
10 
The internal-part fragmentation 

formulas and their relations 
to the unitarity equations of 
a field theory; Regge theory 

10.1 Introduction 

In this chapter we will consider the decay properties of a cluster. We start 
to derive some results from the internal-part formulas, Eqs. (8.41) and 
(8.43). 

I1 If we sum over all available states in the decay formulas of a cluster 
of squared mass s we obtain asymptotically, i.e. for large values of s, 
the behaviour "" sa. We will consider these state equations both for 
the case of a single species of flavor and meson and also for the case 
of many flavors and many hadrons in each flavor channel. 

12 At the same time we will derive the finite-energy version, Is, of the 
fragmentation function I in Eqs. (8.16), (8.17). We will show that Is 
tends rapidly towards I when s is larger than a few squared hadron 
masses (just as Hs ~ H according to the results of Chapter 9). 

The method we will use is to derive a set of integral equations and then 
to solve them. In that way we will find that there are some necessary rela­
tionships between the parameters a, b and the normalisation parameters 
that constitute a set of eigenvalue equations for the integral equations. 

The whole procedure is very similar to that for obtaining the unitarity 
conditions for the S -matrix in a quantum field theory. We will exploit these 
relationships by showing that the results obtained under I1 are just the 
same as are obtained for the multiperipheral ladder equations in a quantum 
field theory. Even the methods of constructing the integral equations are 
the same. One major result is that the parameter a in the fragmentation 
functions occurs in a similar way to the Regge intercepts in the Reggeon 
field theory. 

It was Gribov who first understood that the unitarity equations of the 
S-matrix can be used to derive very general relations between the matrix 
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178 The internal-part fragmentation formulas 

elements and the cross sections in any field theory and these considerations 
form the basis of his Reggeon field theory. Due to space limitations we 
will have to omit it from this book, but it is just as beautiful, simple and 
general as another part of the work he has initiated, which is presented in 
terms of the DGLAP equations in Chapter 19. 

10.2 The decay properties of a cluster 

We start by noting that the internal breakup distribution in Eq. (8.41) 
contains two factors: 

dPint = dTnlAI2 (10.1) 

where the n-partic1e phase space volume, cf. Chapter 4, is given by 

dT, ~ n N d2Poji5+(p;j - m2 )J2 (~POj - p",,) (10.2) 

and the squared matrix element by the area-law suppression 

IAI2 = exp( -bArest) (10.3) 

The somewhat fancy notation is used in order to make a connection with 
Fermi's Golden Rule for quantum mechanical transitions (cf. Chapter 3): 
the probability for a particular transition is obtained by multiplying the 
square of the transition matrix element by the available number of states, 
i.e. the phase space volume of the final-state hadrons. (One should also 
multiply by a flux factor for the initial state but this is omitted here.) 

The interpretation of the area suppression law as a squared matrix 
element will be provided in the next chapter. 

It is evident, however, that the formulas contain two scales. One of 
these is the quantity b in the exponent. In the derivation of the formulas 
we noted that b must be the same for all the breakup vertices. Thus b 
must be flavor independent and so contain basic information about the 
color force field for which the string is used as a model. 

We note, however, that the other parameter in the fragmentation func­
tion, a, has vanished from the expressions in Eq. (10.1) but that the 
normalisation constant N is still present. (If there are several values of a 
then the differences a j-l - a j occur directly in the formulas, cf. Eq. (8.43).) 

The normalisation constant N, which occurs together with each of the 
hadronic state factors, can be thought of as a scale factor for the hadronic 
states. In the simple picture used up to now, in which we have discussed 
a (1 + 1 )-dimensional model, then N is, of course, dimensionless. In the 
actual (3 + l)-dimensional world then N would need to have the same 
dimensions as b in order to obtain the correct dimensions of the cross 
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10.2 The decay properties of a cluster 179 

sections, etc. It is by no means obvious that the scale determining the 
breakup properties of the string color field, i.e. b, is the same as the scale 
governing the density of the stable hadronic states. 

