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Abstract

The notion of duality of functors is used to study and characterize spaces satisfying the Radon-
Nikodym property. A theorem of equivalences concerning the Radon-Nikodym property is
proved by categorical means; the classical Dunf ord-Pettis theorem is then deduced using an adjoint-
ness argument. The functorial properties of integral operators, compact operators, and weakly
compact operators are discussed. It is shown that as an instance of Kan extension the weakly
compact operators can be expressed as a certain direct limit of ordinary horn functors. Characteri-
zations of spaces satisfying the Radon-Nikodym property are then given in terms of the agreement
of dual functors of the functors mentioned above.

Subject classification (Amer. Math. Soc. (MOS) 1970): 46 M 15.

1. Introduction

In a previous paper written with Carl Herz (Herz and Pelletier (1976)), we studied
dual functors on the category SB of real Banach spaces and norm-decreasing linear
transformations and developed a theory based on the notion we called 'computa-
bility'. This theory was applied to the class of integral operators, which, though not
themselves computable, arise as the dual functor of a computable functor. Intimately
bound up with integral operators is the Radon-Nikodym property, whose proper
study draws on compact and weakly compact operators.

In the present paper we study these operators and the Radon-Nikodym property
from the categorical point of view adopted in Herz and Pelletier (1976). In particular,
we characterize which spaces satisfy the Radon-Nikodym property in terms of the
behaviour of certain dual functors (Sections 2 and 4). Moreover, we generalize the
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categorical setting—the existence of a left Kan extension—which led in the previous
paper to the definition of computability. This makes it possible to describe the
weakly compact operators as the left Kan extension of the hom functor on a certain
subcategory of 93 (Section 3), much as the compact operators were described in
Herz and Pelletier (1976), 1.3 and 3.2.

The essential approach here is that we exploit the behaviour of several key
functors on 'manageable' subcategories of 93, in particular on g93 and SR93, the
full subcategories of all finite dimensional and reflexive Banach spaces, respectively.
In many cases, functors are completely determined by their behaviour, say, on
g93 (that is they are ^-computable). In others, the relationships between functors
and their '3-computable parts' are significant. It is in this light that we present our
Theorems 4.1 and 4.2, which state that the Radon-Nikodym property is connected
to the agreement of various functors with their 5- or <R-computable parts.

Before presenting the categorical set-up alluded to above, let us first recall the
basic definitions and notations used in the study of functors and the duality of
functors on 93.

We let HOM{X, Y) denote the Banach space whose unit ball is 93^, Y), the set
of all norm-decreasing linear transformations from X to Y. All functors are
assumed to be strong endofunctors on 93, that is functors F such that the induced
map H0M(X, Y) -+H0M(FX,FY) is a morphism in 93. A 93-natural transforma-
tion f.F^G is a family {/xe93(FZ, GX)} satisfying the property that for any
fe®(X, Y), Gfotx = tyoFf. We let 93(/", G) denote the set of 93-natural transfor-
mations from FtoG and NAT(F, G) denote the Banach space whose unit ball is
93(F, G) with norm given by ||r|| = sup{||?x||: ^ 6 93}. (One can refer to Mityagin
and Svarc (1964) for a proof that ||f || < 00.)

The functor D: 93s -• (93®)°" is defined as follows: for Z e S , /e93(Ar, Y),
we have

DFX = NAT(F,Z,X),

DF(j)(y) = -Lfoy for ye DFX,

where l,x Y = X® Y denotes the Banach space tensor product (the algebraic
tensor product completed with respect to the greatest cross norm). DF is called the
dual functor of F.

We consider the restriction functor

U: 93s -> 93*,

where ft is a full subcategory of 93, and 93(~) denotes the category of (strong)
functors from ( - ) to 93. If / denotes the inclusion functor from ft to 93, then the
left adjoint of U, Lan,: 93* -> 93®, is called the (enriched) left Kan extension along /.
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Specifically, if F e S * , GeJBB, then we have the commutative diagram

L a n 7 ( F )

and the isomorphism

NAT** (Lan, (F), G) £ NAT** (F, Go/).

