COMPOSITIO MATHEMATICA

Twisted Whittaker category on affine flags and the
category of representations of the mixed
quantum group

Ruotao Yang

Compositio Math. 160 (2024), 1349-1417.

doi:10.1112/S0010437X24007139

Q. [LONDON
FOUNDATION V}\\\@ MATHEMATICAL
COMPOSITIO Q/\ //A SOCIETY
MATHEMATICA P st 1960

Check for
https://doi.org/10.1112/50010437X24007139 Published online by Cambridge University Press updates


https://doi.org/10.1112/S0010437X24007139
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X24007139&domain=pdf
https://doi.org/10.1112/S0010437X24007139

AN Compositio Math. 160 (2024) 13491417

N .
W) 0i:10.1112/50010437X24007139

4

Twisted Whittaker category on affine flags and the
category of representations of the mixed
quantum group

Ruotao Yang

ABSTRACT

Let G be a reductive group, and let G be its Langlands dual group. Arkhipov and
Bezrukavnikov proved that the Whittaker category on the affine flags Flg is equivalent
to the category of G-equivariant quasi-coherent sheaves on the Springer resolution of
the nilpotent cone. This paper proves this theorem in the quantum case. We show
that the twisted Whittaker category on Flg and the category of representations of
the mixed quantum group are equivalent. In particular, we prove that the quantum
category O is equivalent to the twisted Whittaker category on Flg in the generic case.
The strong version of our main theorem claims a motivic equivalence between the
Whittaker category on Flg and a factorization module category, which holds in the
de Rham setting, the Betti setting, and the f-adic setting.
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1. Introduction

1.1 Reminder about the work of [AB09]

1.1.1 Let G be a reductive group over an algebraically closed field k. Fix a pair (B, B™)
of opposite Borel subgroups, and denote by N and N~ their unipotent radicals, respectively.
Denote by X = k((t)) the field of Laurent series and by O = k[t] the ring of formal power series.
We denote by G(X) the loop group of G, by I the Iwahori subgroup, and by Flg := G(X)/I the
affine flags. In this section, we assume k = C.

It is known that the category of D-modules on Flg, with certain equivariance properties, can
be realized in terms of the category of representations of the Langlands dual group G.

An important equivariance condition is the Whittaker condition. Denote by N (X) the loop
group of N. We refer to the category of Whittaker D-modules on Flg as the (DG) category of
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D-modules on Flg which are N (X)-equivariant against a non-degenerate character y. We denote
it by Whit(D-mod(Flg)). A well-known result of Arkhipov and Bezrukavnikov [AB09] states
that there is an equivalence of categories

Whit(D-mod(Flg)) ~ QCoh(N/G). (1.1.1)

In the above formula, N :=T*(G/B) is the Springer resolution of the nilpotent cone, and
QCoh(N/QG) is the (DG) category of G-equivariant quasi-coherent sheaves on N.
It is natural to consider the following question.

QUESTION 1. What is the deformed version of (1.1.1)7

1.1.2 Tt is expected that (1.1.1) deforms over the space of levels, i.e. the space of Weyl
group-invariant symmetric bilinear forms on A. Here A is the coweight lattice of G.

The left-hand side of (1.1.1) admits a naturally defined level-parameterized deformation.
Namely, a level k gives rise to a twisting, and we can consider x-twisted D-modules on Flg.
Then Whit(D-mod, (Flg)), the category of k-twisted Whittaker D-modules on Flg, is defined as
the category of (N (X), x)-equivariant k-twisted D-modules on Flg.

The deformation of the right-hand side of (1.1.1) is not obvious. In order to present it, we
rewrite f\f/é as it/ B. Here @i is the Lie algebra of the unipotent radical N of B, and the action
of B on # is the adjoint action.

A quasi-coherent sheaf on #/B is a O(#)-module with a compatible action of B. It can be
regarded as a A-graded vector space with compatible actions of Sym(n~) and U(n), with the
locally nilpotent condition. The universal enveloping algebra U(n) naturally deforms. Namely,
the Lusztig quantum group UL (i) provides a deformation of U (@) over the space of levels. Here
the relation between the level k and the quantum parameter

q:AN—C/z=C"

is given by g(\) = exp(mi - k(A A)) for A € A. Note that Sym(n™) is the graded dual of U (1), so
the graded dual of UOIf(ﬁ) provides a deformation of Sym(fn~) over the space of levels.

From this point of view, the right-hand side of (1.1.1) has a deformation. It is given by
the category of representations of a certain quantum group, whose positive part is the Lusztig
quantum group U(I; (1) and the negative part is the De Concini-Kac quantum group U(?K(ﬁ_)
(i.e. the graded dual of the Lusztig quantum group). It is exactly the category of representations
of the mized quantum group introduced by Gaitsgory in [Gai2la, §5.3], which is denoted by

Repgmd (G).

Now it is natural to ask the following question.
QUESTION 2. Is there an equivalence

Whit(D-mod,(Flg)) ~ Reps™4(G)? (1.1.2)

1.2 Main theorem of this paper
The weak version of the main theorem (Theorem 3.3.2) says that, when ¢ avoids small torsion
(see §3.3.1), there exists a t-exact equivalence of categories between Whit(D-mod,(Flg)) and

Repqde(G). Furthermore, both Repg“‘d(G) and Whit(D-mod, (Flg)) acquire structures of highest

weight categories,! and the equivalence functor preserves highest weight category structure.

! For a highest weight category structure of a DG-category €, we mean a collection of standard objects {c;} and a
collection of costandard objects {c;} with the orthogonality property. Furthermore, we require that {c;} generate
C by colimits, shifts, and extensions.
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However, Theorem 6.4.8, the strong version of the main theorem, proves a more general
statement, where we do not need to assume that the base field of schemes is C and the sheaf
category is the category of D-modules.

Let k denote the base field of schemes, and let e denote the coefficients field of sheaves. Note
that (1.1.2) only makes sense when k = e = C, otherwise we cannot define D-modules and the

mixed quantum group simultaneously. In this case, Repg‘Xd(G) can be realized as the category

of factorization modules [Gai2lb] over a factorization algebra Qé’l. Instead of working with
Repg”‘d(@), we compare Whit(D-mod(Flg)) with this factorization module category.

The advantage of using factorization modules lies in the fact that the statement involving
factorization modules is geometric (i.e. motivic). Rather than D-modules, we can also consider
factorization modules in the settings of the f-adic sheaves and the constructible sheaves with
arbitrary coefficients e.

Theorem 6.4.8 claims that there is a t-exact equivalence of highest weight categories
Whitq(Flg) ~ Qg”-FactMod. (1.2.1)
In the above formula:

— Whitq(Flg) is the category of twisted Whittaker sheaves on Flg;
- QE’/—FactMod is the category of factorization modules over QI(I’/.

This theorem holds in a greater generality: in addition to D-modules, it is true for all the
sheaves contexts listed in §1.6.1 and any q.

1.3 Other motivations
In this section, we provide motivations for Theorem 3.3.2 other than those coming from the work
of [AB09]. We assume k = e = C in this section.

1.3.1 Fundamental local equivalence. Another main idea that motivates this work comes from
the quantum local Langlands conjecture. We explain it in this section.

In [Gail8b], Gaitsgory proposed a very general conjecture of the quantum Langlands
program.

Consider the category D-mod, (G (X)) of s-twisted D-modules on the loop group G(X). The
group structure on G(X) induces a monoidal structure on this category. We denote by G(X)-mod,
the 2-category of module categories over this monoidal category. The quantum local Langlands
conjecture asserts the following equivalences.

CONJECTURE 1.
(1) There is an equivalence of categories,
G(K)-mod_,, ~ G(X)-modj. (1.3.1)

Here i denotes the dual level of k (see [GL19, 0.1.1]).
(2) If€ € G(K)-mod_j, goes to € € G(K)-mod under the equivalence (1.3.1), then their Iwahori
strong invariants [Berl?7, §4] are equivalent

el ~ el (1.3.2)
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Namely, the category of D-mod_,(G(X))-equivariant functors from D-mod_.(Flg)) to
C, is equivalent to the category of D-modx(G(X))-equivariant functors from D-modj (Flx)
to C.

Conjectural 1 is supposed to be characterized by the property that it intertwines the
Whittaker model and the Kac-Moody model. The functor sending € € G(X)-mod_, to its
Whittaker model is co-represented by D-mod_.(G(X)/N(X),x). The functor sending
Ce G(X)-mod; to its Kac-Moody model is co-represented by the category of Kac-Moody
representations ﬁk—mod. Hence,

D-mod_ . (G(X)/N(X), x) — @z-mod (1.3.3)

under the equivalence (1.3.1).
By applying property (2) of Conjecture 1 to (1.3.3), we arrive the following conjectural
equivalence,? which was proposed by Gaitsgory and Lurie [Gail6, Conjecture 3.11].