The reason why the a-dependent factors have vanished from Eq. (10.1) is 
that this formula is an exclusive expression for the probability to produce 
just the particular set of n particles with energy-momenta {Poj}, j = 
1, ... , n and nothing else. Our earlier fragmentation formula for f(z) (Eqs. 
(8.16), (8.17)) is an inclusive expression, i.e. it describes the probability 
of producing one particular meson independently of whatever will come 
before (or after); there is, however, an implicit assumption that in general 
there will be something more. We will now prove that it is this expectation 
that does in fact produce the a-dependent factors in the Lund model. 

1 The case of a single a-parameter and a single hadron 

We start by considering the probability for producing a first hadron with 
energy-momentum 

(l0.4) 

from the cluster with mass )8, independently of what comes after. We 
will use the same notation as in Chapter 8. Now we must pick out those 
properties of the expression that are ul-dependent. Then we integrate and 
sum over everything else, keeping Ul and s fixed. 

Let us first note that if we sum over everything, including even the 
first-rank hadron, then the only thing that the expression can depend 
upon is the total squared mass s. (This is Lorentz invariance at work in a 
situation where the only Lorentz invariant is s.) Therefore we can define 
the function g(s) as follows: 

g(s) ~ ~ J E N d'p,j/j+(p;j - m')/j (~P,j - p",,) exp( -bAm') 

(10.5) 

s = Pr~st == W+W_ 

If we introduce the above parameter Ul (by means of b(P~l - m2)d2pol = 
dulIut), then noting that the area Arest in Fig. (10.1) can be subdivided in 
an obvious way to give Arest = rn2 + A(2 - n) we obtain the result 

Uj 

J Ndul (bm2) g(s) = -- exp -- h 
Ul Ul 

(10.6) 

The quantity h is given by the same expression for the particles indexed 
2 to n as that for the function g(s) for all the particles. There is, however, 
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Fig. 10.1. The subdivision of the full cluster area into the area characteristic of 
the first-rank hadron, AI, and the area of the remaining ones, A(2 - n). 

a changed (ul-dependent) value for the squared mass: 

SI = (Prest - Por)2 = (W+l - Ul W+r) (W-l _ m2 ) 
Ul W+l 

= (1 - u r) (s - :~) (10.7) 

This is the squared mass for the hadrons 2 to n; we have taken away the 
first-rank particle, with a fixed value of Ul. Thus h == g(sd. Combining 
these results we obtain an integral equation for g: 

J Ndul (bm2) ( (m2)) g(s) = ~exp -~ g (l-ur) s- ~ (10.8) 

To be precise, this integral equation is only valid if s is larger than the 
square of the single-particle mass. Further, the integration region does not 
extend all the way down to Ul = 0 because the remainder mass must also 
be reasonably large. 

Nevertheless we note that for large values of s there are solutions of a 
power character for g (here C(j is a constant): 

g(s) :::::: C(jsa If 1 = --(1 - uda exp --. J Ndul ( bm2) 
ul ul 

(10.9) 

Note that this is a requirement on a, i.e. there is a relation between 
the normalisation constant N, bm2 and a. This requirement is, of course, 
nothing other than the original normalisation conditions for f (remember 
the discussion in Chapter 8). 

We could in fact call this property (a form of) unitarity: there is a total 
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10.2 The decay properties of a cluster 181 

probability equal to unity that something will happen in connection with 
the production process! 

We find in this way that the fragmentation function for a finite-mass 
cluster is formally s-dependent, from the normalisation factor hi g: 

Ndul (bm2) g((l-ud(s-~;)) 
fs(ud = -- exp --

Ul UI g(s) 

~ f(ud (1 _ m2) a (10.10) 
SUI 

In practice the quantity m2 lUI is much smaller than s. Therefore we recover 
our starting expression in Eq. (8.16), i.e. the function fs tends to f rapidly 
when s ~ m2. 