The theory of ordinary Kan extensions is discussed at length in Mac Lane (1971)
and conditions are given for their existence in terms of both colimits and coends.

The situation for enriched Kan extensions is more complicated and requires the
approach via coends. This was first introduced by Day and Kelly (1969) and is
treated in depth in Dubuc (1970).

In the case under consideration a description of enriched left Kan extensions
has been given in terms of tensor products of functors by Cigler (1976), and shows
thus that left Kan extensions exist. We are not in need, however, of introducing
the notion of the tensor product of functors since the Kan extensions we are
interested in may be given a simplified description.

Letting it = gSB, we have the situation discussed in Herz and Pelletier (1976).
There we gave the following description of Lan7 (F) (X):

Lan, (F) (X) = lim {F( Y): Y<= X, Ye g<B}.

It is easy to verify that this description as a colimit over finite dimensional sub-
spaces of X and inclusion maps actually gives us a left adjoint to U; since any two
left adjoints of the same functor are naturally equivalent, this colimit is the left
Kan extension.

We say that F is g-computable (previously called 'computable') when
Lan/(t/F) = F. A shorthand for Lan, (UF) is FL, the 'g-computable part' of F.

The principal duality theorem in Herz and Pelletier (1976) is the following:
1.1. THEOREM If F is a ^-computable functor, then \j/\: DF(X')-*{FX)' is an

isomorphism for every Xe^B, where ipx(y) = trxoyx and trx: X'®X-* R denotes the
trace map fr^E*-®*,) = Zx'^xi).

2. The Radon-Nikodym Theorem

We recall the computable functor A- — , which forms the basis of the applica-
tions given in Herz and Pelletier (1976) Section 3 to the duality Theorem 1.1.
AX is defined to be the closure of Tx(y4®A0 in HOM(A',X), where
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tx: A®X'-* HOM(A,X) is the 33-natural transformation given by

for a'eA'. We point out that A'X is also the image of A'®X in HOM(A,X)
under the obvious map. It is shown in the above-mentioned work that
A' X = HOML{A,X) and that if A satisfies the approximation condition, then
HOM\A,X) = COMP(A,X), the compact operators from A to X.

One special case of the functor A • — occurs when A = C(Q), where ft is a compact
Hausdorff space. Then if C(ft, —) denotes the functor sending Z e S to the space
of all continuous real-valued functions from ft to X, we have C(Q,X) = C(£l)X,
where C(ft) = C(ft,R).

It evolves in Section 3 of Herz and Pelletier (1976) that D(A • - ) (X) = INT(A, X),
the integral operators in the sense of Grothendieck from A to X. Accordingly,
from 1.1 it follows that the map

is an isometric isomorphism. We also note that INT(A, X) is functorial in both
variables. Although the dual of a computable functor, INT (A, —) is not itself
computable since INT(A, X) = A'<2)X for X (or A) finite dimensional implies that
INTL(A,X) = A'®X.

Among the usual results concerning integral operators (see Grothendieck (1966))
which fall out elegantly from our categorical definition are the following factoriza-
tion theorem and its corollary:

2.1. THEOREM. Te INT(A, X) if and only if ixoT can be factored as:

Q
A -» LnQi) • L^-tX',

where ix- X -> X" is the canonical isometric inclusion, (p.) denotes a compact measure
space, and Q: L^fji) -^L^) is the canonical inclusion.

2.2. COROLLARY. TeINT(A, X') if and only if T can be factored as:

Q
A-+Lx<ji) >Ll(ji)-+X',

for (y) a compact measure space and Q the canonical map.
We mention at this point that the notion of an operator being 1-integral (Persson

and Pietsch (1969)) is beginning to receive more attention than that of being
integral in the above sense because of its connection to the Radon-Nikodym
property as we see below and its generalizations to p-integrability. An operator
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T: A -* X is said to be 1-integral when it factors as follows:

Q

As a consequence of 2.2, we see that INTt(-,X') = INT{-, A"), for
so that the two notions agree for dual spaces. Thus on dual spaces we may avail
ourselves of the fact that INT^A,*') = D{A- -){X').

