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Abstract. Let f denote a continuous map of a compact interval I to itself. A point
x eI is called a y-limit point of f if it is both an w-limit point and an «-limit point
of some point y e I. Let I' denote the set of y-limit points. In the present paper, we
show that (1) P —TI is either empty or countably infinite, where P denotes the closure
of the set P of periodic points, (2) x€ I is a y-limit point if and only if there exist
v, and y, in I such that x is an o-limit point of y,, and y, is an ®-limit point of
¥a2, and if and only if there exists a sequence y,, y,, ... of points in I such that x
is an e-limit point of y,, and y; is an w-limit point of y,., for every i=1, and (3)
the period of each periodic point of f is a power of 2 if and only if every y-limit
point is recurrent.

1. Introduction

Throughout this paper f will be a continuous map of the interval I =[0, 1] to itself],
P the set of periodic points of f, R the set of recurrent points of f, and Q the set
of nonwandering points of f.

For a subset Y of I, define A(Y)={J..y w(x), where w(x) is the set of w-limit
points of x. Let A'=A(I) and for any n>1, inductively define A" =A(A""").
Obviously, A'>A*>A*>- -+ The set A¥=("),_, A" will be called the attracting
centre of f.

We will say that a point y is a y-limit point of xe I if ye w(x)n a(x), where
a(x) is the set of a-limit points of x. Let y(x)=w(x)na(x) and I'=J,.; y(x).

In (8] the author investigated the set ) — P and showed that it is always countable.
In this paper we show

THEOREM 1. Suppose that f is a continuous map of the interval 1. Then
(1) Q-7 is countable.
(2) A'=T and P-T are either empty or countably infinite.

A. N. Sharkovskii [6] has shown that A' is closed and hence that P< A'. L. Block
and E. Coven [1] have shown that w(x) is an infinite minimal set for any xe A' — P.
It follows that A< P, because each minimal set is contained in R and R= P (see
[7], for example). In [1] and [2], one can find examples in which A'# P. Therefore,
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A'= A? does not hold in general. However, we will prove

THEOREM 2. Suppose that f is a continuous map of the interval I. Then
= AT=- - =AT=A=A(P)=A(Q)=T.
In particular, ' is the attracting centre of f.

Remark 1. Theorem 2 shows that the following conditions are equivalent.

(1) yeI is an w-limit point of a nonwandering point of f.

(2) ye I is an w-limit point of a point in the closure of the set of periodic points
of f.

(3) There is a point x € I such that y€ I is both an w-limit point and an «-limit
point of x.

(4) For each n=2, there are n points x;, X,,..., X, € I such that y is an w-limit
point of x;, X, is an w-limit point of x,,..., and x,,_, is an w-limit point of x,,.

(5) There is a sequence x,, X,, ... of points in I such that y is an w-limit point
of x,, and x; is an w-limit point of x,., for every i=1.

The continuous maps of the interval I into itself can be divided into two disjoint
classes, determined by whether or not the period of each periodic point is a power
of 2. It has been shown that maps in different classes have quite different dynamical
properties. (See [3] for a survey, and [9] and [10] for some new results.) In the
following theorem it will be shown that the class to which an interval map belongs
is determined by whether or not '~ R is empty.

TueOREM 3. Suppose that f is a continuous map of the interval I to itself. Then the
following conditions are equivalent.

(1) The period of each periodic point of f is a power of 2.

(2) Every v-limit point of f is recurrent (i.e. I' = R).

2. Preliminaries
Recall that f is a continuous map of the interval I =[0, 1] to itself. Let xe I.

A point y € I is called an w-limit point of x if there exist n, - o0 such that f™(x) - y.
Let w(x) denote the set of w-limit points of x. We will use the symbols w,(x) (resp.
w_(x)) to denote the set of all points y such that there exist n; > o such that f"(x) >y
and y < f"(x) (resp. f"(x)<y) for every i>0. Clearly, y € w.(x) (resp. y € w_(x))
if and only if there exist n; » cosuch that " (x) > yand y < - - < f"(x) < f"1(x) (resp.
Sx)y<fM(x)<---<y). Itis clear that if x¢ P, then w(x)=w,{x)u w_(x). Define
Av=Uerwi(x) and A_=Use; 0 (x).