2 The case of several values of the a-parameter and several kinds of 
hadron 

If there are several a-values, ak, and several flavors and hadrons, we will 
for simplicity sum over all hadron and flavor indices in the formulas using 
the convention that the normalisation constants of the fragmentation 
functions are only nonzero when the hadron index and the flavor indices 
are compatible. We treat only the case of a single hadron for each flavor 
combination. The more general case can be inferred from that. 

The major difference from the case of a single flavor and hadron is that 
the hadronic phase space volume is changed (the area-law suppression is 
the same but with the relevant mass values inserted): 

( 
n ) ( n m2 I .) 

dCQ,ex = (j 1 - ~ U j (j s _ ~ ~~ ,J 

X IT Nfj-l,fjduj (Ujtfj-l-afj (10.11) 
I Uj 

with the convention that the first-rank hadron has the flavor h = 0 and 
the last one the (anti)flavor corresponding to fn = a. 

We will now also prescribe that the first-rank hadron should have 
the antiflavor corresponding to f3 and energy-momentum fraction UI. We 
can use a division trick (this time with 1 - ud in the (j-distributions to 
rearrange them as follows: 
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182 The internal-part fragmentation formulas 

We note firstly the occurrence of Sl from Eq. (10.7) in the l5-distribution 
in the second line and secondly that in this way the Uj, j = 2, ... , n, all 
occur in the rescaled version uj/(l - ut) == (j. Introducing these rescaled 
(j we obtain from the phase space factor 

d _ No,pdul ao-aa (1 -Ul) ap-aa d 
LOa - Ul -- Lpa 

, Ul Ul ' 
(10.13) 

The interpretation is that the phase space volume of a flavor-ranked 
string of hadrons, starting at flavor 0 and ending at antiflavor a, can be 
rearranged into a product with one factor for a single first-rank hadron 
with flavors 0,7J and the other for the phase space volume of the string 
/3, a. 

The area-law suppression factor can be rearranged just as in Eq. (10.6) 
and we conclude that there is a corresponding integral equation, as for 
the simpler case in Eq. (10.8): 

gO,a(s) = 2: J dudo,p(ut)(l - ut)-aagp,a(st) 
PE{f} 

(10.14) 

We have here introduced the fragmentation function for the first-rank 
hadron and also the quantities gjj./k for the total sum over all possible 
production contributions starting at flavor fj and ending at (anti)flavor fk. 
Note that the argument of gp,a is the reduced squared mass Sl. We must 
sum over all possible antiflavors of the first-rank hadron. The interesting 
thing is that this equation has solutions g which, for large values of s, 
depend solely on the final flavor, aa, i.e. 

(10.15) 

as is easily seen using the result for Sl in Eq. (10.7) (the factor (1 - ut)-aa 
is compensated by the corresponding factor in s~a). There is a requirement 
again corresponding to unitarity that 

2: J fo,p(Ut)dul = 1 (10.16) 
PE{f} 

i.e. that the total probability is 1 that some flavor /3 is produced at the first 
vertex and thereby that there is always a first-rank hadron. The statement 
that the total sum over all possible productions should depend only upon 
the final flavor was deduced also in the discussion of the r -distribution 
of the final vertex, in the context of the external-part formulas in the last 
chapter. We note that Eq. (10.16) must be valid not only for the index 0 
but for all the flavor indices in {f}. 

If we analyse our results it is evident that we have repeatedly made 
use of the fact that the Lund model fragmentation formulas have simple 
factorisation properties. In the next section we will consider the unitarity 
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P(N-I) 

q(N-I) PN q(N-I) + q 

PB 

Fig. 10.2. A Feynman diagram describing the scattering (PA,PB) -+ (PA+q,PB-q) 
with intermediate states and momentum transfers exhibited. 

equations for the S -matrix in a quantum field theory. We will show that 
factorisation properties also in that case lead to very similar results for 
the correspondence to our state sum. 