We let TC(A, X) denote the Banach space of trace class operators (often called
nuclear operators) from A to X, that is TC(A, X) consists of operators defined from
elements of ^4'® X as follows

(Saj®Xj)(a) = Za-(a) xt for ae A.

The norm on TC(A,X) is the quotient norm it inherits from A'®X. We note that
TC(A,X) is functorial in both variables. We have 93-bi-natural transformations
0-4,x» XA.X, <PA,X forming the following commutative triangle:

6
A'®X A'X > INT{A, X),

?A,X

TC(A,X)^

where 8AiX(T.a'i<g>xi)(a) = Y.a\(a)xi, nA<x is the quotient map and q>AiX is the
obvious morphism.

We say that X' satisfies the Radon-Nikodym property ('RN') if

INT(A,X') = TC(A,X')

for all AeS&. A is said to satisfy the dual Radon-Nikodym property ('RN*') if
INT(A, X) = TC(A, X) for all Xe 93.

The connection between 'RN' and 'RN*' is given in the next proposition, but
as with so many results in 93, a hypothesis involving the approximation property
is present. (We say that X satisfies the approximation property ('A') whenever
nA.x'- A'®X-+ TC(A,X) is an isomorphism for all As93.)

2.3. PROPOSITION // X satisfies 'RN*', then X' satisfies 'RN'. If X' satisfies
'RN' and 'A\ then X satisfies 'RN*'.

PROOF. The proof of the first statement follows from the fact that

INT( A Y'} ~ INT( Y A '\

and

TC(X,A') = TC(A,X').

Let us assume that X' satisfies 'RN'. Then we have INT(X, A)CZTC(X, A"),
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since INT(X,A)<=INT(X,A") (see Herz and Pelletier (1976), 2.9) and

INT(X, A")^ INT(A', X') £ TC{A', X')^TC(X, A").

Hence, we need to show that if iAoTe TC(X, A") and Te JNT(X, A), then Te TC(X, A).
However, iAoTcorresponds to T under TC(X,A")^TC(A',X'). Finally, we make
use of the standard fact (see Lotz (1971), p. 30) that if X' satisfies 'A', then
T e TC(A', A") implies Te TC(X, A).

Our main result of this section cannot be claimed to be new, belonging as it
does to the folklore on Radon-Nikodym theorems. (Diestel (1975), Diestel and
Uhl (1976) and Grothendieck (1966) are sources for most of this folklore.) However,
its proof relies largely on categorical means which in part eliminates and in whole
simplifies the analysis involved in the usual presentations.

2.4. THEOREM. The following statements are equivalent:
(1) X' satisfies 'RN'.
(2) The canonical map vAtX: A'®X' -> (A-X)' given by

is a quotient for all A e S3.
(3) The canonical map R: Lx(ji,X') ->• HOMiL^^X') is onto, where (ji) is a

compact measure space.
(4) INT(C(Q),X') = C(Q)'®Z' for every compact Hausdorff space SI.

PROOF. (1) o ( 2 ) is obvious since v^^ is the following composite map

A'®X' ^ TC(A,X') > INT(A,X') > (A-X)'.
KA.X' 9A,X' ^'A,X

(1) => (3). Let TeHOMiLiin), X'). Then ToQelNTiL^fji), X') since Q is integral
(see Herz and Pelletier (1976), 4.9). By (1), we have

ToQeLa>Qi)'®X'2;TC(LaB(n), X').

However, under the isomorphism TC(Lx(n), X') ^TC(X, Lx(ji)'), Q'oT'oix

corresponds to ToQ and is thus defined by the same element of Lx(ji)'®X'. On
the other hand, one can easily verify that Q' = iLl°Q:
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Hence, Q'oT'oix = iLloQoT'oix, and therefore, since
QoT'oixeTCiX^^n)) by the same argument given in the proof of 2.3. Thus, we
see that Q'oT'oix and, hence, ToQ are defined by an element, say /, of
Ll(li)®X'2£Ll(n,X'). We have for every geLJji), ToQ{g) = T(g) =ffgdn.
Clearly, then for every geL^n), we have T(g) =\fgdn, and by this property we
see that/must be essentially bounded, that isfeLx(n,X').

