makes it clear that ZFh is a.s. supported on the set f0gðfhgðE0. Therefore
there exists a random measure Z̃h such that ZFh = é0 
 éh 
 Z̃h, Na a.e.

THEOREM 8. The laws of the process (Z̃tÒ t Ù 0) under the measures N(0Ò0Òy), y 2 E0

are the canonical measures of the superprocess with spatial motion ç and branching
mechanism

†̃(v) = 2bv2 +
Z

(0Ò1)
ϒ(dö)

2öv2

1 + 2öv


Equivalently, for y 2 E0 and 0 Ú h Ú t, for every bounded nonnegative measurable
function f on E0,

N(0Ò0Òy)(1 � exp�hZ̃tÒ f i) = vt(y)

and
N(0Ò0Òy)(1 � exp�hZ̃tÒ f i j Z̃uÒ 0 Ú u � h) = 1 � exp�hZ̃hÒ vt�hiÒ(39)

where the function
�
vt(y)Ò t ½ 0Ò y 2 E0

�
is the unique nonnegative solution of the

equation

vt(y) = E0
y

�
f (çt)

�
� E0

y

�Z t

0
du†̃

�
vt�u(çu)

��


REMARK. Theorem 8 can be viewed as a special case of Theorem 4 above (take å = 1
in the explicit calculations of subsection 3.2.1). However, it is not so easy to identify
the objects defined in terms of the Brownian snake with the corresponding quantities for
superprocesses, and therefore we present a direct derivation of Theorem 8. Moreover the
snake approach is crucial in the applications developed in subsection 4.3.

PROOF. For a = (ãÒ lÒ y) 2 Dh, set

uh(a) = Na(1 � exp�hZ̃hÒ f i)
and vh(y) = uh(0Ò 0Ò y). By Proposition 6, with a slight abuse of notation,

uh(a)= Ēa

�
f (ò̄úh)

�
� 2Ēa

�Z úh

0
dtuh(ò̄t)2

�
(40)

= E0
y

�
f (çh)

�
� 2Ēa

�Z úh

0
dtuh(òtÒLtÒΓt)2

�
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We are mainly interested in vh(y). A trivial translation argument gives uh(0Ò lÒ y) =
uh�l(0Ò 0Ò y) = vh�l(y). We will now check that uh(ãÒ lÒ y) can be expressed in terms of
uh(0Ò lÒ y).

Let DŁ
h = (0Ò1) ð [0Ò h) ð E0, FŁ

h = (DŁ
h)c and let úŁh denote the exit time from DŁ

h.
Notice that, for a 2 DŁ

h, úŁh Ú úh, P̄a a.s. It follows from (35) that the measure dsLDh
s is Na

a.e. supported on paths w such that úŁh (w) Ú ê(w). By decomposing Z̃h according to the
different excursions outside DŁ

h and using the special Markov property (Proposition 7),
we get for (ãÒ lÒ y) 2 DŁ

h

N(ãÒlÒy)(1 � exp�hZ̃hÒ f i) = N(ãÒlÒy)

�
N(ãÒlÒy)(1 � exp�hZ̃hÒ f i j EDŁ

h)
�

= N(ãÒlÒy)(1 � exp�hZFŁ
h
Ò uhi)

On the other hand, by (36), ZFŁ
h

= hZFŁ
h
Ò 1ié(0ÒlÒy), N(ãÒlÒy) a.e.

We then make the following simple observation. If D0 = (F0)c, D00 = (F00)c are two
domains with respective exit times ú0, ú00 and if a 2 D0 \D00 is such that ú0 = ú00, P̄a a.s.,
then ZF0 = ZF00 , Na a.e. This follows from the approximation of the exit local time given
in subsection 4.1, since we have ú0(Wu) = ú00(Wu), du a.e., Na a.e.