A point y e I is called an «-limit point of x if there exist n,» o0 and x, > y such
that /" (x;) = x for every i > 0. We will use the symbols o, (x) (resp. «.(x)) to denote
the set of all points y such that there exist n,~> o and x;-> y such that f"(x;)=x
and y < x; (resp. x; <y) for every i>0. It is clear that if x 2 P, then a(x)=a.(x)u
a_(x).

A point is called a y-limit point of x if it is both an w-limit point of x and an
a-limit point of x. The symbol y(x) denotes the set of y-limit points of x and
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I'=Uie; ¥(x). Define y,.(x)=w.(x)nea,(x) and y_(x)=w_.(x)na_(x). Then
Io=User y+(x) and T_=Uye; v-(x).

The forward orbit Op(x) of x € I is the set {f(x), f3(x), ...} and the reverse orbit
On(x) of xe I is the set L, _, f"(x).

Let Y be a subset of I. Y denotes the closure of Y as usual. A point ye I is
called a right-sided (resp. left-sided) accumulation point of Y if for any £>9,
(,y+e)n Y# (resp. (y—&,y)n Y # ). The right-sided closure Y, (resp., the
left-sided closure Y_) is the union of Y and the set of right-sided (resp. left-sided)
accumulation points of Y. A point which is both a right-sided and a left-sided
accumulation point of Y is called a two-sided accumulation point of Y. It is easy
to see that Y=Y, u Y_.

We need the following known results.

ProprosITION A [5]. x€Q if and only if x € a(x).

An interval (i.e. a connected subset of the real line) J < I is said to be of positive
(resp. negative) type if there exist x'e J and n’>0 such that " (x) e J, and for any
xeJ and any n>0, x <f"(x) (resp. f"(x) < x) provided f"(x) € J. An interval J< I
is said to be of free type if f"(x)g J for any xe J and any n> 0.

ProrosiTioN B (4], [7]. If J < I is an interval such that J n P =, then one and only
one of the following conditions holds:

(1) Jis of positive type,

(2) J is of negative type;

(3) J is of free type.

The following proposition is a slightly stronger version of a theorem of Sharkovskii
[6]. (See also [4].)

PropOSITION C. P,—Pc A, and P.—Pc A _.

Proof. Let x € P_— P. Choose a sequence z,, z,, ... of periodic points of f such that
z;»x and z, <2z,<---<x Let p; denote the period of z; with respect to f.
Fix i>0, and let g = f7. Then
K=Lug(L)ugiL)u...
is an interval, where L,=[z, x]. Let n; denote the period of z; with respect to g.

For k=1, 2, or 3, suppose a subsequence of g"m"‘(zjﬂ), g"ﬁfk(zjﬁ), ...converges
to u, € K. It is clear that g*(u,) = x. If u,.= u,. for some k' and k” with k' < k", then

g (x) = g (we) = g () = x,

and so x is periodic. Thus u,, u,, and u; are distinct points, and u;€ K, where u;
is the one which lies between the other two. Choose v;€ L; and ;>0 so that
ur=g™(v,). Let m; = k+ m,. Then gm(v)=x

Summarizing, for each i>0, we have v;€ L, and m, > 0 such that /*i(v;) = x.

Let g, = pim;. Since f%(z,) = z; and f%(v;) = x, it follows that f%(L;)> L,. Let Fo=1I
and inductively define F, = F,_,nf (L,), n>0, where 1, =Y_, g;. Obviously, for
any n=0, F, is closed. Note that F,# (J for any n=0. On the other hand, it is
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clearthat F,> F, > F,>- - - . Hence,(,_, F,#J.Letye(),_, F,.Thenf"(y)eL,
for any n>0. Therefore f*(y) > x, and since x¢ P, f*(y) < x for every n>0. Thus
x € w_(y), completing the proof of the proposition.

