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Abstract. Let / denote a continuous map of a compact interval / to itself. A point
x 6 / is called a y-limit point of/ if it is both an w-limit point and an a-limit point
of some point ye I. Let T denote the set of y-limit points. In the present paper, we
show that (1) P - F is either empty or countably infinite, where P denotes the closure
of the set P of periodic points, (2) x e / is a y-limit point if and only if there exist
yx and y2 in / such that x is an oi-limit point of yx, and y{ is an co-limit point of
y2, and if and only if there exists a sequence yx, y2, • • • of points in / such that x
is an co-limit point of yx, and yt is an &>-limit point of yi+l for every i > 1, and (3)
the period of each periodic point of / is a power of 2 if and only if every -y-limit
point is recurrent.

1. Introduction
Throughout this paper/will be a continuous map of the interval / = [0, 1] to itself,
P the set of periodic points of / R the set of recurrent points o f / and fl the set
of nonwandering points of /

For a subset Y of /, define A( Y) = [Jxe Y w(x), where w(x) is the set of w-limit
points of x. Let A 1 = A ( / ) and for any n>\, inductively define A" = A(A"~').
Obviously, A1 = A2 => A3 =>•••. The set A00 = fX=i A" wiU b e called the attracting
centre of/

We will say that a point y is a -y-limit point of x e / if ye w(x)n a(x), where
a(x) is the set of a-limit points of x. Let y(x) = a>(x)n a(x) and T = [JX£, y(x).

In [8] the author investigated the set n - P and showed that it is always countable.
In this paper we show

THEOREM 1. Suppose that f is a continuous map of the interval I. Then
(1) fl —F is countable.
(2) A1 —F and P — T are either empty or countably infinite.

A. N. Sharkovskii [6] has shown that A1 is closed and hence that P c A1. L. Block
and E. Coven [1] have shown that <w(x) is an infinite minimal set for any x e A1 — P.
It follows that A 2 c P, because each minimal set is contained in R and R = P (see
[7], for example). In [1] and [2], one can find examples in which A1 ̂  P. Therefore,
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A1 = A2 does not hold in general. However, we will prove

THEOREM 2. Suppose that f is a continuous map of the interval I. Then

•- A ° ° = - • - = A 3 = A2 = A(P) = A ( a ) = r .

In particular, T is the attracting centre off.

Remark 1. Theorem 2 shows that the following conditions are equivalent.
(1) y e I is an w-limit point of a nonwandering point of /
(2) y e I is an w-limit point of a point in the closure of the set of periodic points

of/
(3) There is a point xe I such that ye I is both an w-limit point and an a-limit

point of x.
(4) For each n > 2 , there are n points x,, x2, •.., xn e I such that y is an w-limit

point of x,, x, is an w-limit point of x2,..., and xn_, is an w-limit point of xn.
(5) There is a sequence x 1 , x 2 , . . . o f points in / such that y is an w-limit point

of x,, and x, is an w-limit point of x,+1 for every i s 1.

The continuous maps of the interval / into itself can be divided into two disjoint
classes, determined by whether or not the period of each periodic point is a power
of 2. It has been shown that maps in different classes have quite different dynamical
properties. (See [3] for a survey, and [9] and [10] for some new results.) In the
following theorem it will be shown that the class to which an interval map belongs
is determined by whether or not Y-R is empty.

THEOREM 3. Suppose that f is a continuous map of the interval I to itself. Then the
following conditions are equivalent.

(1) The period of each periodic point off is a power of 2.
(2) Every y-limit point offis recurrent (i.e. Y = R).

2. Preliminaries
Recall that / is a continuous map of the interval / = [0,1] to itself. Let xe I.

A point y e / is called an w-limit point of x if there exist n{ ->oo such that f'(x)-*y.
Let w(x) denote the set of w-limit points of x. We will use the symbols w+(x) (resp.
w_(x)) to denote the set of all points y such that there exist /i, -> oo such that/"'(x) -»y
and y<f"~(x) (resp. f'(x)<y) for every i>0. Clearly, ye w+(x) (resp. yew^(x))
if and only if there exist n, -»oo such that/"'(x) -» y and y<- • • <f"2(x) </" ' (x) (resp.
f"'(x)<f"2(x)< •••<>>). It is clear that if x£ P, then w(x) = w+(x)u w_(x). Define
A+ = UXE/ w+(x) and A_ = U* e j w_(x).