CONJECTURE 2 (Iwahori fundamental local equivalence). There is an equivalence of categories
Whit(D-mod(Flg)) ~ gc;,:;—modj (1.3.4)

Here ﬁk—modj denotes the category of Iwahori-integrable Kac—Moody representations.

In the upcoming paper [CF21] of Chen and Fu, the authors prove that RengXd(G)

is equivalent to ﬁk—modj . Hence, the combination of our papers provides a new proof of
Conjecture 2.

1.3.2 Relation with Kazhdan—Lusztig. By [K1L93, KL94], Repq(é), the category of repre-
sentations of the quantum group, is equivalent to the category of G(O)-integrable Kac-Moody
representations. Furthermore, by [CDR21], the latter is equivalent to the twisted Whittaker
category on the affine Grassmannian Grg := G(X)/G(0O). Hence, there is an equivalence of
categories

Whit(D-mod(Grg)) := D-mod, (N (X), x\Grg) =~ Rep,(G). (1.3.5)

Theorem 3.3.2 provides a tamely ramified version of the above equivalence of categories.

1.3.3 BGG Category O. When ¢ is generic, the Lusztig quantum group Ué‘(fl_) is nat-
urally isomorphic to the De Concini-Kac quantum group U(?K(ﬁ*). In particular, the

mxd (A

category Repy™@(G) is equivalent to the quantum category O in [BGGT71] when ¢ is
generic. Thus, in this case, Theorem 3.3.2 gives a geometric realization of the quantum
category O.

In the case of root of unity, the category Repg“‘d(é) is different from the quantum
category O. For example, the standard objects (i.e. Verma modules) and costandard objects

(i.e. co-Verma modules) of Repg“‘d(G) are no longer of finite length. Nevertheless, Repg‘Xd(G)
is still a highest weight category. The comparison of the highest weight category structures of
Repgmd(G) and Whit(D-mod,(Flg)) plays an important role in our proof.

1.3.4 Casselman—Shalika theorem. The original Casselman—Shalika theorem interprets the
values of the spherical Whittaker function as characters of the irreducible representations of the

Langlands dual group.

2 Tt was proved in a recent paper [CDR21] by Campbell, Dhillon, and Raskin using Soergel module techniques.
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Let Buny be the algebraic stack classifying principal N-bundles on a smooth con-
nected projective curve X. In [FGVO01], the authors proved a generalization of the geometric
Casselman—Shalika formula. It interprets the category of representations of the Langlands dual
group as Whittaker D-modules (equivalently, f-adic sheaves) on (Bun%/ )oo.z;, where the algebraic

stack (Bun% )oo.z denotes the Drinfeld compactification of Buny with a possible pole at a fixed
point x (see § 7.1 for definition).

By a local-global comparison, [FGV01] actually proves that (1.3.5) is an equivalence when
q=1.

The geometric Casselman—Shalika formula gives us a hint of how to construct a functor to
relate the category of Whittaker sheaves to the category of representations. Namely, the ‘inte-
gration’ of a Whittaker D-module along G(O)-orbits (or N~ (XK)-orbits) encodes representation-
theoretic information. The construction of the functor F“ (see § 6.4 for a definition) is inspired
by this idea and Raskin’s thesis [Ras14].

1.3.5 Small quantum groups. In [GL19], a geometric realization of the category of rep-
resentations of the small quantum groups was studied. In [GL19], it was proved that
the category of Hecke-eigensheaves of the twisted Whittaker categories on Grg, is equiv-
alent to the same category of representations of the small quantum groups. Our work
has adopted the strategy developed in [GL19]. This method originated from [Gai08,
BFS98, FGVO01], and has proven to be a powerful method in geometric representation
theory. The recent work of Braverman, Finkelberg, and Travkin on the Gaiotto conjec-
ture for GL(N —1|N) (see [BFT21]), the work of Travkin and the present author on
the Gaiotto conjecture for GL(M |N), and the Iwahori Gaiotto conjecture also use this
strategy.

The small quantum group is very similar to the mixed quantum group: both of the categories

of their representations Repflmau(G) and Rep{lnXd(G) can be realized as categories of factoriza-
tion modules. In particular, the method used in [GL19] indicates to us a strategy to prove
Theorem 3.3.2 and offers us models for the constructions of the functors and stacks used in our
paper. For example, the key step of the proof of our main theorem is to use the local-global
equivalence of Whittaker categories and then prove the theorem in the global case. This idea
comes from [GL19].

In our case, there are some technical difficulties caused by the additional Iwahori structure.
For example, in [GL19], standard objects of Whitq(Grg) are defined as !-pushforward of the
unique irreducible twisted Whittaker sheaf supported on a single relevant N(X)-orbit and
costandard objects are x-pushforward of that irreducible Whittaker sheaf. In our case, since
co-Verma modules of Repg“‘d(é) are not compact, it is impossible to define standard objects
and costandard objects similar to [GL19] such that they match Verma modules and co-Verma

modules in Repg“‘d(G). Instead, we define standard objects by -Whittaker averaging of ‘Waki-
moto sheaves’ which are twisted and Iwahori equivariant against a character. However, this
definition does not make sense because (classical) Wakimoto sheaves are Iwahori-equivariant
and only defined in the non-twisted case. We need to extend the definition of Wakimoto
sheaves to the twisted and (I,by)-equivariant case. Here by is a character of the Iwahori

subgroup.

1.4 Strategy of the proof
The idea of proving Theorem 3.3.2 is to compare both sides with a factorization category.

In [Gai20], the author proved that Repgmd(G) can be realized as the category of factorization
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modules on the configuration space over a factorization algebra QICI (see Definition 4.2.2) in the
D-module setting. Therefore, we need to construct an equivalence between Whit(D-mod (Flg))
and QI(;—FactMod.

A naive attempt is to use the pullback—pushforward functor namely, we !-pullback
Whittaker D-modules on Flg to an Iwahori version Zastava space and then take x-pushforward
to the configuration space. However, the image of FP¥ does not have a Ql;—factorization module
structure (except when r is generic). For a coweight A, the A-component of this functor is
given by

DK 3
F=,

!
H(Flg, ¥ ® j*(wsgl,)\)).

Here j.(wg-) denotes the #-extension of the dualizing D-module on the N7~ (X)-orbit of
Fl,x
th € Flg.
The functor F¥ used in this paper is a modification of FPK. The A-component of F¥ is
given by
!
H(Flg, F @ ji(wg-x)).

Fl,x
Here ji(wy-.») denotes the !-extension of the dualizing D-module on the N~ (X)-orbit of t € Flg.
Fl,z

We show that F“ factors through Q&"—Factl\/[od (Proposition 6.4.7), and there is QI(;" ~ QI&
if ¢ avoids small torsion. Theorem 6.4.8 claims that F“ induces an equivalence between the
Whittaker category on Flg and the category of factorization modules over Q{{’/.

To prove that F'“ is an equivalence, we use some tautological arguments about highest weight
categories. That is to say, we construct standards and costandards of both sides, prove that F
preserves them and induces an isomorphism of Hom spaces.

The compatibility of costandards is more or less trivial. It follows by a direct calculation
of l-stalks of F (Corollary 6.5.5). The claim of fully faithfulness of F* follows from a cal-
culation of Hom spaces, and the latter reduces to the problem of compatibility of standards
(Proposition 6.6.2). However, since the calculation of *-stalks is difficult (seems impossible), the
proof of the compatibility of standards is not tautological at all. It is the main difficulty of the
proof.

The method to overcome this difficulty is to define a duality functor to transfer the calculation
of x-stalks to a calculation of !-stalks. This duality functor is not tautological. Since the Whittaker
category used in this paper is defined as a category of invariants, its dual category is a category of
coinvariants in nature. By a theorem of Raskin (see [Ras21, Theorem 2.1.1]), we can identify the
invariant-Whittaker category as the coinvariant-Whittaker category. Hence, this duality functor
can be defined.

We need to prove that this duality functor intertwines F* and FPX. Following [Gai20], we
can identify the (local) Whittaker category with the global Whittaker category. By translat-
ing the problem into the global Whittaker category defined on a Drinfeld compactification, we
need to prove that the Verdier duality functor intertwines the global functors corresponding to
F' and FPX (Theorem 8.2.2). According to the constructions, we need to compare a !-tensor
product and a *-tensor product. We solve this problem by using a universally locally acyclic

property.

3 The superscript DK means De Concini-Kac, the reason is that this functor induces a functor to the category of
representations of a group whose positive part is the De Concini-Kac quantum group.
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1.5 Organization of the paper

(1) In §2, we introduce some prestacks and gerbes used in this paper.

(2) In §3, we explain the definitions of the Whittaker category on Flg and Repgmd(é). Then
we state Theorem 3.3.2.

(3) In §4, we review factorization algebras and factorization modules. We replace Theorem 3.3.2
by an equivalent statement: Theorem 4.3.1.