10.3 The relationship to the nnitarity equations for the S-matrix in a 
quantum field theory 

1 The AFS model 

It has been known for a long time that it is possible to prove Regge 
asymptotic behaviour from the unitarity equations for the S-matrix in a 
quantum field theory. We will, in this and the following subsections, make 
use of a description similar to the one given in [28]. 

Amati, Fubini and Stanghellini (AFS), [1], formulated a set of integral 
equations based upon the so-called ladder Feynman diagrams or multi­
peripheral ladder diagrams (see Fig. 10.2). The starting point is that (the 
imaginary part of) the elastic scattering amplitude 

(10.17) 

describing the elastic scattering of the particles A, B with momentum 
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184 The internal-part fragmentation formulas 

transfer q must, owing to unitarity, fulfil the following equation: 

Im(TAB) = (1/2) L J TN(PA, PB; {Pj} )T:.r(p~,p~; {Pj} )d'N (10.18) 
N 

Here the quantity deN is the N-particle phase space volume and 

p~ = PA + q such that pl = p~ (10.19) 

(similarly for p~). The point is that all possible hadronic states (denoted 
{Pj} in Eq. (10.18)), fulfilling energy-momentum conservation and capable 
of being produced from the incoming and outgoing states A, B, should be 
included in the sum and integral (the Pj being on the mass shell). We note 
the similarity to the description of a propagator in the Kallen-Lehmann 
representation, where also all possible intermediate states occur. 

The T (transition)-operator is related to the S-operator (which is defined 
in Chapter 3) in the usual way: 

S = 1 + iT (10.20) 

In the AFS model the amplitudes TN are taken from the ladder diagrams, 
see Fig. 10.2: 

N 

T~FS = II A(qj-l,qj)D(qj) (10.21) 
j=l 

Here D(qj) is the propagator for the momentum transfer qj = qj-l - Pj 
(qO = PA, qN = -PB, for j = N the propagator is equal to 1) at the 
(Feynman) vertex j - 1 ~ j and A(qj-l, qj) is the corresponding vertex 
factor for producing the particle Pj. 

We note for future reference that the intermediate N -particle state is in 
this way built up iteratively, with one particle being produced at a time 
along a ladder containing the propagators from vertex to vertex. 

The expression on the right-hand side of Eq. (10.18), which from now 
on will be called rhs, will have a simple behaviour for a great many 
production models provided that: 

Vi the amplitudes TN fall off rapidly except when the energy-momentum 
transfers are small, i.e. qJ s;; m2 with m a typical mass size; 

V2 there is no long-range order in the momentum transfers. Thus the 
amplitude TN is independent of qj and qk if Ij - kl ~ 1, i.e. the 
vertices j and k are far from each other in the production process; 

V3 the amplitude is not large when the sub-energies Sj,j+l = (pj + pj+t}2 
of neighboring pairs are large. This means in practice that there are 
no large rapidity gaps between the produced particles anywhere in 
the included chains. 
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10.3 The unitarity equations for the S -matrix 185 

These assumptions are at the basis of Gribov's Reggeon calculus, and 
all of them seem very natural. It should be noted, however, that in QCD 
the momentum transfers are in general larger than allowed in Gribov's 
basic assumptions so there is need for some caution in applying the rules 
to QCD. 

In particular one can show from the assumptions Ul-U3 that the 
equations will lead to Regge behaviour, i.e. that 

(10.22) 

The parameter(s) It will in general depend upon the quantum numbers of 
the particles A, B and also upon the squared momentum transfer t = q2 
in the process. The way to obtain the result in Eq. (10.22) is, in the AFS 
model, to make use of the following simple factorisation property of the 
amplitude in Eq. (10.21): 

T AFS = ;I.(p2 q2)D(q2)TAFS 
N A, 1 1 N-1 (10.23) 

Introducing this factorisation property one obtains immediately an integral 
equation for the right-hand side, (rhs)AFs, of Eq. (10.18) (q = 0, JV a 
numerical constant and Sl = (Ptot - pt}2 as in Eq. (10.7)): 

(rhs)AFs (s) = J JV dpu5(PI - m2) 

xl;l.(p~,(pA - pt}2) 12ID((pA - pt}212(rhs)AFs(st} (10.24) 

The similarity between this expression and the integral equation(s) for g 
and grx,{J in Eqs. (10.8) (10.15) are obvious. With a few manipulations one 
obtains the desired power behaviour in s = Pt~p the power-law parameter 
lto being determined from the eigenvalues of the equation, [1]. 