The residual lifetime process started at ã Ù 0 hits 0 at time ã. Therefore, for a =
(ãÒ lÒ y) 2 DŁ

h, the exit time from DŁ
h coincides P̄a a.s. with the exit time from the space-

time domain [0Ò ã)ð Ē. By the previous observation, ZFŁ
h

= Zã, Na a.e., where Zã is as
in the final remark of subsection 4.1. On the other hand, by a well-known formula for
the Brownian local time under the Itô excursion measure, we have for ï ½ 0, t Ù 0,

Na(1 � exp�ïhZtÒ 1i) =
ï

1 + 2ït


By combining the previous results, we get

uh(ãÒ lÒ y) = N(ãÒlÒy)(1 � exp�hZ̃hÒ f i) = N(ãÒlÒy)(1 � exp�uh(0Ò lÒ y)hZFŁ
h
Ò f i)

=
uh(0Ò lÒ y)

1 + 2ãuh(0Ò lÒ y)


We can now prove that the function vt(y) solves the integral equation of Theorem 8.
We start from (40) and we evaluate

Ē(0Ò0Òy)

�Z úh

0
dtuh(ò̄t)2

�


From our construction, P̄(0Ò0Òy)(úh = Sh) = 1 for every h Ù 0. Therefore, for any function
g, Z úh

0
dtg(t) = b

Z h

0
dsg(Ss) +

X
s�hÒSs�ÚSs

Z Ss

Ss�
dtg(t)Ò

P̄(0Ò0Òy) a.s. We then get
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Ē(0Ò0Òy)

�Z úh

0
dtuh(ò̄t)

2
�

= bĒ(0Ò0Òy)

�Z h

0
dsuh(0Ò sÒ çs)2

�
+ Ē(0Ò0Òy)

� X
s�hÒSs�ÚSs

Z Ss

Ss�
dtuh(òtÒLtÒ çLt )

2
�

= bE0
y

�Z h

0
dsvh�s(çs)2

�
+ Ē(0Ò0Òy)

� X
s�hÒSs�ÚSs

Z Ss

Ss�
dtuh(Ss � tÒ sÒ çs)2

�

= bE0
y

�Z h

0
dsvh�s(çs)2

�
+ Ē(0Ò0Òy)

0
B@ X

s�hÒSs�ÚSs

Z Ss

Ss�
dt
 

uh(0Ò sÒ çs)
1 + 2(Ss � t)uh(0Ò sÒ çs)

!2
1
CA

= bE0
y

�Z h

0
dsvh�s(çs)

2
�

+ E0
y

0
B@Z h

0
ds
Z

ϒ(dö)
Z ö

0
dt
 

uh(0Ò sÒ çs)
1 + 2tuh(0Ò sÒ çs)

!2
1
CA

= bE0
y

�Z h

0
dsvh�s(çs)2

�
+ E0

y

 Z h

0
ds
Z

ϒ(dö)
öuh(0Ò sÒ çs)2

1 + 2öuh(0Ò sÒ çs)

!

=
1
2

E0
y

�Z h

0
ds†̃

�
vh�s(çs)

��


The integral equation for vt(y) follows using (40). The uniqueness of the nonnegative
solution to this integral equation follows from Gronwall’s lemma.

It remains to establish (39). We rely on the special Markov property (Proposition 7).
Notice that (Z̃uÒ 0 � u � h) is measurable with respect to EDh . Then, by considering the
contributions to Z̃t coming from the different excursions outside Dh, we get

N(0Ò0Òy)(1 � exp�hZ̃tÒ f i j EDh ) = 1 � exp
²
� Z

Z̃h(dy0)N(0ÒhÒy0)(1 � exp�hZ̃tÒ f i)
¦

= 1 � exp�hZ̃hÒ ut(0Ò hÒ Ð)i
= 1 � exp�hZ̃hÒ vt�hi

REMARK. The function †̃ can be expressed in the usual form for branching mecha-
nism functions. Notice that, for every ö Ù 0,

2öv2

1 + 2öv
=
Z 1

0

dã
4ö2

e�ãÛ(2ö)(e�ãv � 1 + ãv)

Therefore, the function †̃ of the theorem can be expressed as

†̃(v) = 2bv2 +
Z 1

0
ϒ0(dã)(e�ãv � 1 + ãv)Ò

where

ϒ0(dã) =
�Z 1

0

ϒ(dö)
4ö2

e�ãÛ(2ö)
�

dã

If ó(dö) denotes the image of the measure ö�1ϒ(dö) under the mapping ö ! (2ö)�1,
we have also ϒ0(dã) = ( 1

2
R ó(dö)e�ãö) dã. We see that we get only a special class of
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measures ϒ0(dã), namely those measures which are absolutely continuous with respect
to Lebesgue measure and whose density is the Laplace transform of a measure ó on R+

such that
R ó(dö)(ö�1 ^ ö�2) Ú 1. The å-stable branching mechanism, for 1 Ú å Ú 2,

is obtained by the choice b = 0 and ϒ(dö) = cö�å dö.