(4) In §5, we study standards and duality functor of the Whittaker category, and show that
standards compactly generate the Whittaker category.

(5) In §6, we construct a functor F which goes from the Whittaker side to the factorization
side. We show that F' is an equivalence functor modulo Proposition 6.6.2 which is about
the comparison of standards.

(6) In §7, the global Whittaker category is defined. By using the global Whittaker category, we
reduce Proposition 6.6.2 to 7.6.6 where we can use a universally locally acyclic property.

(7) In §8, we prove Proposition 7.6.6.

1.6 Generality of our results

1.6.1 Sheaf theories. Let k, e be algebraically closed fields, and char(e) = 0. The strong
version of our main result (Theorem 6.4.8) is true for any of the sheaf theories listed in [GL19,
§0.8.8].

(1) (de Rham) Schemes are defined over k (assume char(k) = 0 here) and the sheaf category is
the category of D-modules, or the ind-completion of the category of holonomic D-modules,
or the ind-completion of the category of regular holonomic D-modules.

(2) (Betti) Schemes are defined over C and the sheaf category is the ind-completion of the
category of constructible sheaves with respect to the classical topology with coefficients e.

(3) (f-adic) Schemes are defined over k and the sheaf category is the ind-completion of the
category of constructible Qg-adic sheaves. Here e = Q.

We denote by Shv any sheaf theory listed above.

Note that the Whittaker category is not always well-defined for the sheaf theories above, such
as the Betti setting and the f-adic setting on schemes defined over a field k of characteristic 0. In
these cases, neither the exponential D-module nor the Artin—Schreier sheaf makes sense, so we
are not allowed to talk about (N (X), x)-equivariant sheaves. We need to replace the Whittaker
category by the Kirillov model [Gai2la, Appendix A] in Theorem 6.4.8. However, applying the
Lefschetz principle and Riemann—Hilbert correspondence, the proof for these cases can be easily
reduced to the setting of regular holonomic D-modules. In order to simplify the notation and
not get distracted, we only focus on the sheaf theories such that the Whittaker category makes
sense.

1.6.2 Deformation parameters. In the general case, we need to use gerbes to twist a sheaf
category. Given a gerbe G with respect to the multiplicative group e*, one can twist a sheaf
category with coefficients in e. We refer the reader to [GL18, §1.7] for the definition of the
category of G-twisted sheaves.

Let us be more precise about which kind of gerbes are used in different sheaf theories. In
the Betti setting and ¢-adic setting, we use the gerbes with respect to the torsion multiplicative
group etorson X (see [GL18, §1.3]). In the D-module setting, we use the tame gerbes [Zha20, § 3.3].

If readers are not familiar with how to twist a sheaf category with a gerbe, we advise to
think about the case of D-modules, and G is a simple and simply connected group over C.

1356

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007139

TWISTED WHITTAKER SHEAVES ON AFFINE FLAGS

In this case, the twisting parameter ¢ is just a non-zero complex number. Twisted D-modules on
Flg are those D-modules on the canonical line bundle of Flg which are G,,-monodromic along
the fiber with the monodromy ¢2. This restriction of generality does not mean we lose the main
interest of this paper.

1.7 Conventions and notation

In the main body of the paper, to simplify, we assume that G is a reductive group defined
over any algebraically closed field k, and the derived subgroup [G,G] is simply connected. Let
T := B~ N B be the Cartan subgroup of G.

We denote by A the coweight lattice of G and by A the weight lattice. Let A" be the semi-
group spanned by negative simple coroots. Its inverse is denoted by AP°. Set AT (respectively,
AT) the semi-group of dominant coweights (respectively, dominant weights), A the root system
of G, and a1, ag, . . ., a, the simple coroots. Let W denote the finite Weyl group and W denote
the extended affine Weyl group.

The theory of sheaves ‘Shv’ on infinite-dimensional schemes (also prestacks) used in this
paper is developed in [Berl7], [GR17a], [GR17b], [Ras], etc. When we talk about the Whittaker
category, we assume that we are in the D-module setting or the ¢-adic setting.

In this paper, the categories considered are cocomplete e-linear DG-categories (see [GR17a,
Chapter 1, §10]). We need the theory of higher categories developed in [Lurl7] and [Lur09] in
this paper.

Let Vect be the (00, 1)-category of complexes of vector spaces over e. Given a category C
and c1,co € C, we denote by Home(cy,ca) € Vect the Hom space of ¢; and ¢z, and denote by
Home(c1, c2) := H°(Home(c1, c2)).

2. Geometric preparation

In this section, we define some basic geometric objects used in this paper. First of all, we recall the
definitions of Ran space and Configuration space (§§2.1 and 2.2), and then review the definitions
of Ran-ified (or Beilinson-Drinfeld) affine flags and affine Grassmannian in §2.3. In §2.4, we
explain the gerbes used in this paper.

2.1 Ran space
The Ran space is important for us, since it is naturally factorizable. We need factorization
prestacks over Ran to perform our construction of the equivalence in Theorem 3.3.2.

Let X be a smooth connected projective curve defined over k.

DEFINITION 2.1.1. The Ran space Ran := Rany is defined as the prestack whose S-points
classify non-empty finite sets J of Maps(S, X) for any affine scheme S over k.

We denote by (Ran x Ran)qgisj the open sub-prestack of Ran x Ran with disjoint support
condition.

The Ran space admits a (non-unital) semi-group structure by taking union

U : Ran x Ran — Ran

J1,J9 — J1 U Do, (2.1.1)

Let Dg be the formal completion of S x X along the graph of J, and denote by D5 the open
subscheme of Dg obtained by removing the graph of J.
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DEFINITION 2.1.2. For any affine scheme S, the S-points of Grp ran classify the triples (J, Pr, o),
where J € Ran(S), Pr is a T-bundle on Dy, « is an isomorphism of P with the trivial T-bundle

iP(j]w on Dj.

The prestack GrrRran is called the Beilinson—Drinfeld (i.e. Ran-ified) affine Grassmannian
[BD96, §5.3.11].

Remark 2.1.3. By the Beauville-Laszlo theorem [BL95], we can require that Pr is a T-bundle
on S x X, and « is an isomorphism of P with iP% on the complement of the graph of J. The
resulting prestack is the same.

The important note here is that Gryran is factorizable over Ran. Namely, we have an
isomorphism

GrT,Ran X (Ran X Ran)disj ~ GrT,Ran X GrTRan X (Ran X Ran)disj, (2.1.2)

Ran RanxRan

with higher homotopy coherence (see [GL19, §5.1.2]).
Inside Gr7 Ran, there is a closed factorization sub-prestack denoted by Gr;efg{an (see [GL19,
4.6.2]).

DEFINITION 2.1.4. If G is semi-simple and simply connected, then a S-point (J, Pr, a) of Grr ran
is in Gry g, if
— for any dominant weight A € A*, the meromorphic map of the line bundles on S x X
MNPr) — AMPY) (2.1.3)
induced by «, is regular;
— for any point s € S and any element i € J, there exists at least one A € AT, such that (2.1.3)

has a zero at the point s — S — X.

For general reductive group G, we define Gy, —as Gry. where T%¢ is the Cartan

subgroup of the simply connected cover of |G, G].

,Ran’

2.1.5 We also need the Ran space with a marked point.

DEFINITION 2.1.6. Fix z € X. We denote by Ran, := Ranx ; the prestack whose S-points clas-
sify non-empty sets J of Maps(S, X) with a distinguished element Z, where = denotes the constant
mapz:S -z — X.

Taking union defines a map
U, : Ran x Ran, — Ran,. (2.1.4)
It equips Ran, with a structure of module space over Ran.
neg

Let GrrRran, be Ran; x GrrRran. It has a closed sub-prestack (Gry 3., oo
Ran ’ ®

DEFINITION 2.1.7. For any affine scheme S, a S-point (J,Pr, ) of Grrpran, belongs to the

sub-prestack (Gr;eﬁanx)oo.m, if there exists a T-bundle Pr; on S x X and an isomorphism

o Prilsxx\a) = Prlsx(x\a)s

such that the resulting point (J, P11, a0 a’) of Gryran, belongs to Rang, Xgran Gr;i%an.
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2.2 Configuration spaces
DEFINITION 2.2.1. The configuration space Conf := Conf(X,A"*) is defined as the scheme
classifying colored divisors of X with coefficients in A€\ {0}, i.e. it classifies

D=> Ne-mp, M € A5\ {0}. (2.2.1)
k

2.2.2 Connected components. Connected components of Conf are indexed by A"\ {0},

Conf = |_| Conf?.
Areg\{0}
Here Conf? denotes the subscheme of Conf where we require the total degree of D in (2.2.1) (i.e.
S M) to be A If A = — 37, n; - a;, then Conf? is isomorphic to []; X ™), where X (™) classifies
unordered n; points in X.
Similar to the Ran space, Conf is equipped with a structure of non-unital commutative
semi-group. There is a map

addcens : Conf x Conf — Conf
D1,Dy — Dy + Ds. (222)

If we restrict this map to the open subscheme (Conf x Conf)qis; with disjoint support condition,
then it is étale.
Configuration space is essentially the same as Gr;(f%{an. The following lemma is from [GL19,

Lemma 4.6.4].
LEMMA 2.2.3. Evaluation on fundamental weights gives rise to a morphism

G fay — Conf. (2.2.3)
It induces an isomorphism of the sheafifications in the topology generated by finite surjective

maps.