ProrosiTioN D [9]. The following conditions are equivalent.
(1) The period of each periodic point is a power of 2.
(2) The set P— R is countable.

ProrosiTioN E [10]. If the period of each periodic point is a power of 2, then for any
xe P— P, any n=0, and any odd integer m> 0, between x and ™ (x) there is a
periodic point with period 2", and there is no periodic point with period 2" for every
n' <n.

3. Proof of theorem 1
LemMA 1. If yeQ, then
(1) 0.(y)=v:(y) and 0_(y) = y-(y),

(2) w(y)=vy().
Therefore I’ > A(Q).

Proof. (1) Without loss of generality, we prove only that ,(y) = y,(y). Let x € w.(y).
There exist n; > 00 such that f"(y) - x and x <f"(y) for every i > 0. It follows from
Proposition A that y € a(y). It is easy to see that f™(y) € a(y) for any i > 0. Hence,
it follows immediately that x € a,(y), and so x< y,(y). This shows that w.(y)c
v+(y). On the other hand, it is trivial that o (y) 2 v.(y).

(2) If ye P, it is clear that w(y)=v(y). If yg P, then w(y)=w.(y)vw_(y)=
y+(¥)u y_(y)< y(y), and hence w(y) = y(y).

LEMMA 2. Forye I,
(1) “On(y))+ = On(y) v a.(y), and

(2) (On(¥))_=On(y)ua_(y).

Proof. Without loss of generality, we prove only (1). Obviously, (On())+ 2 On(¥) U
a.(y). On the other hand, if x is a right-sided accumulation point of Ox(y), then
we may choose a sequence v; - x of points in On(y) such that x < v, for every i= 1.
Let m; >0 be such that f™(v;) = y. If the sequence m; has a constant subsequence
m;;,=m, then f"(v,;,) =y and f"(x) =y, i.e. x€ On(y). If the sequence m; has a
subsequence m,;,~> 0, then x € a,.(y) may be shown by verifying that the sequence
m;;, and the sequence v, satisfy the conditions of the definition of a.(y).

Therefore, (On ()< On(y)w a(y).

LEMMA 3. Forye I
(1) @ (») " (On(¥))+= y(y), and

(2) - (¥) N (On(¥))-=v-(¥).
Proof. Without loss of generality, we prove only (1). By lemma 2,

w ()N (On(Y)) =(w(y) D On(¥)) U y(y).
It is trivial that (1) holds if w,(y)~ OxN(y)=O. If @, (y)n On(y)# I, choose a
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point x in this set, and let m > 0 be such that f™(x)=y. Since x€ w,(y), we know
that y € w,(y). Hence y is recurrent, and so nonwandering. By lemma 1, w.(y)=
v.(y), and hence (1) follows.

Lemma 4. (1) If xe A, and if for every £ > 0 there exist ve (x, x+ &) and m >0 such
that f"(v)e(x, x+¢e) and f™(x)>x, then xeT,.

(2) If xe A_, and if for every € >0 there exist ve (x—¢,x) and m>0 such that
fM(v)e(x—eg x) and f"(x)<x, then xeI'_.
Proof. Without loss of generality, we prove only (1). Let x€ A, and let y be a point
such that x € w,(y). There exist n; » o such that f™(y) > x and x <f"(y) for every
i>0. For each i>0, choose v;€ (x, f"(y)) and m; >0 such that f™(v;) € (x, f"(y))
and f™(x) > x. If the sequence m; has a subsequence m,,, such that f™u(x) - x,
then x€ R, and so x€ w.(x)=7y,(x) by lemma 1. If no such subsequence exists,
then there exists i"> 0 such that f™(x)> f"(y) for every i > 0. Choose N >0 such
that f™(v;) € (x, f"(y)) whenever i= N. Let z=f"(y). Since z€ f™((x, f(y)) for
every i= N, we know that xe(Oyn(z)),. Clearly, w (y)=w.,(z). Therefore xe
w.(z) " (On(2))s = v.(z) by lemma 3.