4.3. The compact support property. Let †̃ be the branching mechanism function in
Theorem 8 and let (ZtÒ t ½ 0) be a superprocess with spatial motion ç and branching
mechanism †̃. We say that the compact support property holds for this superprocess if,
for every t Ù 0, the topological support of Zt is compact a.s., for any choice of the initial
value ñ 2 Mf (E0).

THEOREM 9. Let †̃ be as in Theorem 8. Assume that
(i) either b Ù 0, or b = 0 and there exist two positive constants c1, ö Ú 1 such that,

for every r 2 [0Ò 1], Z 1

0
ϒ(dh)(h ^ r) ½ c1r1�ö;

(ii) there exist three positive constants c2, k, p, with p Ù 2 if b Ù 0, pö Ù 2 if b = 0,
such that, for every y 2 E0, t 2 [0Ò 1],

E0
y

�
sup

0�s�t
dE0(yÒ çs)k

�
� c2tp

Then the compact support property holds for the (çÒ †̃)-superprocess.

REMARK. For the å-stable branching mechanism, condition (i) holds with ö = å�1.
The compact support property will then hold provided that (ii) is verified with some
p Ù 2(å � 1)�1.

PROOF. We rely on Theorem 8, but write Yt = Z̃t and Ny instead of N(0Ò0Òy) to simplify
notation. By the canonical representation for superprocesses, Zt has the same law asP

i2I Yt(°i), where
P

i2I é°i (dW) is a Poisson measure with intensity
R ñ(dy)Ny(dW). We

then observe that in the sum
P

i2I Yt(°i) there is only a finite number of nonzero terms.
This follows from Lemma 3.4 of [5] if we can check that, for some é Ù 0,

lim inf
ï!1

ï�1�é†̃(ï) Ù 0(41)

When b Ù 0, this is obvious. Otherwise, we write

†̃(v) = 2v2
Z 1

0

dh
(1 + 2hv)2

ϒ
�
[hÒ1)

�
½ 2

9
v2
Z 1Ûv

0
dhϒ

�
[hÒ1)

�
½ 2

9
c1v1+öÒ

by assumption (i).
It is therefore enough to check that the support of Yt is compact Ny a.e., for every

y 2 E0. Recall that for w 2 W , we write w(t) =
�
òt(w)ÒLt(w)ÒΓt(w)

�
for t Ú ê(w). We

also set Γ̂(w) = limt"ê(w) Γt(w) if the limit exists, Γ̂(w) = ] otherwise. By convention, if
w = (ãÒ lÒ y) is a trivial path, we take Γ̂(w) = y. By our construction of the exit measure,
we have
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hYtÒ ßi =
Z õ

0
dLDt

s ß
�
Γ̂(Ws)

�
(42)

and we already know that Γ̂(Ws) 6= ] for a.e. s 2 [0Ò õ], Ny a.e. We will prove that much
more holds.

LEMMA 10. Under the assumptions of Theorem 9, the mapping s ! Γ̂(Ws) takes
values in E0 and is continuous Ny a.e.

Theorem 9 immediately follows from Lemma 10. Simply observe that, by formula
(42),

supp(Yt) ² fΓ̂(Ws)Ò 0 � s � õg
and the latter set is compact by Lemma 10.