2 A detour into transverse dimensions 

In this section we consider the extension of the results in Eq. (10.24) to 
nonzero values of the momentum transfer q. This is a preliminary to the 
extension of the Lund model formulas to a (3 + i)-dimensional world. A 
second reason is that in this way there emerges a simple and intuitively 
appealing picture of the behaviour of multiparticle production models. We 
start with a brief discussion of the influence of the requirements Ul-U3 
on the results. 

In order to make the integrals in the formulas for the function rhs 
convergent it is necessary to have a fast falloff in qr, i.e. to make use of 
the requirement Ul above. It is possible to have more complex factori­
sation properties than in the simple AFS model, i.e. one may introduce 
short-range correlations between the vertices. The requirement U2 does, 
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186 The internal-part fragmentation formulas 

however, ensure the possibility of still writing integral equations (albeit, 
in this case, systems of integral equations). 

The requirement V3 is needed for more subtle reasons and is only 
necessary when considering transverse dimensions also. (It is instructive 
to show that in a (1 + I)-dimensional scenario the requirements VI and 
V3 are equivalent and the reader is urged to do that.) The (general) 
requirement V3 is intended to solve a type of transmission problem by 
means of the law of large numbers. 

Energy-momentum conservation at every (Feynman) vertex means, ac­
cording to Fig. 10.2, that the individual momentum transfers at the jth 
cell of the ladder must fulfil 

(10.25) 

Therefore in order to transmit the momentum transfer q across the ladder 
it is necessary that neither qJ nor (q+qj)2 should imply strong suppression 

of the vertex and propagator functions for the different steps. Therefore q2 
must be limited in size in accordance with the requirement VI above. Ac­
tually, as we will see, the restrictions on q are essentially stronger because 
in a chain with n vertices there will be n requirements to accommodate. 

Further, the momentum transfer q must be spacelike to keep the parti­
cles A and B on the mass shell. At high energies it is even necessary that q 
should be almost transversely directed, i.e. q should be almost orthogonal to 
the direction PA +PB (from now on the beam direction). To prove this let us 
go to the cms of the two particles A and B; they have energy-momenta in 
a lightcone frame PA = (W,m2jW,Od, PB = (m2jW, W,Od. Then if q has 
large components along any of the lightcones, the mass-shell conditions 
for A and B, Eq. (10.19), cannot be fulfilled for large values of Wand 
small values of q2. 

We will therefore use the approximation that q ~ qt. It is useful to divide 
the hadronic phase space volume, deN, into transverse (t) and longitudinal 
(I) parts with respect to the beam direction: 

d<N ~ d<N,d<Nj so that d<N' ~ B d'P'io (~P'i) (10.26) 

We also observe from the ladder graph in Fig. 10.2 that the hadronic 
transverse momenta can be expressed as 

Ptj = qt(j-l) - qtj, j = 1, ... , N (10.27) 

This ensures that the transverse momentum conservation c)-distribution in 
Eq. (10.26) is fulfilled. We may evidently introduce as integration variables 
the transverse components of the momentum transfers qj, j = 1, ... , N - 1 
instead of the corresponding components for the hadrons, Pj. 
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10.3 The unitarity equations for the S -matrix 187 

The next step is to introduce the (transverse) Fourier transforms of the 
transition amplitudes in Eq. (10.18): 

N-1 

TN(PA,PB;Pj) = J FN(bj,Plj) II exp(iqtj' bj )d2bj 
j=l 

(10.28) 