In particular, (2.2.3) induces an equivalence between categories of gerbes on Gr;eﬁan and

Conf. Furthermore, it induces an equivalence of corresponding categories of twisted sheaves.

2.2.4 Similarly, we define the configuration space with a marked point.

DEFINITION 2.2.5. Fix x € X. We denote by Conf..., the ind-scheme classifying the colored
divisors on X with A-coefficient

D:)\x’$+z)\kz'ﬂfka (2.2.4)
k
such that \p € A™& X\, € A and x; # x.
Regard Conf as a (non-unital) algebra in the category of prestacks, the addition map

addconf, @ Conf x Confs.; — Confeg. (2.2.5)

gives Confs,., a module structure over Conf.

If we restrict addcont, to (Conf x Conf.;)disj, the open ind-scheme with disjoint support
condition, then it is étale. In particular, add!confx ~ add(,,e, on (Conf x Confue.z)aqisj-

Similar to (2.2.3), there is a map of prestacks

(Gr'rll—‘cilg{an)oo‘l' - ConfOOﬂ;‘ (226)
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LEMMA 2.2.6 [GL19, 4.6.7]. The morphism (2.2.6) induces an isomorphism of the sheafifica-
tions in the topology generated by finite surjective maps.

2.3 Ran-ified Fl and Gr

The Beilinson-Drinfeld affine Grassmannian Grg ran is similarly defined as Gry ran (only replace
T-bundles by G-bundles in the definition). By adding an Iwahori structure at z, we arrive the
definition of the Beilinson—Drinfeld affine flags.

DEFINITION 2.3.1. We define Flg Rran, as the prestack whose S-points classify the quadruples
(3,Pq, o, ¢€), where (J,Pq, o) € Grg Rran(S), and € is a B-reduction of Pg over S x .

An important feature of Grg ran is that it is factorizable over Ran. That is to say, we have
an isomorphism
GrgRran X (Ran x Ran)gisj ~ GrgRan ¥ GrgRan X (Ran x Ran)gis;, (2.3.1)
Ran RanxRan
with higher homotopy coherence.
Here Flg Ran, is a factorization module space over Grg Ran, i-e. for any non-empty set with
a distinguished point (x € J), there is an isomorphism
FlG’,RanI X (Ran X Ranx)disj ~ GrG,Ran X FlG,Ranz X (Ran X Ranw)disj, (232)

ang RanxRan,

with higher homotopy coherence.

2.4 Gerbes used in this paper

In the Betti setting and the (-adic setting, we let & be a factorization e -gerbe on Grg Ran,
which is compatible with the factorization structure on Grgran (see (2.3.1)). It is defined in
[GL18, §2.4], and is called metaplectic parameter. In the D-module setting, we should require
G% to be a tame factorization gerbe on Grg Ran defined in [Zha20, §3.3]. In this section, we
explain how to get gerbes on some prestacks from ¢ on Grg Ran-

torsion, X

2.4.1 Gerbe on the Hecke prestack. We denote by Heckeq the Hecke prestack which classifies
the data: (Pg1,Pag2, @), where Pg 1 and Pg o are G-bundles on X and « is an isomorphism of
Pea and Pgo over X \ z, a: Pgilx\» =~ Pe2lx\»- Then by the G(0)-equivariance of G4 (see
[GL18, §7.3]), G“ gives rise to a gerbe on the Hecke prestack. We denote the descent gerbe on
Heckeg by Sg@cke.

2.4.21wp -twisted prestacks. Fix a square root of the can?nical line bundle w on X and denote
it by w®2. We define w” as the T-bundle induced from w®2 by the morphism of group schemes

20: Gy, — T. (2.4.1)

Here p is the sum of all fundamental coweights.

T
If we replace the trivial G-bundle fPOG by the G-bundle P¥ := w” x GG in the definition of
Grg Ran, We will obtain the w’-twisted Beilinson-Drinfeld affine Grassmannian. Let us denote it
by Gr“G’TRan. It is still a factorization prestack over Ran. Similarly, we can also define Fl“(’;Ranw,

Gy, F1¥', G(K)“", N(K)~", Gr‘rffRan, (Gr‘f?Ran)neg, (Gr%ﬁRanx)gg%, etc. Similar to the classical
affine flags and affine Grassmannian, we have

F1¥ ~ G(K)~" /1+",

1360

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007139

TWISTED WHITTAKER SHEAVES ON AFFINE FLAGS

and
Cre ~ G(K)" /G(O)~".

Here I*” and G(0)*” are wP-twisted version of I and G(0), respectively.

2.4.3 Gerbes on F1Z and Gr’. By definition, taking Pg 2 to be P, defines a map Gr‘ijan —
Heckeg. The pullback of G5, along this map is a factorization gerbe on Gr“é‘:Ran. With some
abuse of notation, we denote it by G¢. Its pullback to Fl‘é’:Ranz (respectively, F1¢/, Gre’, G(K)~",
etc.) is also denoted by G°.

By [GL18, Proposition 7.2.5], the pullback of §¢ along G(X)~* — Fl‘é’?Ranz is a multiplicative
gerbe, i.e.

m!(gG) ~ 9G X 9G.
Here m denotes the multiplication map
G(K)*" x G(K)" — G(K)*".
In particular, the gerbes G on Fl‘ép and Gr“ép are equivariant with respect to the action of

G(K)“" against the gerbe G¢.

2.4.4 Gerbe on Conf. Replace G by B in the definition of Gr‘é’jRan, one can define a
factorization prestack Gr“éijan. Consider the following diagram of prestacks.

wP
GrB,Ran

AN

wP wP
GrG7Ran GrT,Ran

The pullback of G¢ on Gr“é’jRan along the left morphism gives a factorization gerbe on Gr“é’jRan.
By [GL18, § 5.1], this factorization gerbe descends to a factorization gerbe on Gr“T’f)Ran. We denote

the resulting gerbe by G7.
By constructions similar to (2.2.3) and (2.2.6), we have maps

(Gr%,pRan)neg - Conf, (243)
and
(Gru'lj{)Rangc)gg-gm - Confoo-x- (244)

By (a tiny modification of) Lemmas 2.2.3 and 2.2.6, (2.4.3) and (2.4.4) induce equivalences of
gerbes on the Beilinson—Drinfeld affine Grassmannians and Configuration spaces. Hence, we can
descend the factorization gerbe G7 on (Gr%fRan)neg (respectively, (Gr%fRanz)ggi) to a gerbe G4
on Conf (respectively, Conf.,). Note that the above maps are compatible with the factorization
structures, the gerbes on Conf and Conf.., are factorizable.

Following [GL18, §4.2], we can get a quadratic form

q:\A—k/Z (2.4.5)

from a factorization gerbe G* on Conf in the D-module setting. In the Betti setting and the
¢-adic setting, q takes value in e'"™'°™*(—1) := colim,Hom(j,, e""°">).

1361

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007139

R. YANG

2.4.5 Gerbe on Bung. Let Bung denote the algebraic stack classifying principal G-bundles
on X. It is shown in [GL18] that any factorization gerbe on Grg ran descends to a gerbe on
Bung. We also denote the resulting gerbe on Bung by G¢.

Remark 2.4.6. The pullback of & on Bung along
Gr“c’;’jRan — Bung (2.4.6)

is the gerbe G% defined in §2.4.3 tensored with the fiber 9G|wp€BunG.

3. Statement of the main theorem
In this section, we introduce two sides of Theorem 3.3.2 explicitly:

(1) the category of Whittaker sheaves on affine flags (§3.1);
(2) the category of representations of the mixed quantum group (§3.2).

3.1 Definition of Whittaker category (through invariants)
In §2.4.2, we have already defined w”-twisted prestacks. These objects have an advantage over the
non-twisted prestacks: we can define the non-degenerate character x of N(X)“” and Whittaker
sheaves on Fl“ép canonically. In the rest of this paper, we consider the wP-twisted affine flags
Fl‘éﬂ and related geometric objects. One can show that the Whittaker category on Flg and the
corresponding category on Fl‘ép are equivalent.

Consider a non-degenerate character of N(X)“"

~

N [N, NI ] = w(®X) 29 o) "= G, (3.1.1)

wP Pprojection
T —

X : N(XK

The pullback of the exponential D-module along y is a character D-module, we denote this
character D-module by the same notation x. In the ¢-adic case, we use the Artin—Schreier sheaf
instead of the exponential D-module here.