(3) => (4). Let Te INT(C(fi), A"). By the factorization theorem we have ^expressed
as the composite

C(Q)->La(n) > LM > X'.
Q S

By (3), there is an element feLx(n,X') such that for all

S(g) = Ugdn.

Hence, for all geC(fi), we have T(g) =\fgdn. However,

LJ]i, X'^L.Qx, X') S

and under this correspondence we have /='Lhi®x'i, hieL^fi), x]eX'. Clearly,
we can view the ht as elements of C(Q)' and so TeC(Q)'®X'.

(4) =>(1). Let Ae^B and let j:A -*• C(Q) be an isometric inclusion. Consider the
following diagram, which is commutative by the naturality of <p:

TC(C(£l), X') r^"-^> INT(C(Q), X')

TC(j,X')

TC(A,X') ?AX_ •> INT(A,X')

<Pc(Q),x- is a quotient map by (4), INT(j, X') is a quotient map since

and TC(j,X') is obviously a quotient map. Therefore, q>A,x' is als° a quotient, and
since it is a monomorphism as well, it is an isomorphism.

2.5. COROLLARY. If X satisfies 'RN*', then statements (2)-(4) o/2.4 hold.

2.6. COROLLARY. X' satisfies 'RN' and 'A' if and only if A'®X'^(A-X)'.

The classical Dunford-Pettis theorem (Diestel and Uhl (1976), p. 4) is a straight-
forward consequence of the above theorem and adjointness.
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2.7. THEOREM. / / X' is separable, then X' satisfies lRN\

PROOF. We use criterion (3) of 2.4. By adjointness, we have

i), X') s(LiO*)® X)' SLI(M, X)' *LLJJI, X').

3. Weakly compact and compact operators

The two principal results concerning the Radon-Nikodym property are the
Dunford-Pettis theorem (2.7) and the Phillips theorem, which states that all
reflexive spaces satisfy 'RN'. The path from the Dunford-Pettis theorem to the
Phillips theorem involved a deep study of weakly compact subsets of Banach spaces
and weakly compact operators (Phillips (1943)). In fact, the key result due to
Phillips is that the range of a weakly compact operator from Lr{n) is separable and
one can readily deduce the Phillips theorem from the Dunford-Pettis theorem
using this fact and the obvious fact that all operators to a reflexive space are
weakly compact. One means of arriving at the Phillips theorem with a minimum
of analysis is to prove that the range of an operator from L^fji) to a reflexive space
is separable, then use the Dunford-Pettis theorem and the factorization theorem
(2.2). In this paper we will refrain from actually giving this proof since it is standard,
but rather we give new ways of viewing the class of weakly compact operators
and of characterizing 'RN'.

Let WC(A, X) denote the Banach space of weakly compact operators from A
to X, that is operators T: A ->Z such that T"[A"]<=X. Alternatively, WC{A,X)
can be described as the space of all operators such that the weak closure of the image
of the closed unit ball in A is compact in the weak topology on X. An operator from
A to X is said to be compact if the closure of the image of the closed unit ball in A
is compact in the norm topology on X. We denote the set of all compact operators
from A to X by COMP(A, X). Both WC(A, X) and COMP{A, X) are functorial in
both variables. It is easy to see that there is a natural inclusion

j : COMP(A,X)^WC(A,X).

We mentioned in Section 2 that if A satisfies 'A' ,then

COMP(A, X) = A' • X = HOM\A, X),

that is that COMP(A, - ) is the left Kan extension of HOM(A, - ) along/: g93 -> 33.
We proceed to give an analogous definition of WC(A, —) as the left Kan extension
of HOM(A, —) along / : 9?33 -> 93. (We hope no confusion will result from calling
both inclusion functors /.)

From the results of Cigler (1976), referred to in Section 2, we know that the
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left Kan extension of HOM{A, —) along /: 9193 -* 33 exists and can be expressed
as a tensor product of functors. However, it is not hard to calculate directly that
the left adjoint L of U is defined by

LFX=lim{F(Y):

where li(A') denotes the category of pairs (Y,fY), Fe*R93 and/y: Y-* X a mono-
morphism, whose morphisms h: (Y,fY)-+(Y',fr) are maps h: Y-*Y' such that
fr — fy-oh. Hence, LFX = Lan7 (F) (X). For shorthand we will denote Lanf (JJF) for
FeW* by Fw.