A point ye I is called an a-limit point of x if there exist n, -»oo and x, -> y such
that/"'(x,) = x for every ; > 0 . We will use the symbols a+(x) (resp. a_(x)) to denote
the set of all points y such that there exist MJ-XXJ and x,-*y such that /"(x , ) = x
and y<xt (resp. xt<y) for every i > 0 . It is clear that if xi. P, then a(x) = a + (x )u
o_(x).

A point is called a y-limit point of x if it is both an w-limit point of x and an
a-limit point of x. The symbol y(x) denotes the set of y-limit points of x and
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F = Ux€/?(*)• Define y+(x) = ai+(x)n a+(x) and "y_(x) = o>_(x)n a_(x). Then

r+ = Ux e ; y+(x) and r_ = Uxe/ ?-(*)•
The forward orbit OP(x) of x £ / is the set {/(x),/2(x), . . .} and the reverse orbit

O N ( x ) o f x e / is the set I X = I / " " ( * ) •
Let Y be a subset of I. Y denotes the closure of Y as usual. A point y e I is

called a right-sided (resp. left-sided) accumulation point of Y if for any e > 0 ,
(y,y+e)n Y¥• 0 (resp. (y — e, y)r> Y # 0 ) . The right-sided closure Y+ {resp., the
left-sided closure Y) is the union of Y and the set of right-sided {resp. left-sided)
accumulation points of Y. A point which is both a right-sided and a left-sided
accumulation point of Y is called a two-sided accumulation point of Y. It is easy
to see that Y = Y+ u Y_.

We need the following known results.

PROPOSITION A [5]. x e Q if and only ifxea(x).

An interval (i.e. a connected subset of the real line) J <= I is said to be of positive
(resp. negative) type if there exist x'eJ and n ' > 0 such tha t / " (x)e J, and for any
xeJ and any n>0, x < / " ( x ) (resp. f(x)<x) provided/"(x) eJ. An interval /<= /
is said to be of free type if f(x) £ J for any x e J and any n > 0.

PROPOSITION B [4], [7]. / / / c / is an interval such that J n P = 0 , //ien one and on/y
one of the following conditions holds:

(1) 7 is of positive type;
(2) J is of negative type;
(3) J is of free type.

The following proposition is a slightly stronger version of a theorem of Sharkovskii
[6]. (See also [4].)

PROPOSITION C. P+-P<=A+ and P _ - P c A_.

Proof. Let xe P - P. Choose a sequence Z!, r2, • • • of periodic points of/ such that
z, -> x and z, < z2 < • • • < x. Let p, denote the period of z, with respect to /

Fix /> 0, and let g =f: Then

K = L , u g ( L , ) u g 2 ( L i ) u . . .

is an interval, where L, = [z,, x]. Let n, denote the period of z, with respect to g.
For k = 1, 2, or 3, suppose a subsequence of gnj+i~fc(z/+1), gn'*2~k(Zj+2), • • • converges
to uk £ K. It is clear that gk(uk) = x. If uk= uk~ for some k' and fc" with fc'< k", then

and so x is periodic. Thus wl5 u2, and w3 are distinct points, and uk-e K, where uk

is the one which lies between the other two. Choose u, £ L, and m, > 0 so that
uk = gA-(vl). Let w, = k+w,. Then gm*(t;,) = x.

Summarizing, for each i>0, we have v{ e L, and w, > 0 such that fm'p'(Vi) = x.
Let a, = p,m,. Since /Hz , ) = z, and/"<(u,) = x, it follows that/"•" (L,-) => L,. Let Fo = /

and inductively define Fn = Fn_,n/^ '"(Ln) , n > 0 , where fn =L"=i <?•• Obviously, for
any n > 0 , Fn is closed. Note that Fn ^ 0 for any n > 0 . On the other hand, it is
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clear that Fo => F, = F2 = • • • . Hence, fX=i F" ̂  0- L e t y e PC=i Fn. Then/'»(.y) G Ln

for any n > 0 . Therefore f'"{y)-»x, and since x£ P, f'"(y) <x for every n >0 . Thus
x 6 to-Cy), completing the proof of the proposition.