DEFINITION 3.1.1. We define the Whittaker category on affine flags as
. wPyN wP N(fK)“’p,x _ wP wP
Here q is the quadratic form associated with G& (see (2.4.5)).
3.1.2 We note that Definition 3.1.1 involves taking invariants with respect to an ind-pro-

group scheme, we need to be more precise about this definition.
Write N(X)“” as

N&K)*" = Nk, (3.1.3)
k>0
where Ny, := Ad,—x, N(O)~".
First, by [Berl7, §4.4.3], we have
Whitq(FI1%) = Shvge (FI2' )N x ~ lim Shvge (FIZ)M X, (3.1.4)

Fix a natural number k > 0. By (3.1.4), we only need to define Shvga (F1g ) Vex.
Since F1¢ is an ind-scheme, we can write F1& as a colimit of finite-dimensional schemes Y;.
Furthermore, we can assume that each Y; is Ng-invariants. Then by

SthG (F]Uép) ~ . !_Il)iuIlIllback SthG (Yl),
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we have

Shvge (FIg )M~ | lim - Shyge(¥;) Ve, (3.1.5)

We note that N is a pro-scheme of finite type, we can write it as
Ny, = lim N,

such that each N,lg is a finite-dimensional unipotent group scheme and the action of N; on Y;
factors through N, ,i Finally, we define

Shvge (Y;)NX := Shvge (¥i) Vi, (3.1.6)

Since for any I” > [, the kernel of N, ,lcl — N ,lg is unipotent, the above definition is independent of
the choice of N, ,lc

3.1.3 Aweraging functors. Denote by
ObIV y gy : Whity(FIZ") — Shvge (FIZ) (3.1.7)

the fully faithful forgetful functor.
P

LAJp w
It admits a (partially defined) left adjoint functor AV!N(K) X, Since AV!N(:K) X is a (partially
defined) left adjoint functor, it commutes with filtered colimits. In contrast, the right adjoint

N(I)** x . .
functor Av, of oblv N(F)=P 18 discontinuous.

wP
With the ind-pro-group scheme presentation (3.1.3) of N(X)“”, we may write AVIN(K) X

more precisely,

wP
AVVTOTX = colim - AvVRX (3.1.8)
: k,!—averaging ’
wP
If AV!N’c X(F) can be defined for any k, then AV!N(K) X(F) can be defined by taking colimit. In
(30" x

particular, AV!N
the D-module setting.

can be defined in the f-adic setting and for ind-holonomic D-modules in

3.2 Mixed quantum groups

The quantum group used in this paper is not the classical quantum group. It is neither the
Lusztig quantum group nor its graded dual. It is a combination of these two quantum groups:
the positive part is the Lusztig quantum group Ugf (n) and the negative part is the graded dual
of it (i.e. the De Concini-Kac quantum group U(?K(ﬁ_)).

3.2.1 Mized representation category. Let Vectél\ denote Repq(T), the braided monoidal
category of e-representations of the quantum torus 7. We denote by U(If(ﬁ)—mod'“'”“ the
ind-completion of the derived category of finite-dimensional U;(ﬁ)—modules in Vectg.

DEFINITION 3.2.2. The category Repg”‘d(G) is defined as ZDr’VeCtg(U(I;(ﬁ)—mod'“'””), which is

the relative Drinfeld center of Ug;(ﬁ)—mod"’c'"iI with respect to Vectél\ (see [GL19, 27.2]).

mxd [ A~

Remark 3.2.3. At abelian category level, an object in Repy (GQ) is a A-graded vector space with
actions of Uy (i) (with the locally nilpotent condition) and UP¥ (a™).
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3.2.4 Verma modules. We denpte by ind;_ p, the left adjoint functor of the forgetful functor
from Remed(G) to U(I;(ﬁ)—modloc‘”", and by coindpk_.p, the right adjoint functor of the forgetful

q ~
functor from Repg’Xd(G) to UPK(37)-mod. For A € A, we define Verma modules and co-Verma
modules in Repg"‘d(@) as
vid .— indy L p,(et), (3.2.1)
V/\de’v = coindDKHDr(eA). (3.2.2)

Here e* denotes the one-dimensional representation of Uk(s) (or UPX(77)) in Vectél\7 where the
action of the torus corresponds to A and the action of the unipotent group is trivial.
Following [Gai2la, 5.3.2], we have

e, ifA=upu,
Hompgpmxa g (VA VixdY) =
Reppet(6) (VA5 V™) 0, if A%
Furthermore, by construction, the objects VAHle are compact and compactly generate Repgmd(é).

Thus, there is a highest weight structure of Rep™¢(G) with standard objects V)fm‘d and

q
costandard objects V," xdV

3.3 Statement of Theorem 3.3.2
3.3.1 Awoid small torsion. A quadratic form ¢ avoids small torsion ([Gai2lb, 1.1.5], [Lusl0,
35.1.2 (a)]) if for any long coroot a; of a simple factor of G, there is

ord(q(ay)) > dg +1,

where dg =1,2,3 is the lacing number (i.e. the maximal number of edges in the Dynkin
diagram).

THEOREM 3.3.2. In the setting of D-modules, when q avoids small torsion, there exists a t-exact
equivalence of highest weight categories

Whity(F1§) ~ Reps™4(G). (3.3.1)

3.3.3 Highest weight category structure. In § 5.5, we define a collection of standard objects Ay

in Whit(F1£") indexed by A. They are given by l-averaging the Wakimoto sheaves. In addition,

we define a collection of costandard objects V) € Whitq(Flg). We show that Verma modules
V)\de and Ay match under the equivalence (3.3.1) and similarly for costandards.

3.3.4 t-structure. The equivalence (3.3.1) is an equivalence at the derived level. We define
a t-structure on Whitq(F1%') in §5.6 (see Definition 5.6.2) using Ay, and we show that it is

compatible with the tautological t-structure on Repan"d(@) under the equivalence.

4. Factorization algebra and factorization module

Since [BFS98], it is known that the category of modules over a Hopf algebra can be realized as the
category of factorization modules over a factorization algebra. In this section, we review factor-
ization modules and factorization algebras, and give an equivalent expression of Theorem 3.3.2
with factorization modules.
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4.1 Factorization algebras and factorization modules
DEFINITION 4.1.1. We call a twisted sheaf € € Shvga(Conf) factorization algebra on Conf if it
is compatible with the factorization property of Conf, i.e. there is an isomorphism
!
add.Conf(Q)|(Conf>< Conf)gjs; ~ QKX Q|(Conf>< Conf)gjs; (411)

with higher homotopy coherence.
The above definition makes sense in the G -twisted case because

add!conf(gA)’(CoanConf)disj ~ A 9A|(Conf>< Conf)gis; *

It is easy to see that the Verdier dual of a factorization algebra is also a factorization algebra.

4.1.2 Given a factorization algebra €2 on Conf, we can consider its module category on
Conf 5.

DEFINITION 4.1.3. We call a twisted sheaf M € Shvga (Confy,.;) factorization module over € if
it is compatible with the factorization structure of €2, i.e. there is an isomorphism
|
addCOHfI (M)|(C0anConfoo.,c)disj ~ QK M’(ConfxConfoc.x)disja (412)

with higher homotopy coherence.

We denote by 2-FactMod the category of factorization modules over 2.

4.1.4 Structure of Q-FactMod. Given A € A, let Conf_»., be the locally closed subscheme of
Conf ., consisting of the points D = A -z + > \; - x; such that \; € A" and z; # z Vi.
The restriction of (2.2.5) to Conf x Conf_)., induces a map

addconf, : (Conf x Conf_y.;)disi — Conf_.,.

We call M € Shvga (Conf_) ;) a factorization module over €2, if there is

! ~
a‘ddCoanm (M)‘(CoanConf:A.z)disj ~ QK M|(Conf><Conf:>\m)disj .

We denote by Q2-FactMod_) the category of factorization modules on Conf_j., over (.
Let G|y, be the fiber of GA at A - z. The following lemma is from [GL19, Lemma 5.3.5].

LEMMA 4.1.5. Taking !-stalks at A - x defines a t-exact equivalence

iy : Q-FactMod_) ~ Vectga (4.1.3)

|)\»z'

Here Vectga, =~ denotes the category of G| x..-twisted vector spaces.

DEFINITION 4.1.6. Assume that €2 is in the heart of Shvga (Conf). Consider the perverse® gener-
ator of Q-FactMod_,, and we denote its * (respectively, !)-pushforward along the locally closed
embedding

Conf_)., — Confs.,
by Vi (respectively, Ay q).

Here V) o is called the costandard object of (-FactMod and Aj o is called the standard
object.

By definition, standard objects Ay o are compact and generate (-FactMod. Standard objects
Ay o and costandard objects V) o are perverse.

