Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-23T14:03:37.315Z Has data issue: false hasContentIssue false

Random analytic functions with a prescribed growth rate in the unit disk

Published online by Cambridge University Press:  26 April 2024

Xiang Fang*
Affiliation:
Department of Mathematics, National Central University, Chungli, Taiwan (R.O.C.)
Pham Trong Tien
Affiliation:
Faculty of Mathematics, Mechanics and Informatics, VNU University of Science, Vietnam National University, Hanoi, Vietnam e-mail: phamtien@vnu.edu.vn

Abstract

Let $\mathcal {R}f$ be the randomization of an analytic function over the unit disk in the complex plane

$$ \begin{align*}\mathcal{R} f(z) =\sum_{n=0}^\infty a_n X_n z^n \in H({\mathbb D}), \end{align*} $$
where $f(z)=\sum _{n=0}^\infty a_n z^n \in H({\mathbb D})$ and $(X_n)_{n \geq 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory characterizations of those $f \in H({\mathbb D})$ such that ${\mathcal R} f$ admits a given rate almost surely. In particular, we show that the growth rate of the random functions, the growth rate of their Taylor coefficients, and the asymptotic distribution of their zero sets can mutually, completely determine each other. Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a class of auxiliary Banach spaces, which facilitate quantitative estimates.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

X. Fang is supported by NSTC of Taiwan (Grant No. 112-2115-M-008-010-MY2).

References

Bennett, G., Stegenga, D. A., and Timoney, R. M., Coefficients of Bloch and Lipschitz functions . Ill. J. Math. 25(1981), 520531.Google Scholar
Billard, P., Séries de Fourier aléatoirement bornées, continues, uniformément convergentes . Stud. Math. 22(1963), 309329.CrossRefGoogle Scholar
Cheng, G., Fang, X., and Liu, C., A Littlewood-type theorem for random Bergman functions . Int. Math. Res. Not. 2022(2022), 1105611091.CrossRefGoogle Scholar
Cochran, W. G., Shapiro, J. H., and Ullrich, D. C., Random Dirichlet functions: multipliers and smoothness . Canad. J. Math. 45(1993), 255268.CrossRefGoogle Scholar
Duren, P. L., Theory of Hp spaces, Academic Press, New York, 1970.Google Scholar
Edelman, A. and Kostlan, E., How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. 32(1995), 137.CrossRefGoogle Scholar
Fang, X., Pham Trong Tien, Two problems on random analytic functions in Fock spaces . Canad. J. Math. 75(2023), no. 4, 11761198.CrossRefGoogle Scholar
Gao, F., A characterization of random Bloch functions . J. Math. Anal. Appl. 252(2000), 959966.CrossRefGoogle Scholar
Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer, New York, 2000.CrossRefGoogle Scholar
Jain, N. C. and Marcus, M. B., Sufficient conditions for the continuity of stationary Gaussian processes and applications to random series of functions . Ann. Inst. Fourier 24(1974), 117141.CrossRefGoogle Scholar
Kahane, J.-P., Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985.Google Scholar
Krasnoselski, M. A. and Ruticki, J. B., Convex functions and Orlicz spaces, Boron P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F.Google Scholar
Levin, B. Y., Distribution of zeros of entire functions, Translation of Mathematical Monographs, 6, American Mathematical Society, Providence, RI, 1964.CrossRefGoogle Scholar
Levin, B. Y., Lectures on entire functions, Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1996.CrossRefGoogle Scholar
Li, D. and Queffélec, H., Introduction to Banach spaces: analysis and probability, Vol. 1, Cambridge Studies in Advanced Mathematics, 167, Cambridge University Press, Cambridge, 2018.Google Scholar
Li, D. and Queffélec, H., Introduction to Banach spaces: analysis and probability, Vol. 2, Cambridge Studies in Advanced Mathematics, 167, Cambridge University Press, Cambridge, 2018.Google Scholar
Littlewood, J. E., On mean values of power series (II) . J. Lond. Math. Soc. 5(1930), 179182.CrossRefGoogle Scholar
Littlewood, J. E. and Offord, A. C., On the distribution of zeros and $a$ -values of a random integral function (II) . Ann. Math. 49(1948), 885952.CrossRefGoogle Scholar
Liu, C., Multipliers for Dirichlet type spaces by randomization . Banach J. Math. Anal. 14(2020), 935949.CrossRefGoogle Scholar
Marcus, M. B. and Pisier, G., Necessary and sufficient conditions for the uniform convergence of random trigonometric series, Lecture Notes Series, 50, Matematisk Institut, Aarhus Universitet, Aarhus, 1978.Google Scholar
Marcus, M. B. and Pisier, G., Random Fourier series with applications to harmonic analysis, Princeton Univeristy Press, Princeton, NJ, 1981.Google Scholar
Nazarov, F., Nishry, A., and Sodin, M., Log-integrability of Rademacher Fourier series with applications to random analytic functions . St. Petersburg Math. J. 25(2014), 467494.CrossRefGoogle Scholar
Nazarov, F., Nishry, A., and Sodin, M., Distribution of zeros of Rademacher Taylor series . Ann. Fac. Sci. 25(2016), 759784.Google Scholar
Offord, A. C., The distribution of zeros of power series whose coefficients are independent random variables . Indian J. Math. 9(1967), 175196.Google Scholar
Paley, R. E. A. C. and Zygmund, A., On some series of functions (1) . Proc. Cambridge Philos. Soc. 26(1930), 337357.CrossRefGoogle Scholar
Paley, R. E. A. C. and Zygmund, A., On some series of functions (2) . Proc. Cambridge Philos. Soc. 26(1930), 458474.CrossRefGoogle Scholar
Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991.Google Scholar
Rudin, W., Some theorems on Fourier coefficients . Proc. Amer. Math. Soc. 10(1959), 855859.CrossRefGoogle Scholar
Salem, R. and Zygmund, A., Some properties of trigonometric series whose terms have random signs . Acta Math. 91(1954), 245301.CrossRefGoogle Scholar
Shapiro, H. S. and Shields, A. L., On the zeros of functions with finite Dirichlet integral and some related function spaces . Math. Z. 80(1962), 217229.CrossRefGoogle Scholar
Shields, A. L. and Williams, D. L., Bounded projections, duality and multipliers in spaces of analytic functions . Trans. Amer. Math. Soc. 162(1971), 287302.Google Scholar
Shields, A. L. and Williams, D. L., Bounded projections, duality and multipliers in spaces of harmonic functions . J. Reine Angew. Math. 299 /300(1978), 256279.Google Scholar
Ullrich, D. C., An extension of the Kahane–Khinchine inequality in a Banach space . Israel J. Math. 62(1988), 5662.CrossRefGoogle Scholar
Ullrich, D. C., Khinchin’s inequality and the zeros of Bloch functions . Duke Math. J. 57(1988), 519535.CrossRefGoogle Scholar
Yang, C. and Xu, W., Spaces with normal weights and Hadamard gap series . Arch. Math. 96(2011), 151160.CrossRefGoogle Scholar