PROPOSITION D [9]. The following conditions are equivalent.
(1) The period of each periodic point is a power of 2.
(2) The set P-R is countable.

PROPOSITION E [10]. / / the period of each periodic point is a power of 2, then for any
xeP-P, any « > 0 , and any odd integer m > 0, between x and fm2 (x) there is a
periodic point with period 2", and there is no periodic point with period 2" for every
ri < n.

3. Proof of theorem 1

LEMMA 1. Ifyeil, then
(1) <o+{y) = y+(y) and w_(y) = y-{y),
(2) co(y) = y(y).

Therefore r=>A(n).

Proof. (1) Without loss of generality, we prove only that <o+(y) = y+(y). Letxe <o+(y).
There exist nt ->oo such tha t / " i ( y )^x and x<f>(y) for every i >0 . It follows from
Proposition A that ye a(y). It is easy to see tha t / " (y)e a(y) for any i > 0 . Hence,
it follows immediately that xea+(y), and so x e y+(y). This shows that <o+(y)<=-
y+(y). On the other hand, it is trivial that a>+{y) ^> y+(y).

(2) If y e P, it is clear that <o(y) = y(y). If yt P, then co(y) = co+(y) u ai-(y) =
y+{y) u y-(y) <= y(y), and hence u(y) = y{y).

LEMMA 2. For ye I,

(1) <ON(y))+=ON(y)ua+(y), and
(2) (ONW)_ = ON(j)ua_(v).

Proo/Without loss of generality, we prove only (1). Obviously, (ON(y))+ => ON(y)u
a+(y). On the other hand, if x is a right-sided accumulation point of ON(y), then
we may choose a sequence D,-»X of points in ON(y) such that x < vt for every / > 1.
Let w ,>0 be such that fm>(v,•) = y. If the sequence W; has a constant subsequence
mi{j) = m, then/m(ui(,-)) = j and / m (x ) = y, i.e. x e ON(y). If the sequence /n, has a
subsequence mj(j) -» oo, then x e a+(^) may be shown by verifying that the sequence
mHj) and the sequence vi(j) satisfy the conditions of the definition of a+{y).

Therefore, (ON(y))+^ ON(y)u a+(y).

LEMMA 3. For y e I,

(1) co+(y)n(ON(y))+=yAy), and
(2) a>-(y)n(O

Proof. Without loss of generality, we prove only (1). By lemma 2,

co+(y)n(ON(y))+ = (aj+(y)^ ON(y))u y+{y).

It is trivial that (1) holds if « i + W n O N ( j ) = 0 . If co+(y)n ON(y)^ 0, choose a
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point x in this set, and let m > 0 be such that fm(x) = y. Since xe a>+(y), we know
that y £(o+(y). Hence y is recurrent, and so nonwandering. By lemma 1, u>+(y) =
y+(y), and hence (1) follows.

LEMMA 4. (1) Ifxe A+, and if for every e > 0 there exist ve (x, x + e) and m >0 such
thatfm(v)e{x,x + e) andfm{x)>x, thenxeT+.

(2) If x e A_, and if for every e > 0 f/iere exisf u e (x — e, x) and m > 0 suĉ i that
fm{v)e(x-e,x) andfm(x)<x, thenxeT_.

Proof. Without loss of generality, we prove only (1). Let xe A+ and let y be a point
such that xeco+(y). There exist n,->oo such that f"'(y)-> x and x<f"'(y) for every
i>0. For each i>0 , choose vte (x,f-(y)) and m,>0 such that/™ (i>,)e (x,f"'(y))
a n d / m ( x ) > x . If the sequence m, has a subsequence mHj) such that /mi<j>(x)-»x,
then xe /?, and so xe <o+(x) = y+(x) by lemma 1. If no such subsequence exists,
then there exists f > 0 such that fm-(x)>f"'(y) for every i>0. Choose JV>0 such
that/m '(u,)e(x,/" (y)) whenever i>N. Let z=f">(y). Since zefm'((x,f"iy)) for
every i>N, we know that xe(O N (z) ) + . Clearly, <o+(y) = w+(z). Therefore xe
bJ+(z)n(ON(z))+=y+(z) by lemma 3.