ProrosiTiON 1. Suppose that f is a continuous map of the interval I. Let D denote a
connected component of I — P, and let a denote the left end point of D, b the right end
point of D. Then

(1) If D is of positive (resp. negative) type, then be ', U P (resp. acT'_u P).

(2) If D is of free type, then either acT U Porbel', UP.

Proof. (1) Suppose D is of positive type. If be P, there is nothing to prove. Assume
then that b ¢ P. In this case, b € D. Since an interval of positive type is not a singleton,
we see that be P, — P. It follows from Proposition C that be w,(y) for some ye I

Since D is of positive type, we may choose d € D and k>0 such that f*(d)e D
and d < f*(d). Since D contains no periodic points, it follows that b < f*(b).

We verify that b satisfies the hypotheses of lemma 4(1). Let £>0. Choose a
periodic point ue (b, f*(b))n(x,x+¢), and let m denote the period of u. Since
be P, it follows that f™(b)g D. If f™(b)<a, then f™(b,u))>[d, b], and hence
fm ([d, b]) 2[d, b], by the fact that f*([d, b]) > (b, u). Therefore there is a periodic
point in [d, b], which is contained in D, a contradiction. Thus the only possibility
is that f™(b) > b. We have verified that the hypotheses of lemma 4(1) are satisfied
by b, and hence bel, .

(2) Suppose D is of free type. If either a or b is periodic, there is nothing to
prove. Assume then that neither a nor b is periodic. It follows that a, be D and D
is closed. We divide our discussion into three cases.

Case 1. a=0. In this case D=[0, b] and be P, — P. By proposition C, we know
that ac A, . Let € >0. Choose a periodic point ve (b, b+¢) and let the period of
v be m. Then f™(v)=ve(b,b+e) and f™(b)> b, because f"(0x>0. Therefore it
follows from lemma 4 that beT, . '

Case 11. b=1. In this case, an argument similar to the one used in case I leads us
to the fact that ael'_.
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Case 111. 0<a=b<1. In this case, ac P_— P and be P, — P. By proposition C,
aceA_and be A,. To prove that either acI'"_or beI',, we show that be ", under
the assumption that a £ I' _. First, there exists 8'> O such that Op(a)n{(a—§',a)=.
(If not, a € w_(a), a is a recurrent point, and hence a € y_(a) by lemma 1, contradict-
ing our assumption.) Then Op(a) ~n(a— &', b]= D because D is of free type. Second,
it follows from lemma 4 that we may choose § > 0 with 6'> & > 0 such that whenever
m >0 with f™(u)e (a—8, a) for some uc(a—34,a), then f"(a)> a.

We verify that b satisfies the hypotheses of lemma 4(1). We have shown that
beA.. Let £>0. Choose a periodic point u € (a— 3§, a) and let p be its period,
choose a periodic point ve (b, b+¢e) and let g be its period. Clearly, ff(v)=ve
(b, b+ ¢). On the other hand, since ff7(u) =u e (a—§, a), it follows that f7?(a) > a,
and hence that f79(b)> b. Therefore bel,.

CoRroOLLARY 1. Suppose that f is a continuous map of the interval 1. Then

(1) min Pel', U Pand max PeT_u P. In particular, min P and max P are y-limit
points.

(2) No end point of I'is in QT

(3) If a two-sided accumulation point of periodic points is not periodic, then it is
either in T, or in I'_. Therefore P,~ P_<T.

Proof. (1) If min P is not periodic, then [0, min P] is a connected component of
I — P which is not of negative type. If [0, min P] is of positive type, then its right
end point min P is in I', U P by proposition 1. In the case that [0, min P] is of free
type, it follows from proposition 1 that min PeT", u P, because 0¢T_.

By a similar argument, we also see that max PeT_u P.

