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In order to achieve direct interpretability of HREM images, indirect image restoration methods [1-3] 
can be used to recover the electron wave function at the specimen exit surface. Most image 
restoration algorithms involve the linear imaging approximation [4,5], which has the advantage of 
computational efficiency. Algorithms dealing directly with general nonlinear image intensities, such 
as maximum likelihood algorithm [6,7], involve minimizing the difference between predicted and 
experimental image intensities. The computation for these algorithms can therefore be extremely 
demanding and hence some approximations regarding partial coherence effects have been 
introduced making these algorithms computationally practical. Here we aim to develop a general 
and efficient method for image intensity calculation which is suitable for nonlinear image restoration 
algorithms. 
 
For an incoherent effective source, image intensities are calculated as a weighted summation of 
coherent image intensities over a range of incident directions (beam tilts), q and defoci, f [8]: 
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where S(q) is the beam divergence distribution, F(f) the focal spread distribution, ψ(k) the Fourier 
transform of the specimen exit wave function, a(k) the aperture function  and χ(k) the lens aberration 
function. An approximation can also be made by taking the Taylor expansion of the lens aberration 
to first order in q and f if the beam tilt q and focal spread f are small, and Equation (1) can then be 
calculated analytically [9] as: 
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where T is the transmission cross coefficient for a strong object. Equation (2) involves N4 operations 
for a N×N pixel image, which is computationally impractical. 
 
To improve the efficiency and accuracy of image intensity calculation for a general object given by 
Equation (1), a Monte Carlo integration approach [10] is applied. The sampling points q and f are 
randomly distributed with their probability chosen according to S(q) and F(f). Besides its efficiency, 
a significant advantage of Monte Carlo integration is that, due to the random sampling, any artefact 
introduced is random rather than systematic. This is particularly beneficial for nonlinear image 
restoration algorithms, such as the maximum-likelihood method using a series of images. The 
accuracy of the Monte Carlo approach is compared by calculating the root-mean-square (RMS) 
difference between the image spectrum calculated using the Monte Carlo method and that calculated 
using the TCC for strong objects, as a function of the number of sampling points, shown in Fig. 1 
and 2. The results show that the number of the sampling points required was found to be only 
weakly dependent on atomic number, defocus and thickness, which demonstrates the reliability and 
general applicability of the method. In practice, only 100 sampling points are required to apply this 
approach as its RMS difference is about 10-2, which is smaller than typical experimental noise levels 
of 6-15% [11].  
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Fig. 1. RMS difference of image spectra calculated 
using the Monte Carlo method and the TCC for strong 
objects at defoci of Scherzer (-344Å) and 9 Scherzer (-
3094Å). The image spectra were simulated for an 
accelerating voltage of  300 kV, C3=0.6 mm, and 
Gaussian beam divergence and focal spread 
distributions, with e-1 values of 0.28 mrad, and 42 Å, 
respectively. 

(b) 

Fig. 2. RMS difference of image spectra calculated at (a) Scherzer and (b) 9 Scherzer defocus 
for Si [110] at thicknesses 38 Å and 134 Å, and Au [100] at thicknesses 40 Å and 122 Å. Other 
simulation parameters are the same as those in Fig. 1. 
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