(the index I is for longitudinal). There is a corresponding result for the 
amplitude T;;(p~,p~;Pj) in terms of (the complex conjugate of) the same 
function: 

N-1 

T;; = J F~(bj,plj) II exp[-i(qtj + q) . bj]d2bj 
j=l 

(10.29) 

An essential point is the appearance of the q-dependence as a common 
factor in the above equation: 

(10.30) 

because if we now perform the integrals on the right-hand side of Eq. 
(10.18) we obtain a very pretty description: 

(rhs)(s, q2) = J exp[ -ib . q]d2b$'(b, s) 

:F ~ ~ f dTNI TI (2n)'d'bjii (~bj -b) IFN(bj,Plj)I' (10.31) 

We have here repeatedly made use of the well-known Fourier distribution 
identity 

(10.32) 

to make the identification b j = bj. 
The whole mathematical game has been to introduce instead of the 

transverse momentum transfers qtj their canonically conjugate correspon­
dences, the impact-space vectors b j of the different links in the ladder 
graphs. We find that the full q-dependence (in the transverse approxima­
tion) is described by the Fourier transform with respect to the sum of all the 
individual impact-space vectors for the different links. 

The question then arises of the distribution of the sum of these in­
dividual impact-space vectors. Now we can again make use of the two 
requirements V1 and V2 above. Equation (10.28) was used to define the 
distributions FN and we can of course invert it by means of the Fourier 
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transform relations into 

J N-l d2 

FN(bj ) = TN(PA,PB;qjt'Pz)}] (2:)~ exp[-i(qjt· bj )] (10.33) 

Then using the properties of the Fourier transforms we can deduce that 
the two requirements Vi and V2 will have the following implications for 
the impact-space vectors bj . 

Uil. The function(s) FN are smooth and well-behaved distributions in bj 

with, typically by :::::: 11m2, i.e. the inverse of the qy. 

U i2. The correlations bj bk = 0 if Ij - kl ~ 1. 

Now, finally, comes the basic use of the requirement V3: it means that 
the major contributions to the integrals come from situations very similar 
to the one in the Lund model, i.e. there will be no major contributions to 
the integrals from small multiplicities. If this were not the case then there 
would be many large rapidity gaps. In the Lund model picture there would 
then have to be many small values of the proper times of the vertices, i.e. 
we would be far from the usual hyperbola breakup. 

(In fact, owing to Vi, nor will there be major contributions from 
very large multiplicities, for which, in accordance with our findings for 
the Lund model, it is necessary to have large values of the proper time 
or equivalently of the momentum transfers r.) This large-multiplicity 
requirement is necessary because we are now going to make use of the 
law of large numbers, which (apart from some mathematical epsilontics) 
reads as follows . 

• Consider the distribution of a quantity L, which is the sum of a 
(sufficiently) large number of independent stochastic variables: 

n 

L= LPj 
j=l 

(10.34) 

Each of the Pj is distributed in one way or another with a mean (Pj) 
and a variance ay. Then L is distributed according to a gaussian: 

dP 1 [ (L - nLO)2] 
dL = J2iina5 exp - 2na5 

The centre and the width of the L-distribution are given by 
n 

nLo = L (Pj) , 
j=l 

n 

2 '" 2 nao = ~ aj 
j=l 

(10.35) 

(10.36) 
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In our case, the impact-space vectors evidently will all, due to sym­
metry, have a vanishing mean value. Depending upon the length of the 
correlations, according to U i2 they can be subdivided into groups which 
are independent (we assume each to have a correlation length \ r2)). If 
the number of such groups is n(s) ~ 1 for a given value of the squared 
cms energy s we may apply the law of large numbers. 

In this way we obtain a very general result for the distribution ff in 
Eq. (10.31), i.e. a gaussian distribution in the total impact-space vector b. 

The method we have used can in somewhat vague language be described 
as follows . 