PROPOSITION 1. Suppose that f is a continuous map of the interval I. Let D denote a
connected component of I — P, and let a denote the left end point of D, b the right end
point of D. Then

(1) If D is of positive (resp. negative) type, then b e F+ u P (resp. O E L U P).
(2) If D is of free type, then either aeLuforfceF+uP.

Proof. (1) Suppose D is of positive type. If b e P, there is nothing to prove. Assume
then that b f£ P. In this case, be D. Since an interval of positive type is not a singleton,
we see that be P+- P. It follows from Proposition C that b e co+(y) for some ye I.

Since D is of positive type, we may choose deD and fc>0 such that fk(d)e D
and d<fk(d). Since D contains no periodic points, it follows that b<fk(b).

We verify that b satisfies the hypotheses of lemma 4(1). Let e > 0 . Choose a
periodic point u e (b,/'c(fe))n(x, x + e), and let m denote the period of u. Since
beP, it follows that fm(b)£D. I f / m ( b ) < a , then fm(b, u)) ^[d, b], and hence
fm+k{[d, b]) => [d, b], by the fact that fk([d, b]) => (b, u). Therefore there is a periodic
point in [d, b], which is contained in D, a contradiction. Thus the only possibility
is tha t / m (6)> b. We have verified that the hypotheses of lemma 4(1) are satisfied
by b, and hence b e F+.

(2) Suppose D is of free type. If either a or b is periodic, there is nothing to
prove. Assume then that neither a nor b is periodic. It follows that a,beD and D
is closed. We divide our discussion into three cases.

Case I. a = 0. In this case D = [0,b] and beP+-P. By proposition C, we know
that a e A+. Let e > 0. Choose a periodic point v e (b, b + e) and let the period of
v be m. Thenfm(v) = ve{b,b + e) and f"'(b)>b, because fm(0y>0. Therefore it
follows from lemma 4 that b e F+.

Case II. b = \. In this case, an argument similar to the one used in case I leads us
to the fact that a e F_.
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Case III. 0 < a < b < l . In this case, aeP_-P and beP+-P. By proposition C,
a e A_ and b e A+. To prove that either a e F or b e F+, we show that beY+ under
the assumption that a £F_. First, there exists 5' >0 such that OP(a)r\(a -8', a) = 0.
(If not, a e co-(a), a is a recurrent point, and hence a e y_(a) by lemma 1, contradict-
ing our assumption.) Then OP(a)n {a - 8', b] = 0 because D is of free type. Second,
it follows from lemma 4 that we may choose 8 > 0 with 5'> 8 > 0 such that whenever
m > 0 with fm(u) e(a-8, a) for some ue(a-8, a), then fm(a)> a.

We verify that b satisfies the hypotheses of lemma 4(1). We have shown that
beA+. Let e > 0 . Choose a periodic point ue(a — 8, a) and let p be its period,
choose a periodic point ve{b, b + e) and let q be its period. Clearly, fpq(v) = ve
(b, b + e). On the other hand, since /""(«) = u e (a - 8, a), it follows that fq(a) > a,
and hence that fpq{b)>b. Therefore b e T+.

COROLLARY 1. Suppose that f is a continuous map of the interval I. Then
{1) min P E T + U P and max P e F u P. In particular, min Pand max Pare y-limit

points.
(2) No end point of I is in ft — F.
(3) If a two-sided accumulation point of periodic points is not periodic, then it is

either in F+ or in T . Therefore P+ n P_ c F.

Proof. (1) If min P is not periodic, then [0, min P] is a connected component of
I — P which is not of negative type. If [0, min P] is of positive type, then its right
end point min P is in F + u P by proposition 1. In the case that [0, min P] is of free
type, it follows from proposition 1 that min P e F + u P , because 0£F_ .