4 Here ‘perverse’ means this object is concentrated in degree 0.
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4.1.7 The Verdier duality functor is well-defined for both Ay o and V) o. Furthermore, we
have

DYUT (A, o) 2 V) prerdier(q) VA € A. (4.1.4)

Here A) o € Shvga(Confeo.;) and V pverdier() € Shv(gay-1(Confoc.z).
By definition, Ay o and V, o satisfy the following orthogonality property.

LEmMA 4.1.8. For A\, u € A, we have

e, if A=p,

Homq FactMod (Ax,0, Vy0) = 0. iAAp
Proof. It follows from the adjointness of !-pushforward and !-pullback along the locally closed
embedding Conf_)., — Confs,.,, and Lemma 4.1.5. O

4.1.9 The tautological t-structure on Shvga (Confe.;) gives a t-structure on 2-FactMod. In
fact, by [GL19, Proposition 5.4.2], we can describe this t-structure on Q2-FactMod by Ay o. To
be more precise, an {)-factorization module M is coconnective as a twisted sheaf if and only if
for any A € A,

HOH]Q_FaCtMOd(A)\,Q[k], M) = 0, if k> 0. (4.1.5)

4.2 An explicit description of QI(;

In this section, we recall the factorization algebra QI& given in [Gai2lb, §2.3]. It is the category
of modules over this factorization algebra that is expected to be equivalent to the Whittaker
category on affine flags.

Here Conf has an open subscheme Conf removing all diagonals. A point D =", Ay - xp,

o
belongs to Conf if and only if the coefficient of any point zj, is a negative coroot. If A = — 3" . n; -
o [¢] (o]

@, then the \ connected component Conf? is isomorphic to ILX (ni)  Here X (") classifies
unordered n; different points in X.

Following [GL19, §17.1.2], 9A|Co . is canonically trivialized. In particular,
on

Shvga (Conf) =~ Shv(Conf). (4.2.1)

The product of sign local systems on each X (™) gives rise to a factorization algebra on Conf.
o
Under the equivalence (4.2.1), it can be regarded as a twisted factorization algebra on Conf. We
[¢]

denote it by €, where ¢ is the quadratic form in (2.4.5).

4.2.1 By factorization (i.e. (4.1.1)), we only need to indicate how to extend Qg from its
restriction on Conf* \ X to Conf?, for any A\ € A"\ {0}. Here X embeds into Conf* by assigning
xto Az

We denote by 7) the open embedding from Conf* \ X to Conf* and by [ the length function
of the Weyl group.

DEFINITION 4.2.2. The factorization algebra Q& is defined inductively as follows.
(1) If A =w(p) — p and [(w) = 2, then

| ~
]}\7! O‘]/\(Q(Il‘) — Qé‘
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(2) IfX=w(p) —pand I(w) <3,

H (jx10 5(2)) ~ Q4.

(3) If X is not of the form w(p) — p, then
QI(; SN R o]!)\(Qg).

The following lemma is indicated in [GL19, §29], see [CF21, Theorem 1.2.1] for a precise
statement and proof.

LEMMA 4.2.3. In the D-module setting and the Betti setting, there is

Repy™(G) := Zp, yeeys (Ug (7)-mod' ™) = Qg-FactMod. (4.2.2)

Furthermore, under the above equivalence, V)\de (respectively, V)fn Xd’v) corresponds to A;\ﬂg
(respectively, V)\7Q16).

Proof. By Lefschetz principle and Riemann—Hilbert correspondence, we only need to prove the
claim in the setting of constructible sheaves with coefficients in C in classical topology.

Following [GL19, §29.5.1], one can associate a factorization algebra with a Hopf algebra A.
Furthermore, the relative Drinfeld center of A-mod is equivalent to the category of factoriza-
tion modules over the corresponding factorization algebra. Applying it to our case, there is an
equivalence of categories

Rep™ (@) ~ QL

q q,quant

-FactMod. (4.2.3)

Here Qaquant denotes the G -twisted factorization algebra associated with Ugf (n) for a certain
factorization algebra.

However, by the Verdier dual of [Gai2lb, §2.3.8, Theorem 3.6.2], there is Q;quam o~ Q{;. O

4.3 Restatement of Theorem 3.3.2
The following theorem is equivalent to Theorem 3.3.2.

THEOREM 4.3.1. In the setting of D-modules, when q avoids small torsion, there is a functor F"
which establishes a t-exact® equivalence

FU: Whitq(F1¢") — QF-FactMod,
and preserves standard objects and costandard objects.

Remark 4.3.2. The above theorem holds in the Betti setting if we replace the Whittaker category
by the Kirillov model.

5. Standard object and duality of Whittaker category

The principal goal of this section is to construct standard objects of Whitq(Fl‘ép) (§5.5) and
define the duality functor of Whity(F1%’) using a lemma from [Ras21] (§5.7). They play an
important role in the proof of our main theorem.

5.1 Relevant orbits
To study Whity(F1¥), we should first study when a N(X)“-orbit admits non-zero Whittaker
sheaves support on it.

5 The t-structure on Whitq(F1£") is given in §5.6.
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It is known that the N(X)“"-orbits in Fl“ép are indexed by the extended affine Weyl group
Wet .= W x A. For any w € W, we denote by SFGI the N(X)“’-orbit in F1¥ of @ - 1" /1",
Let Sp denote the closure of Sle in F1&.

The orbits which admit non-zero G¢-twisted Whittaker sheaves are called relevant orbits.
Since N(X)*” is ind-pro-unipotent and §& on F1% is §%-equivariant with respect to the action
of G(K)“", the gerbe G& on any single N(X)“’-orbit admits a N (X)“"-equivariant trivialization.
As a result, the necessary and sufficient condition for a N (K)“"-orbit Sg’l to be relevant is that
it is relevant in the non-twisted case. Namely,

Stab y(gc)wr (wI*" /1*) C Ker(x). (5.1.1)

DEFINITION 5.1.1. Given an element w € W' we denote by [(w) the dimension of its Iwahori
orbit in the affine flags (or the length of @w). To be more precise, if @ = t*w, then

@) = > (e, A)| + > (e, A) + 1]. (5.1.2)
AEAT w=1(a)>0 GEAT w=1(a)<0
PROPOSITION 5.1.2. A N(X)“"-orbit S C F1& is relevant if and only if t°w is the maximal

length element in the left coset WtPw C WL,
In particular, for any dominant coweight A € AT, t} € W is relevant.

Proof. Denote by

T+ .
A ={a+nd|aecA, n>0if &is positive, and n > 1if & is negative} U {nd|n > 0}

the set of the roots of G(X)*” corresponding to I*”. Here § is the positive imaginary root
generator. We denote by AT (respectively, f[*) the set of positive (respectively, positive simple)
roots of G.

If the N(K)“’-orbit of @ - I“"/I*" € F1¥ is relevant, we need the formula (5.1.1) to hold.
By a straightforward calculation

Stab y geyer (W - 17 /1) = wI*"w~" N N(XK)*" C Ker(x)
>+ .
s oA )YNIIH —-6) =10

o @A) NIty =0

T+ .
S tPo(A )Nt =0

. +
& —{II*} c tPw(A )
s o HP(AT) <o. (5.1.3)

According to [Kac90, Lemma 3.11 a.], it means that for any simple reflection r; of W, there is
l(w=1t=Pr;) < I(w=1t~P). We conclude that for any simple reflection r; of W, there is (r;jtPw) <
[(tPw). It means tPw is the unique maximal length element in WtPw C Wext, O

Remark 5.1.3. Relevant orbits of Flg are naturally indexed A. One can check that
¢ . WeXt N Wext

w — t Py,

(5.1.4)
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induces a bijection between A and the set {w, w is relevant}. Here w; denotes the unique maximal
length element in the left coset Ww. For example, if w = ¥, then ¢p(w) = t~Pwp; if w = t*T* and
A is dominant, then ¢(w) = t*.

PROPOSITION 5.1.4. The category of twisted Whittaker sheaves on ngl is equivalent to Vect or
0 depends on if w is relevant or not, i.e.

Vect, if w is relevant,

Whitq(Sn) ~ {0 otherwise.