The proof that HOMW(A, —) is WC(A, —) is based on the recent important result
of Davis et al. (1974) that every weakly compact operator in 93 factors through a
reflexive Banach space. To summarize briefly, they define for TeHOM(A,X) a
norm on a subspace of X using the convex symmetric bounded set T(BA), where
BA is the closed unit ball of A, such that the resulting space, call it X(T), is reflexive
if and only if Te WC(A,X). Moreover, Te WC(A,X) can be factored as

T RT
A > X(T) > X,

where RT is a continuous monomorphism in 93, and T= RjloTe HOM(A, X(T)).

3.1. THEOREM. WC(A, X) = HOMW(A, X).

PROOF. For any (Y,fY) e T>(X), we have the map

HOM(A,fr): HOM(A, Y)^WC(A,X),

and the family {HOM(A,fY)}1S compatible with maps in 1)(X). Let

Z = lim HOM{A, Y),

WO

equipped with the family of injections gr: HOM(A, Y)-*Z. Then there exists
a unique map q> :Z -* WC(A, X) such that q>ogY = HOM(A,fY) for all (Y,fY) e T>(X).
We define i//: WC(A,X)^Z as follows: let Te WC(A,X) be factored as

T RT

A > X(T) -—> X

as described above. Since^r) , RT)e t>(X), we may define il/(T) = gX(T)(T). We
claim that ty is such that \l/oHOM(A,fY) = gY for all (Y,fY)e t>(X) and that ^
and q> are inverses. The latter result will show that \j/e$5(WC(A, X), Z).

Let (Y,fY)e T>(X), TeHOM(A, Y). Consider the following diagram:
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H0M(/l, Y)

We have

WoHOM(A,fY))(T) = il/(

= (gX(fYoT)oHOM(A, RJY\T ofY)) (T) = gY(T).

Hence, \//oHOM(A,fY) = g for all (Y,fY)e T>(X).
Since cpogY = H0M(A,fY), we have ij/oq>ogY = gr for all (Y,fr)e 5)(X) and,

therefore, by definition of Z, il/ocp = lz. However, <p is surjective since for
TeWC(A,X),

<?o^( r )(f) = T.

Hence, <po\]/o(p = <p implies that q>o\j/ = lWc^,x) a n d <P a n d & are inverses as
claimed.

We remark here that the above interesting characterizations of WC(A, —) and
of C0MP(A, —) for A satisfying 'A' as Kan extensions will most likely lead to
further general results of this type which we intend to pursue at a later date.

4. Dual functors and the Radon-Nikodym property

In this final section we study the meaning of the Radon-Nikodym property
from a point of view hitherto not taken in the literature. The constructions of
FL and Fw play a large role in our results, revealing the central nature of these
limits. We find that there are interesting relationships between the Radon-Nikodym
property and the agreement of certain pairs of dual functors, namely the duals of
COMP(A, - ) and WC(A, - ) or the duals of INT(A, - ) and INTL(A, - ) . Usually,
we shall require the assumption of 'A' on certain of the spaces in question.

The first result we shall give is a new statement of the definition of 'RN', the
proof of which is trivial (assuming the Phillips theorem).

4.1. THEOREM. X' satisfies 'RN' if and only if INT(A, X') = INTW(A, X") for all
AeS& such that A' satisfies 'A\
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PROOF. INTW(A,X') = lim INT(A,Y)= lim TC(A, F ) s lim TC(Y',A')

s lim

S TC(A, X').

The key to many of the following results on dual functors is the tensor contraction
map

\jixy. DFX®FY^> X® Y

defined by ^x,Y(y®y) = VrOO. which is discussed in detail in Herz and Pelletier
(1976). For example, one case we consider, for A satisfying 'A', is
F= A'- = COMP(A, -) and DF = INT(A', -). It will be worthwhile to examine
the behaviour of \I/X,Y in detail in this paradigm case before we proceed.