By a similar argument, we also see that max P eV u P.
(2) If 0ef t , then OeP by lemma 2.7 in [5], and hence it follows by (1) of this

corollary that Oe F. Similarly, if 1 e ft, then 1 € F.
(3) Let x be a two-sided accumulation point of P. If x is not periodic, then the

singleton {x} is a connected component of / - P which is of free type, and hence
its unique end point x is either in F+ or in F_, by proposition 1.

Proof of theorem 1.(1) For any subset V of /, each point of Y — (Y+n y_) is an
end point of a connected component of / - Y. Since I -Y has only countably many
connected components, Y — (Y+nY-.) is a countable set. It follows that P —
(P + nP_) is countable. By corollary 1, P — F is also countable. It follows from [8]
that ft — P is countable, and so is ft —F.

(2) We claim that if Y is a strictly invariant subset of /, and Z an invariant subset
of / containing P, then Y — Z is either empty or infinite. To show this, note that if
Y — Z # 0 , then we may choose by induction a sequence y\,y2,--- such that
yn e Y'- Z and yn =f{yn+\) for every n > 1. Since there is no periodic point in Y-Z,
the points y\,y-i,. • • are pairwise distinct, and hence Y — Z is infinite. The proof
of the claim is complete.

It follows from the claim above that A1 - F and P-Y are either empty or infinite,
because A1 and P are strictly invariant and F is invariant. On the other hand, A1 — F
and P-T, as subsets of the countable set ft-F, are countable.
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4. Proof of theorem 2

LEMMA 5. O ^ A ' ^ P ^ T .

Proof. The inclusion O => A1 is obvious, and the inclusion A1 => P is an immediate
consequence of the theorem of Sharkovskii mentioned in § 1. (See also proposition
C.)

It remains to prove that P=>T. To do this, assume that xeT - P. Let y be such
that xe <i){y) n a{y), and D be the connected component of I — P containing x.
Clearly D is not of free type. By proposition B, we may assume, without loss of
generality, that D is of positive type. Since x e o>(y), there exist n,->oo such that
f'{y) -*x. Let i be an integer such that f'(y)e D. Since D is of positive type, we
have that/" (y)<x. Since xe a(y), there exists ue Dn{f">(y), 1] such that/"1 (M) =
y for some m > 0. Then / m + " («) = /"'(>>)• Hence D fails to be of positive type, a
contradiction.

LEMMA 6. For y e / ,

(1) u)+{y) n a_(_y) <= F+ u P, and
(2) w . ( y ) n a + W c L u P .

Proo/ Without loss of generality, we prove only (1). Let xe a>+(y)n a^(y). If x£T+,
then it follows from lemma 3 and lemma 4 that there exists e > 0 such that

(a) (x, x+e)nON(y) = 0, and
(b) if m>0 and/"*(«)e(x, x+e) for some w e (x, x + e), then/m(x)<x.

Since x E o)+(y), we may choose m and n with m > n > 0 such that fm(y), f(y) £
(x, x + e). Then by condition (b),/m""(x)<x. On the other hand, it follows from
the condition (a) that /m""(x)>x. For if /m""(x)<x, then /m""((x, x+e)) 3
(/m~"(x), x), which contains points of ON(y) because xea-(y). Therefore x =
fm'"{x) and x is a periodic point.

PROPOSITION 2. Suppose that f is a continuous map of the interval I. Then F = r + u
I\uP.

Proof. Obviously, r ^ T + u L u P . On the other hand, it is easily seen that <o(y) is
a periodic orbit if y is periodic. If y is not periodic, then it follows that a(y) =
w+(y)uw_(j) and a(y) = a+(y)Kj a_(y). Therefore

y(y) = y+(y) u y_(y) u (<o+(y) n a_(y)) u (w_(>>) n «+(>»))

cr+ur_uP
by lemma 6. Thus r = Uv£/ y W c r + u L u P .

LEMMA 7. Le? ye I - P, and for each n > 0, /er Cn denote the connected component
of I -ON{y) containing f"(y). Then

(1) f"(C0)^Cn,and
(2) C o n I V 0 .