Proof. There is a N(X)“’-equivariant trivialization of G% on S{, we have Whitq(S%) ~
Whit(Sg)). Since Stab e (w - I¢" /1) is a connected pro-unipotent group, Whit(S{%) is a

full subcategory of Shv"" (K)wp’X(N (X)«"). The latter category is equivalent to Vect, we only
need to show that the fully faithful embedding

Whit(SZ) — Shv™ @ x (N (%))

is actually an equivalence if w is relevant and is 0 otherwise.
If w is relevant, Stabygewr (w- 1" /1*") C Ker(x), so any Whittaker sheaf on N(X)*”

descends to a Whittaker sheaf on Sf ~ N(iK)“’p/StabN(K)wp (w - I /1*"). If w is not relevant,

we should prove that for any F € Whit( le), there is F = 0. Since the action of N(X)*” is transi-
tive, we only need to show that the stalk of Fis 0 at w - I /I*”. It follows immediately from the
fact that this fiber is equivariant with respect to Staby gewe (W - I “” /I*") against a non-trivial
character. g

DEFINITION 5.1.5. Assume that w is relevant, we define
ver N(fK)wva Py —p
A@ = AV! ((5@)[—l<w0t 'LU) + l(t ’u}o)],
and
Vi = 3E,FL* ° 51!5,F1(A1%er)7

where jg g is the locally closed embedding

Jisgr i — FIE
They are defined up to tensoring by a line, i.e. depending on the trivialization of §& at @ € Fl‘ép.

Remark 5.1.6. Here the superscript ‘ver’ means Verma. We expect, under Conjecture 2, {AY*"}
correspond to Verma modules in the category of modules over Kac-Moody Lie algebra.

The object A¥' is the !-pushforward of the generator of Whitg( gl), and V¥ is the
«-pushforward of the generator of Whity(Sy,). They have the following properties.

ProrosiTION 5.1.7. We have:

(1) {A¥r @ is relevant} (respectively, { V¥, @ is relevant}) compactly generate Whitq(F1&);
(2)

0, ifw#u,

e, ifw=uw.

FHomyyi, pier) (AT Vi) ~ {

Proof. Since jg 1, is the left adjoint functor of a continuous functor (i.e. j&) F1), it preserves com-
pactness. In particular, A¥" is compact. Note that for I € Whit,(Flg), %OmWhitq(Fl‘é’))(AV@er’ F)
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is isomorphic to the !-stalks of F at w up to a shift. Hence, if J—ComWhitq(Flgp)(A"mer, F) =0 for
any relevant w, then & = 0.

To show the claim for {VY",w is relevant}, note that the closure of any N(X)
F1¢” only contains finite many relevant orbits. Hence, any V¥ is a finite extension of objects
in {AY'[k], w is relevant, k € Z}. In particular, VY is compact. Similarly, any AY" is a finite
extension of objects in { VX" [k], w is relevant, k € Z}. Hence, the objects V" compactly generate
Whit,(F1£) as the objects A¥T do.

Claim (2) directly follows from the adjointness of !-pushforward and !-pullback, and
Proposition 5.1.4. O

p . .
“"_orbit in

As a corollary, an object F € Whitq(Fl“G’p) is compact if and only if F is supported on finitely
many Sp, and its restriction is compact in Whitq(Sg), for any w.

Remark 5.1.8. We can define a highest weight category structure on Whitq(Flép) with standards
{A¥"} and costandards {VY*'}. It is the highest weight category structure in [CDR21]. However,
it is different from that used in this paper. For generic g, we expect that they are essentially the
same (up to a convolution).

5.2 Right equivariant sheaf
Recall the main theorem of [AB09],

Whit(Flg) ~ QCoh(it/B) ~ Rep™4(G).

It is not only an equivalence of plain categories, but also compatible with highest weight category
structures on both sides. The standard objects in Rep™9(G) are Verma modules V/\de and
the standard objects in Whit(Flg) are given by the !-averaging of the BMW?S sheaves .J) (i.e.
Wakimoto sheaves). Hence, in the twisted case, we need to define the twisted BMW sheaves J)
and use them to define standard objects Ay in Whitq(Fl‘ép) by l-averaging.

5.2.1 Let I° be the unipotent radical of the w’-twisted Iwahori subgroup I*°, and let T%"
be I+’ /I°. When there is no twisting, .Jj is Iwahori-equivariant. However, there are ‘much fewer’
Iwahori-equivariant objects in the twisted case.

Indeed, since I° is pro-unipotent, there is a unique (up to a non-canonical isomorphism)
I%-equivariant trivialization of the gerbe G¢ on any Iwahori orbit

FIg =1 @ 1°" /1"
of Fl“ép. In the twisted case, the I%-equivariant trivialization of G on Flg is not necessarily
Iwahori-equivariant. Instead, it is equivariant with respect to a certain character of 7%’. For
. . . . wP . . tAw

example, when the quadratic form ¢ is generic, there is no I“" -equivariant sheaf on F1," unless
A=0. _

The solution to fix this problem is to consider I-equivariant sheaves on Fl:= G(X)~"/I°,
rather than Iwahori-equivariant sheaves on Flg.

5.2.2 The exact sequence
111" -1 —1

is split. Hence, we may consider the right action of 7% on Fl:= G(.’K)“’i/[ O In order to
define BMW sheaves in the twisted case, we need to consider sheaves on Fl which are right
T“’-equivariant against a character. This idea appears in [Bez16] and [LY20].

6 BMW denotes Bezrukavnikov—Mirkovié—Wakimoto.
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Let b(—, —) be the symmetric bilinear form associated with the quadratic form g, i.e. in the
D-module setting,

b(Al, )\2) = q()\1 + Ag) — q(>\1) — q(>\2); (5.2.1)

in the Betti setting and the f-adic setting,

b(A1, ) == q(A1 4+ A2) - q(A1) " g(he) (5.2.2)
In the D-module setting (respectively, Betti setting and ¢-adic setting), we denote by
by :=b(\, —): A — k/Z (respectively, e®rsiom* (1)), (5.2.3)

the associated character of 7%’ . With some abuse of notation, we denote by by the associated
Kummer sheaf on 7%’ Its pullback to I*” is also denoted by by.

DEFINITION 5.2.3. We define
Shvga (F)1 = Shvge (I, by\F1/T*", b,,)
as the category of left (1", by)-equivariant and right (T%”, b, )-equivariant twisted sheaves on Fl.
Similarly, we define
Shvga (F1) := Shvge (I°\F1/T*",b,,)
as the category of left I%-equivariant and right (7%, b, )-equivariant twisted sheaves on FL

When p =0, we omit p in the notation. In this case, we can realize right T*’-equivariant
objects on Fl as objects on Fl“ép.

Let F1" be the preimage of Flg in F1. We have equivalences
Shvge (F1")2 ~ Shvge (@I*”/1°) /T b,) =~ Shvga (@1 /T, b,,)
~ Shvge (WT(0)* /T(0)“",b,).

Given an identification of Shvge (wT'(0)*"/T(0)*”,b,) with Vect which preserves the cohomo-

logical degree of I-fiber, we denote by (c¢g), the twisted sheaf on F1° corresponding to e € Vect.
Different identifications will change the resulting twisted sheaf (cg), by tensoring by a line in
cohomological degree 0, so we can regard (cg), as an object defined up to tensoring by a line.

Remark 5.2.4. In the case p =0, Shvsc(l?llw)ﬁo o~ SthG(Flg)]O o~ Shv(Flg)IO, and (cg)u = ci
is just the (twisted) dualizing sheaf on F1§ with respect to the unique (up to a non-canonical

isomorphism) [ O_equivariant trivialization on Flg.

DEFINITION 5.2.5. Let (Jg,), (respectively, (Jg.).) be the ! (respectively, *)-extension of
(c@)ul—l(w)] along the locally closed embedding

FI” — FL.
5.3 Convolution product
Denote by
7GR — GK)/I° ~ F (5.3.1)
the natural projection from G(X)*’ to FL
1371

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007139

R. YANG
For a right (I“",by)-equivariant sheaf F; € Shvge (F1)» and a left (1", by)-equivariant and
right (I*”, b,)-equivariant sheaf F5 € Shvgo (Fl),If)‘. Consider the following diagram.

_

CTE G X I x Fl == G(K)* x Fl —> G(X)~" 1 Fl

JR—

Since the equivariant conditions translate to the descent condition, the external product 7 (F)) X
F on G(K)*” x Fl descends to a twisted sheaf 7 (F1)XFy on G(X)“” x! Fl, such that

(7 (F1)XF,) ~ 7(F1) K Fo.
By the multiplicative property of G, the pullback of G¢ along the multiplication map
m: G(K)¥ x G(K)* /I° — G(K)“" /1

is G¢ X GC. In particular, the pushforward of a G X G%-twisted sheaf along the multiplication
map is G@-twisted.

DEFINITION 5.3.1. Set
F1 % Fy = m. (7 (F1)¥F3)) € Shvge (Fl),,. (5.3.2)

Remark 5.3.2. Since m is (ind-)proper, it does not matter whether we consider !- or
x-pushforward of m.

We denote by @ the image of @ under the first projection Wt = A x W — A. For @ =
thw € Wt @ = )\
Remark 5.3.3. We have that (Jg7), (? ="!or *) is left (I“”, b=)-equivariant and right (%", b,,)-

equivariant.

In order to define the twisted BMW sheaf for any coweight A € A, we need the following
lemma which is an analog of [AB09, Lemma 8] and [LY20, Lemmas 3.4 and 3.5].