• We go over to impact-parameter space and consider the building up 
of the total impact parameter b as a Brownian motion along the chain 
with each impact parameter (or for short-range correlations each 
group of) impact-parameter vector(s) bj contributing in a random 
way. 

This is a very general feature of transmissions through many steps: 
they tend to randomise rather quickly and then only the general mean 
and variance are noticeable (together with the number of steps). Note that 
if there are major contributions from the fluctuations down to a small 
number of steps these statements may not be true. 

3 Coming back to the Regge phenomenology 

After having obtained a very general distribution for ff we will go back 
to the unitarity equations, as well as to the representation in Eq. (10.31), 
to obtain 

(10.37) 

i.e. we perform a straightforward gaussian integra1. 
For the case when the correlations, according to V2, are reasonably 

short-range one expects n(s) = c (n), i.e. this number should be propor­
tional to the mean multiplicity at that energy. 

In any of the models which fulfils not only V1 and V2 but also V3, 
this mean multiplicity will grow logarithmically in s. We therefore expect 
that the Regge parameters et in Eq. (10.22) are generally linear functions 
of t (note that exp( -C In s) = s-c). Conventionally these are written as 

et(t) = eto + et't (10.38) 

with t = q2 ~ -q~. Here eto is called the intercept and the parameter et' 

the Regge slope). This latter parameter should according to our formula 
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be proportional to (r2) /2 and therefore depend both upon the value of 
the (average) transverse momentum and upon the size of the short-range 
correlations. 

It is known phenomenologically that for most Regge trajectories, as 
the oc(t)-line in Eq. (10.38) is called, this parameter oc' '" 1 (GeV /c)-2. 
However, there is one trajectory, equipped with the vacuum quantum 
numbers, called the Pomeron. The Pomeron has an essentially smaller 
slope, oc~ ~ 0.25 (GeV /c)-2. 

In this way both the elastic and the total cross sections are dominated 
by power behaviour in s when they are expressed in terms of the matrix 
elements of T as 

d(Jel ITABI2 2a(t)-2 
-=--IXS 
dt 16ns2 

1m TAB a(t)-l 
(Jtot = IX S 

(10.39) 

s 
The second line ofEq. (10.39) is of course nothing other than a statement 

that the sum over all states, like in Eq. (10.18), includes everything that 
can happen; the factor 1/ s is the flux factor of the incoming state. For the 
first line of Eq. (10.39) it is necessary also to know something about the 
real part of TAB, but fortunately the latter turns out to give only a small 
correction. 

Similar power results for the high-energy behaviour are obtained from 
potential scattering models by rewriting the scattering amplitude using 
the Sommerfeld-Watson transform, which was originally developed for 
light-scattering, [46]. These features are, however, outside the scope of 
this book. One very important result in this connection is that the Regge 
trajectories oc(t) also contain information on the bound-state spectrum of 
the potential. It is possible to show that oc(t) is an analytical function 
of t in the potential scattering models. In particular, when the squared 
momentum transfer t (which in the case discussed up to now must be 
negative) is continued to positive values then 

oc(t = m2) = j (10.40) 

with j the angular momentum of the bound state with mass m. 
Regge behaviour has also been proposed and investigated in more 

complex processes than elastic scattering, e.g. in charge exchange processes 
such as n-p ~ nOn (p, n stand for proton and neutron, respectively). In 
this case the use of the p-trajectory has provided a very good description 
of all available experimental data. From the experimental analysis, this 
trajectory actually does exhibit the straight-line behaviour expected in Eq. 
(10.38), and with the constraint from Eq. (10.40) (that the p-meson spin 
is 1) the value of ocop has been decided as being close to 0.5. 
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The p-trajectory is, in accordance with the flavor composition of p as a 
mixture of uu and dd, related to the most common flavors. It should be 
more than a coincidence that the phenomenological values for the Lund 
model parameter a, which are obtained from studies that also include 
gluonic radiation, tend to demand a value just above 0.5. 
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