PROOF OF LEMMA 10. By assumption (ii) and the Kolmogorov lemma, the process ç
has continuous paths. From the construction of the Brownian snake, and the continuity of
the local time L, it follows easily that Ny a.e. for every s 2 (0Ò õ), the mapping t ! Γt(Ws)
is continuous on [0Ò ês). We also know that for each fixed s, this mapping has a limit at
t = ês, Ny a.e. on fs Ú õg. Set

Γ(Ws) =
�
Γt(Ws)Ò 0 � t Ú ês)Ò ΓŁ(Ws

�
=
�
Γt(Ws)Ò 0 � t � ês

�

where Γês (Ws) = Γ̂(Ws). The mapping s ! Γ(Ws) takes values in the set of E0-valued
killed paths, equipped with the metric d defined in subsection 4.1. On the other hand, for
each fixed s, ΓŁ(Ws) is (Ny a.e. on fs Ú õg) a stopped path in the sense of [17] (a finite
path in the sense of subsection 2.1), that is a continuous mapping w from some compact
interval [0Ò ê] into E0. Following [17], the set of all E0-valued stopped paths is equipped
with the distance

dŁ(wÒw0) = jê � ê0j + sup
t½0

dE0

�
w(t ^ ê)Òw0(t ^ ê0)

�
Ò

and is a Polish space for this distance.
Let us check that the process ΓŁ(Ws) has under Ny a version that is continuous for

the metric dŁ. For technical reasons, we first consider rational values of s. We may
argue under the conditional distribution of (WsÒ s 2 Q+) under Ny knowing the process
(êsÒ s ½ 0). We denote this conditional distribution by Θ(ês)

y . Under Θ(ês)
y , (WsÒ s 2 Q+)

is a time-inhomogeneous Markov process whose transition kernel between times s and
s0 is Qm(sÒs0)Òês0 , with m(sÒ s0) = inf[sÒs0] êh (notice that m(sÒ s0) Ú ês for every rational
0 Ú s Ú s0 � õ, Ny a.e.). The previous description of Θ(ês)

y immediately follows from the
form of the transition kernels of W. We may furthermore assume that the mapping s ! ês
is Hölder continuous with exponent 1

2 � ¢ for every ¢ Ù 0. For rational 0 � ã Ú å � õ,
the paths Wã(t), Wå(t) coincide for t � m := inf[ãÒå] ês, and then behave independently
according to the law of the process ò. Thus,
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dŁ
�
ΓŁ(Wã)ÒΓŁ(Wå)

�
= jêã � êåj + sup

m�t
dE0

�
Γt^êã (Wã)ÒΓt^êå (Wå)

�

= jêã � êåj + sup
m�t�êã

dE0

�
Γm(Wã)ÒΓt(Wã)

�

+ sup
m�t�êå

dE0

�
Γm(Wå)ÒΓt(Wå)

�


Set h = êã � m. From the behavior of the process ò̄ and the fact that Wã(t) is distributed
under Θ(ês)

y as a trajectory of ò̄ started at (0Ò 0Ò y) and stopped at time êã, we see that

Θ(ês)
y

�
sup

m�t�êã

dE0

�
Γm(Wã)ÒΓt(Wã)

�k
�
� sup

y02E0
Ē(0Ò0Òy0)

�
sup

0�t�Lh

dE0(y0Ò çt)
k
�

� c2Ē(0Ò0Òy)

�
(Lh)p

�
Ò

by assumption (ii) and the independence of ç and L. Write E for Ē(0Ò0Òy) and let q be the
smallest integer greater than p. Then,

E
�
(Lh)p

�
� E

�
(Lh)q

�pÛq

and by a well-known argument,

E
�
(Lh)q

�
� q!

�
E(Lh)

�q

Moreover,

E(Lh) =
Z 1

0
dsP (Lh Ù s) =

Z 1

0
dsP (Ss Ú h) = U

�
[0Ò h)

�
Ò

where U denotes the potential kernel of S. If b Ù 0, it is trivial that U
�
[0Ò h)

�
� hÛb. If

b = 0, a general property of subordinators (see e.g. [1], Proposition 3.1) gives for h � 1

U
�
[0Ò h)

�
� c

hRh
0 duϒ

�
[uÒ1)

� � c
c1

höÒ

by (i). Here, c is a constant independent of h.

By combining the previous bounds, we get, with ö = 1 if b = 0,

Θ(ês)
y

�
sup

m�t�êã

dE0

�
Γm(Wã)ÒΓt(Wã)

�k
�
� Chpö = C(êã � m)pö � C0

¢(å � ã)pö( 1
2�¢)Ò

provided that êã�m � 1. Here the constant C0
¢ depends on (êsÒ s ½ 0) and on ¢ but not on

the choice of ã, å in [0Ò õ]. An analogous bound holds for the symmetric term involving
a supremum over fm � t � êåg. We finally obtain, for å � ã � é = é(êsÒ s ½ 0),
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Θ(ês)
y

�
dŁ
�
ΓŁ(Wã)ÒΓŁ(Wå)

�k
�
� C00

¢ (å � ã)pö( 1
2�¢)

We can choose ¢ so small that pö( 1
2 � ¢) Ù 1 and then apply the Kolmogorov lemma.