(2) If 0€Q, then 0c P by lemma 2.7 in [5], and hence it follows by (1) of this
corollary that OeT'. Similarly, if 1€}, then 1€T.

(3) Let x be a two-sided accumulation point of P. If x is not periodic, then the
singleton {x} is a connected component of I — P which is of free type, and hence
its unique end point x is either in I', or in I'_, by proposition 1.

Proof of theorem 1. (1) For any subset Y of I, each point of Y ~(Y,n Y_) is an
end point of a connected component of I — Y. Since I — Y has only countably many
connected components, Y —(Y,nY.) is a countable set. It follows that P—
(P, n P_) is countable. By corollary 1, P—T is also countable. It follows from [8]
that Q — P is countable, and so is Q—T.

(2) We claim that if Y is a strictly invariant subset of I, and Z an invariant subset
of I containing P, then Y — Z is either empty or infinite. To show this, note that if
Y-Z#J, then we may choose by induction a sequence y;, y,,... such that
y.€ Y—Zand y,=f(y,,,) forevery n = 1. Since there is no periodic pointin Y — Z,
the points y,, y,, ... are pairwise distinct, and hence Y —Z is infinite. The proof
of the claim is complete.

It follows from the claim above that A' —I" and P —T are either empty or infinite,
because A' and P are strictly invariant and I' is invariant. On the other hand, A' -T
and P-T, as subsets of the countable set () —I', are countable.

https://doi.org/10.1017/50143385700004429 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700004429

Attracting centre of interval self-maps 211

4. Proof of theorem 2
LEMMA 5. QD> A'> PoT.

Proof. The inclusion > A' is obvious, and the inclusion A'> P is an immediate
consequence of the theorem of Sharkovskii mentioned in § 1. (See also proposition
C)

It remains to prove that P>I". To do this, assume that xe = P. Let y be such
that x€ w(y) na(y), and D be the connected component of I — P containing x.
Clearly D is not of free type. By proposition B, we may assume, without loss of
generality, that D is of positive type. Since x € w(y), there exist n; >0 such that
S ()= x. Let i be an integer such that f"(y)e D. Since D is of positive type, we
have that f™(y) < x. Since x € a(y), there exists u € D (f"(y), 1] such that f™(u) =
y for some m>0. Then f™ " (u)=f"(y). Hence D fails to be of positive type, a
contradiction,

LEmMaA 6. For ye I

(1) o (y)na_(y)cT,UP, and

(2) o (y)na(y)csT VP
Proof. Without loss of generality, we prove only (1). Let x€ w, (y)na_(y). If xgl',,
then it follows from lemma 3 and lemma 4 that there exists £ >0 such that

(a) (x,x+e)n On(y)=, and

(b) if m>0and fM(u)e(x, x+¢) for some ue(x, x+e¢), then f"(x)<x.
Since x € w,(y), we may choose m and n with m> n>0 such that f™(y), f"(y)e
{x, x+¢). Then by condition (b), f™ "(x)=x. On the other hand, it follows from
the condition (a) that f™ "(x)=x. For if f™ "(x)<x, then f™ "((x,x+¢))>
(f™ "(x), x), which contains points of On(y) because x€ a_(y). Therefore x=
™ ™(x) and x is a periodic point.

PROPOSITION 2. Suppose that f is a continuous map of the interval I. Then I'=T, U
r.vP

Proof. Obviously, ' T, 0TI'_U P. On the other hand, it is easily seen that w(y) is
a periodic orbit if y is periodic. If y is not periodic, then it follows that w(y)=
w,(y)uw_(y) and a(y)=a,(y)u a_(y). Therefore

Yy =y oy y)ule(y)naly)ule(y)naly))
clr,ul'_uP
by lemma 6. Thus I'={J,.; y(y)<T,uT_UP

LEMMA 7. Let ye I — P, and for each n=0, let C, denote the connected component
of I — On(p) containing f"(y). Then

(1) f1(Co)< Gy, and | -

(2) ConT#2.
Proof. (1) f"(C,) is a connected subset of I —Oxn(y) containing f"(y). Therefore
f(G) = C,, and so f"(co) =G,
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(2) If C,n P # &, there is nothing to prove. Assume then that Con P=(. In
this case, C, is contained in some connected component D of I — P. Let Cy=[a, b],
and let a’ denote the left end point of D, b’ the right end point of D.