4.2. LEMMA. The map

\lixy. INT(A',X)®COMP{A, Y)^X®Y

behaves as follows:
*iAT<8>f) = Toj',

when il/XiY (T®/) is viewed as a map from Y' to X.

PROOF. Under the isomorphism DCOMP(A, -)(X) = INT(A',X), y maps to
yR, that is T= yR for some yeDCOMP(A, -)(X). Since \px,Y(y®f) = yr(f), we
must, therefore, show that for every / e Y',

However, this equality is a consequence of the commutativity of the following
diagram, which is due to the naturality of y:

COMP(A, Y) yr > X® Y

COMP(A,y') x®y

COMP(A,R) — > X®R

Making use of the tensor contraction map, we see in the next result that the
agreement of DINT(A, - ) and D(INTL)(A, - ) is connected to 'RN' in the presence
of 'A'. We remark that Losert has independently proved the same result on the
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category of Banach spaces satisfying the metric approximation property in his
doctoral dissertation (Losert (1976)) but that his result does not follow from a
purely categorical method of proof as ours does.

4.3. THEOREM. Let A' satisfy 'A'. Then A' satisfies 'RN' if and only if

DINT(A, - ) = D(INTL)(A, - ) .

PROOF. If A' satisfies 'RN\ then by 2.3, A satisfies 'RN*' and so we have
INT(A, -) = TC(A, - ) . We claim that TC(A, - ) = A'®-. Since A' satisfies
'A', we have

TC(A, X')^

for all I e $ . However, the following diagram is commutative by the naturality of

A'®ix
A'®X >A'®X"

"A.X"

TC(A,X) , > TC(A,X")
TC(A, ix)

Since nAfX- is an isomorphism and A'®ix is an isometric inclusion, the composi-
tion TC{A, ix)onAtX is an isometric inclusion. Hence, nA_x is an isometry and a
quotient map, which implies that it is an isomorphism. Thus, our claim is proved,
and we have INT(A, - ) = A'® - = INTL(A, - ) and so

DINT(A, - ) = DINT\A, -).

On the other hand, suppose that DINT(A, - ) = DINT\A, - ) = H0M(A', - ) .
Then we may apply the tensor contraction map as follows:

\jtA..x: DINT(A, -)A'®INT(A,X)^>A'®X.

Moreover, using a proof identical to that of the above lemma, we may see that

foifeHOM(A',A') and TeINT(A,X). Hence

^A\X(^A'®T) = T'GA'®X=TC(A,X)

for any TeINT(A,X). Hence, we have TeTC(A,X) and so A satisfies 'RN*' and
A' satisfies 'RN'.

A corollary of the Phillips theorem emphasizes the relationship between the
duals of the compact and weakly compact operators and 'RN'.
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4.4. COROLLARY. If A is reflexive and satisfies 'A', then

DCOMP(A, - ) = DWC(A, - ) .

PROOF. We have

DCOMP(A, - ) = INT(A', - )

and

DWC(A, -) = DHOM(A, - ) = A® - 7ZA"® - .

Hence, DCOMP(A, -) = DWC(A, - ) if and only if A' satisfies 'RN*' if and only
if (in the presence of 'A') A^A" satisfies 'RN'.

We remark from the above proof that the statement

DCOMP(A, - ) = DWC(A, - )

is another characterization of 'RN' for reflexive spaces A.
For general spaces 'RN' continues to imply agreement of the duals of the compact

and weakly compact operators, but more assumption of 'A' is required.

4.5. THEOREM. Let X' and A satisfy 'A'. IfINT(A',X') = TC(A',X'), then

DCOMP(A, -)X' = DWC(A, -)X'.

PROOF. We define a map

T: INT(A',X')-»DWC(A, -)X'

by <T)Y(f) = 7b/ ' for/e WC{A, Y). Since TeTC(A',X') by hypothesis,

Tof'eTC(Y',X').

However, TC(Y',X)^TC(X, Y"), and under this isomorphism Tof corresponds
to f"oT'oix. Moreover, since / is weakly compact, the image of f"oT'oix lies in
Fand so Tof'eTC(X, 7)sA"® Y, andris well defined.