We get a process (Γ̃(s)Ò 0 � s � õ) which is continuous in the space of E0-valued stopped
paths and coincides with

�
ΓŁ(Ws)Ò 0 � s � õ

�
for rational values of s. It is then easy to see

that
�
Γ̃(s)Ò 0 � s � õ

�
is a version of

�
ΓŁ(Ws)Ò 0 � s � õ

�
. If Γ̃(s) =

�
Γ̃t(s)Ò 0 � t � ễs

�
,

we have ễs = ês for every s 2 [0Ò õ], Ny a.e. and, because we already know that the killed
paths Γ(Ws) depend continuously on s, we have also

Γ̃t(s) = Γt(Ws)Ò 8t 2 [0Ò ês)Ò 8s 2 [0Ò õ]Ò

Ny a.e. It follows that the limit

Γ̂(Ws) = lim
t"ês

Γt(Ws) = Γ̃ês (s)

exists for every s 2 [0Ò õ], Ny a.e., and defines a continuous function of s. This completes
the proof of Lemma 10.

REMARKS. (i) Under our assumptions, a general result of Fitzsimmons (see e.g.
Theorem 2.1.3 of [5]) shows that the superprocess Z has a càdlàg version. Dealing with
this version, the previous argument shows more precisely that, for every ¢ Ù 0, the set

[
t½¢

supp Zt

is a.s. relatively compact. In fact, by the right-continuity of the mapping t ! Zt, the
closure of this set coincides with the closure of

[
t½¢Òt2Q

supp Zt

Then, using the same argument as in the previous proof, we see that it is enough to check
that [

t½¢Òt2Q
supp Yt

is Ny a.e. relatively compact. However, this set is Ny a.e. contained in the compact set
fΓ̂(Ws)Ò 0 � s � õg.

(ii) Assume that ç is Brownian motion in Rd, or more generally a nice diffusion
process, so that assumption (ii) holds for every p with k = 2p. The argument of the proof
then shows that the mapping s ! Γ̂(Ws) is Hölder continuous with exponent ö

4 � é for

https://doi.org/10.4153/CJM-1997-002-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-002-x


SPATIAL BRANCHING PROCESSES AND SUBORDINATION 53

every é Ù 0 (with ö = 1 if b Ù 0). Hence,

dimfΓ̂(Ws)Ò 0 � s � õg � 4
ö

Let R denote the range of Z, defined as usual by

R =
[
¢Ù0

cl
�[

t½¢
supp Zt

�
Ò

where cl(A) stands for the closure of A. We get from remark (i) that dim R � 4
ö
, a.s. This

bound is not sharp. However, a forthcoming paper of Delmas [8] shows that the previous
arguments can be used successfully to investigate the Hausdorff dimension properties of
general superprocesses.
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Compléments de Calcul Stochastique, Hermann, Paris, 1992.
8. J. F. Delmas, Path properties of superprocesses with a general branching mechanism, preprint, 1996.
9. E. B. Dynkin, Branching particle systems and superprocesses, Ann. Probab. 19(1991), 1157–1194.

10. , A probabilistic approach to one class of nonlinear differential equations, Probab. Theor. Relat.
Fields 89(1991), 89–115.

11. , Superdiffusions and parabolic nonlinear differential equations, Ann. Probab. 20(1992), 942–
962.

12. , Superprocesses and partial differential equations, Ann. Probab. 21(1993), 1185–1262.
13. E. B. Dynkin and S. E. Kuznetsov, Markov snakes and superprocesses, Probab. Theor. Relat. Fields

103(1995), 433-473.
14. N. El Karoui and S. Roelly, Propriétés de martingales, explosion et représentation de Lévy-Khintchine
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Université Paris 6
4, Place Jussieu
75252 Paris Cedex 05
France

Laboratoire de Probabilités
Université Paris 6
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Département de Mathématiques
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