Proo/ (1) /"(Co) is a connected subset of / - C M y ) containing/"(j). Therefore
/"(C0)eCn )andso/"(C0)^Cn.
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(2) If Con P / 0 , there is nothing to prove. Assume then that ConP = 0. In
this case, Co is contained in some connected component D of / - P. Let Co = [a, b],
and let a' denote the left end point of D, b' the right end point of D.

We claim that Q and D have at least one end point in common. If not, then
a'<a<y<b<b'. Since (a', a]n ON(y) * 0 and (b,b']nON(y)*0, D is not of
positive type, of negative type, or of free type. This contradicts proposition B.

If the end points of Co and of D coincide, then Co n F ^ 0 because at least one
of the endpoints of D is in F by proposition 1.

Assume then, without loss of generality, that a'<a. In this case, it follows that
D is of positive type, because (a', a]n ON(y)?i0. Then the right end point b = b'
of D is in F+ u P.

The proof is complete.

Proof of theorem 2. Lemma 1 shows that F => A(fl), and the inclusions A(fl)=>A2=>
A(P) =5 A(F) are immediate consequences of lemma 5.

We prove that A(F) =5 F as follows. Let x e T. Obviously x e A(F) if x is periodic.
Assume then that xiP. Then either x € F ^ or x e F _ by proposition 2. Assume,
without loss of generality, that x e F + . Let y be such that x e y+{y), and Cn the
connected component of I-ON(y) containing f"{y). Since x e y+(y), there exist
n, -> 00 such that f"'(y) -» x, x < • • • <f"2(y) <f"'(y), and for every i > 0 the interval
(f"I+'(y),f"'(y)) contains at least two distinct points of ON(y). Then the intervals
Cnx, Cni,... are pairwise disjoint and L, -> 0, where Lt denotes the length of Cn. By
lemma 7(2), there exists we C o n F , and it follows from lemma 7(1) that | / " ( w ) -
/"(y)|=sL,. Therefore / " (u) -»x , and so xeA(F) .

Up to now, we have shown that

Then it follows by induction that for every n s 2,

An+1 = A(A") = A(F) = F.

The proof of theorem 2 is completed.

5. Proof of theorem 3
(1)=>(2). Suppose that condition (1) holds. Let x e F. We show that x s R as follows.
Obviously, x e R if x is periodic. Assume then that xiP.

F = A(P) by theorem 2, so there exists yeP such that xea>(y). Since x is not
periodic, y is not either. Therefore x e u>+{y) u &>_(>>). We may assume, without loss
of generality, that xea>+(>'). Then there exist n,-->oo such that f"'(y)^>x and
x<f"'(y) for every ; > 0 .

Given e > 0, let p > 0 be the least integer such that there is a periodic point in
(x, x + e ) with period 2P, and let u be the smallest periodic point in (x, x + e) with
period 2P. Choose j>0 such that x<f"'{y)<u. Let q>0 be the least integer such
that there is a periodic point in (x,f"'(y)) with period 2q, and v a periodic point in
(x,f"'(y)) with period 2". Clearly, q>p. Then, let i">0 be such that «,->«,• and
fl{y) e (x, u) whenever i > 1".
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Fix i a r". Let «, — rij = m,2'', where ti > 0 and m, > 0 is odd. We claim that f, = <j.
For if tj < q, then by proposition E, there would be a periodic point between f">(y)
and/n ' (y) (=fm'2'(f"'(y))) with period 2'\ contradicting the definition of q, and if
ti > q, then by the same proposition, there would be no periodic point with period
2q between the two points above.

Therefore if we write n,•- nj
Jr2q = m{2'\ where ? |>0and m,>0is odd, then tt> q.

By proposition E, between/"1+2\y) and/"j(>0 there is no periodic point with period
either 2P or 2". Thus, /"+2"{y)e (v, u).

Since/" +2\y)^f\x), we have that / 2 ' (x) e (x, x+ e). This shows that x e R and
the proof of the implication (1)=>(2) is complete.

(2)=>(1). If T = R, then P-R is countable by theorem 1. Therefore, it follows
from proposition D that (1) holds.
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