We claim that T and a = D(j)x; where./": COMP(A, - ) -> WC(A, - ) is the inclu-
sion mentioned in Section 3, are inverse to each other. (Recall that

DCOMP(A, -)X' = D(A' )X' = INT(A',X')

when A satisfies 'A' via v -> vB.) To wit, let TeINT(A',X'). Then

(coz)(T) = x(T\eDCOMP(A, -)X',

and if / e COMP(A, R) = A', then / ' : R -• A' is equal to / , where/(I) =/. Thus, we
have

T ( 7 \ ( / ) = 7b /= 7Xf).

and so (<TOT) (T) = T.
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Now let yeDWC(A, -)X'. Then (roo)(y) = T(yR)eDWC(A, - ) A " . So if
fe WC(A, Y), then

To show that yRo/' acts like yY(f) as a map from Y' to A", we follow the same proof
as given in Lemma 4.2, using the naturality of y. Hence,

and so (TOO) y = y.

4.6. COROLLARY. # ^ ' satisfies 'RN*' and 'A', then

DCOMP(A, -)X'

/or et'ery A" satisfying 'A'.
Moving in the opposite direction of this result, we prove under the assumption

of DCOMP{A', - ) = DWC(A', - ) and 'A' that there is a natural isometric
inclusion of WC(A', —) in DINT(A, —)(—). We note that this result can be proved
without the above assumption using the strong result (a key to the classical Radon-
Nikodym theorems) that an integral operator composed with a weakly compact
operator yields a trace class operator (see Grothendieck (1966), Section 4); J.
Cigler claims to have an unpublished proof of this fact, and Losert (1976) includes
such a result. However, we emphasize that we prefer our assumption on the dual
functors in that the result is then obtainable by our categorical methods.

4.7. THEOREM. Let A' satisfy 'A'. If DCOMP(A',-)X = DWC{A',-)X,
then there exists an isometric inclusion

Ux•• WC{A', X) -> DINT(A, -)X,

which is natural in X.

PROOF We define Z,AtX as follows: for feWC(A',X), TeINT(A,Y),

We must show that foT'eX®Y, and, hence, that £AiX(f)eDINT(A,-)X.
(Verifying that £ is natural is easy.) By virtue of our hypothesis, we may consider
the tensor contraction map

ijir-.x- INT(A", Y")® WC(A',X) -> Y"®X;

thus, we have <J/r",x(T"<2)f) = T'of'e Y"®X. However, it is a standard fact that
integral operators are weakly compact and so Te WC(A, Y) implies that
T'of'e Y®X. Clearly then, foT'eX®Y, which proves that our definition of ^
makes sense.
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To see that £AiX is an isometry, l e t / e WC(A',X) be non-zero. We have

\\A,x(f)\\ = sup{ | |^ , x ( /Mr) | | : F e S , TeINT(A, Y), \\T\\^l}

= sup{| | /or«: 7e93, TeINT(A, Y), \\T\\ ^ 1}< ||/||.

However, ||/|| = sup{||/(a)|[: aeA', ||a|| ^ 1}, and each aeA' may be regarded
as an element of INT(A,R). Hence

= sup{||/oa'||:

and so £AiX is an isometry.
For our final result we summarize the situation when A is reflexive.

4.8. COROLLARY. Let A be reflexive and satisfy'A\ Then the following statements
are equivalent:

(1) DCOMP(A, - ) = DWC(A, - ) .

(2) A satisfies 'RN\

(3) £i't _: WC{A,) -» DINT(A', - ) ( ) exists and is a natural isometric inclusion.

PROOF 4.4 and 4.7 give us 1 <s>2 and 1 => 3.
On the other hand, the existence of £A>>X means that foTeX®Y for all

fe WC{A,X), TeINT(A', Y). Let / = \AeWC{A,A). Then for all TeINT(A', Y),
T'eA®Y. Hence, TeA® Y^TC(A', Y), and so INT(A', Y)^TC(A', Y) for all
r e 93. Therefore, A' satisfies 'RN*' and A satisfies 'RN'.
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