We claim that C; and D have at least one end point in common. If not, then
a'<a=y=b<b' Since (a’,a]ln On(y)# D and (b, b']~ On(y) # D, D is not of
positive type, of negative type, or of free type. This contradicts proposition B.

If the end points of C, and of D coincide, then CynT # & because at least one
of the endpoints of D is in I' by proposition 1.

Assume then, without loss of generality, that a’<a. In this case, it follows that
D is of positive type, because (a’, aln On(y) # &. Then the right end point b=5b’
of DisinT,UP.

The proof is complete.

Proof of theorem 2. Lemma 1 shows that ' > A()), and the inclusions A(Q)) > A’>
A(P)> A(') are immediate consequences of lemma 5.

We prove that A(I') o T as follows. Let x e I'. Obviously x € A(T') if x is periodic.
Assume then that xZ P. Then either xeI', or xe'_ by proposition 2. Assume,
without loss of generality, that xeI',. Let y be such that xe y,(y), and C, the
connected component of I — Oy (y) containing f"(y). Since x € y.(y), there exist
n; >0 such that f(y) > x, x<-- - <f™(y)<f"(y), and for every i >0 the interval
(f"+1(y), fM(y)) contains at least two distinct points of On(y). Then the intervals
C.,,,C,,,...are pairwise disjoint and L, >0, where L, denotes the length of C,. By
lemma 7(2), there exists ue Cyn T, and it follows from lemma 7(1) that |f™(u)—
f"(y)| = L;. Therefore f"(u)- x, and so x € A(T').

Up to now, we have shown that

T=A(Q)=A"=A(P)=A).
Then it follows by induction that for every n=2,
AT =AA") =AT) =T,

The proof of theorem 2 is completed.

5. Proof of theorem 3
(1)=(2). Suppose that condition (1) holds. Let x e I". We show that x € R as follows.
Obviously, x € R if x is periodic. Assume then that x¢ P.

I'= A(P) by theorem 2, so there exists y € P such that xe w(y). Since x is not
periodic, y is not either. Therefore x € w.(y) L w_(y). We may assume, without loss
of generality, that x€ w,(y). Then there exist n,»o such that f"(y)->x and
x <f"(y) for every i > 0.

Given £>0, let p> 0 be the least integer such that there is a periodic point in
(x, x+ ¢) with period 27, and let u be the smallest periodic point in (x, x +¢) with
period 27. Choose j> 0 such that x <f™(y) < u. Let g >0 be the least integer such
that there is a periodic point in (x, f"(y)) with period 29 and v a periodic point in
{x, f"(y)) with period 2% Clearly, ¢ > p. Then, let i’>0 be such that n,> n; and
fM(y)e(x, v) whenever i=i".
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Fix i=i" Let n,—n;=m;2" where t,>0 and m; >0 is odd. We claim that t,=gq.
For if 1, < g, then by proposition E, there would be a periodic point between f™(y)
and f™(y) (=f™*"(f"(y))) with period 2% contradicting the definition of g, and if
t;> g, then by the same proposition, there would be no periodic point with period
29 between the two points above.

Therefore if we write n,—n; +27= m;2%, where 7,> 0 and m, > 0is odd, then ;> g.
By proposition E, between f"*?*(y) and f™(y) there is no periodic point with period
either 2° or 2% Thus, ™ (y) e (v, u).

Since f™**'(y) - f*"(x), we have that f**(x) € (x, x+ ¢). This shows that x € R and
the proof of the implication (1)=>(2) is complete.

(2)=>(1). If ' =R, then P— R is countable by theorem 1. Therefore, it follows
from proposition D that (1) holds.
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