LEMMA 5.3.4. For w,w' € W and p € A, if [(ww') = l[(w) + I(w'), then:
(1)

(T )z * (Jar D ~ (g ) s

(S )z * Jar s )u = Jaa x)us
(2) (Jang,* Jo-1.:)u = (Jo)u = (o) g7, * (Ja—1)u-

Proof. The proof is similar to the non-twisted case. Here we sketch the proof.
For part (1), we only prove the first claim, the second one follows from the same argument.
By the Cartan decomposition of G(IK)“’p by the Iwahori subgroup I*”, the multiplication
map

G % G /10 — G /10 (5.3.3)

is an isomorphism after restricting to I*”wI*" w1 I°w' 1" /10 — I*"ww'I*" /I°. Note that the
trivializations of gerbes on both sides are compatible. Now the first assertion follows from the
fact that both (Jg )= * (Jav 1) and (Jgar ), have zero #-stalks outside I+ ww' 1" /1" C F1g' .

To prove part (2), by part (1), we can reduce the question to the case when w is a simple
reflection. In this case, [’ wI«" /I+* C F1& is isomorphic to P*.
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The support of (Jg)=—1* (Jz-1)u is contained in I“’wIv” . [«**w=1I+"/I% which is
b M b
equal to the disjoint union I*"@I*’ /1% 111" /I°. By the equivariance property of (Jm)m*
(J@-1 4)p» we should prove that the !-stalks of (Jm!)m* (Jg-1 ) is zero at w and is e at 1.
For go € G(X)“”, taking pushforward along the map G(X)*" — G(X)*" : g — gog~" induces
a functor
Lgo : Shvga (F1)IA — Shv(ge)-1ggg (F1)-x, (5.3.4)

where 95% denotes the fiber of G¢ at g9o-
Note that (Jg1)=—®" ty0((Jz-1 4 is right T“"-equivariant, so it descends to a twisted
»lwmtp g KM
sheaf on Fl‘g’;p. We denote the resulting sheaf by the same notation.

The projection of g in G(X)*"/I° is denoted by go. The preimage of gy along (5.3.3) is iden-
tified with Fl‘ép via the composition of the first projection map p; : G(K)~" 1< G(K)“" J1° —
G(K)“’ /1° and G(K)*" /1° — G(K)~" J1+".

Under this identification, the !-restriction of (wa,!)ﬁ* (Ji-1 4)p to the preimage of go is
identified with

!
(J@J)ﬁ@bgo((g]ﬂ)fl,*)u) € Sth% (Fl‘éﬂ).

By the base change theorem, the !-stalks of (Jm)m*(J@ﬂ’*)u at the point go is
isomorphic to

!
H(FIE, (Jo. Vg1, @ g0 (Ji14)0)) € Vectge .

In particular, the !-stalks of (‘]’7’7!)@*71#

H(F  (Ja)mmr; ® 1o (Jg1,)).

Under the identification I«’wI«’ /I«" ~ P!, (Jﬁv!)ﬁ@)! ti((Jz-1.4)u) is identified with the
k-extension from a G,-equivariant (with respect to certain Kummer sheaf) sheaf on G,, :=
P\ {0, 00} to Al := P!\ {00}, and then !-pushforward to PL. By Braden’s theorem (see [DG14,
Proposition 3.2.2]), its cohomology equals its x-stalks at co, which equals zero.

Over the point 1 € Fl‘ép, the !-stalks can be calculated by

* (Jz-1.4)p at w is isomorphic to

HP | (U)o © 1 (T ).

Note that the restriction of (Jm)w,l“ @' 11 ((Jg-1
"15((Jg-1.+)p) is the s-pushforward of the constant sheaf

<)) to Al is isomorphic to the constant object.

By the projection formula, (J@:!)ﬁ—lu ®’
on A!, and its cohomology is e. ([l

5.4 Twisted BMW sheaf
With the preparation given in the last several sections, finally, we can construct the BMW
sheaves in the twisted cases.

DEFINITION 5.4.1. Given A € A, such that A = A; — A2, A1, A € AT. We define the twisted BMW
sheaf (Jy), € Shvge(F1), as

(I3 )i = (Ia)=rotn * (Jrg ) (5.4.1)
Similarly, we define the dual BMW sheaf as
(J])I\)))/—L = (J)\l,*)_>\2+ﬂ * (J_)\Q’!)H' (542)
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They are well-defined up to tensoring by a line in degree 0, and according to Lemma 5.3.4,
the definitions are independent of choices of Ay, As.

Remark 5.4.2. To be more precise, they are determined by Shvge (t*T(0)~" /T(0)~",b,) ~ Vect
(equivalently, an identification Shvge (¢ T(0)“" /T(0)*”,b_x,4,) ® Shvga (t2T(0)~" /T(0)~",
b,) ~ Vect), since there is a canonical equivalence
Shvge (PN T(0)% /T(O)*",b_xy44) ® Shvge (t2T(0)*" /T(0)*",b,)
=~ Shvge (1MT(0)*” /T(0)“",b,).
The identification determines the right-hand side of (5.4.1) (respectively, (5.4.2)), and there are

canonical isomorphisms between (Jx; 1) -xy4+u * (J-x, ) (vespectively, (Jx; ) xotu* (J-xy,)p)
for different Ay, As.

When p = 0, we omit the subscript p in (J)), and (JY),.
By Lemma 5.3.4, twisted BMW sheaves admit a convolution product

Sind,b
(Jn))\_,_u *(J)\)“ >~ (J77+>‘)/'L € SthG (Fl)# >\+u+n. (543)

5.5 Standards and costandards
DEFINITION 5.5.1. Given an identification Shvga (t*T(0)“"/T(0)*") ~ Vect as before, ie. a
trivialization of G%[,xcpy, we define

wP
Ay = AVVIOTx ), (5.5.1)
and
V) = Avie® (Mﬁ?gg}vr((]m*))\_u*J,\_“,*), (5.5.2)

where Avi°" is the renormalized averaging functor

AV = co}gim AvIeX @l 1) (5.5.3)

AveX is the x-averaging functor with respect to (Ng, x) (see § 3.1.2) and [, 3 is the line of *-fiber
of the dualizing sheaf of Ny /Ny, at 1 for k' > k. Furthermore, up to a shift, (Jy«)a—p* Ja—px 18
the (N (0)+”, x)-averaging of the *-extension of the twisted dualizing sheaf on Ad, I*"t*[** /<"
with respect to the unique Ad, I O_equivariant trivialization. If we further require ps — 1 € A™,
we have Ad,,, I“"t %" /1" C Ad,,, I*"t*"]** /I*". The transition maps between (J,, +)x—p * Jr— 4
are obtained from natural maps between the dualizing sheaves.

Similar to twisted BMW sheaves, we also regard Ay and V) as objects which are well-
defined up to tensoring by a line in degree 0, i.e. depend on the choice of identifications. We call
{A), X € A} standard objects of Whit(F1£") and {V,, A € A} costandard objects.

PROPOSITION 5.5.2. The standard objects {Ax, \ € A} are a collection of compact generators
of Whit(F1£).

Proof. Taking convolution with BMW sheaf is invertible, in particular, it preserves

compactness. Since Ay ~ AV!N(K) X(Jy) =~ AV!N(:K) X((Jo)a) * Jy and AV!N(K) X((Jo)y) is
compact, the standard object Ay is compact.
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By an analysis of the support of the convolution product, one proves that supp(Ay) =

§F§p+/\). According to [Bez06, Lemma 11], we have

A ’ NAVN(K)“JP:X(J |)| ~ AVET |
Alglora) = 24 AN Tgolet ) = Sg(p+X) [ go (et
Now the proposition directly follows from the fact that rank(A;’f(’; +)\)] geern) =1 (L.
Fl

A;'“ZZ+,\) | oo+ is the generator of Whitq(Sﬁl(ﬁA)) ~ Vect). O
Fl1

The standards Ay and costandards V, satisfy the orthogonality property.

PROPOSITION 5.5.3. We have

Hom IR AP (5.5.4)
. wP 3 ~ ..
Whitq (FIg )\ 240 Vo e, ifA=p
Proof. We have
Fomypse, ez y (B Vi)

N7, ren .
= g{omWhitq(Flg’))(AV! ( ) X(J/\)a AV* a,gghg}ﬁ((‘]a,*)u—a * J,u—a,*))

- N(K)=", ren
= colim Homyy g (A, X (13), AV (Ja )y * Tyian))

. N(XK “’p, ren
~ . g(—)lﬁg}w %OmWhitq(ﬁl)#_a(AV! () X( Ty * (Ja—p)p—a) AVE ((Jas) p—as

* J,ufa,* * (Ja—u,!),ufa)

AV (g AvER((J, 5.5.5
Whitq(Fl)H—a( v (( >\+a—u,!)u—a)’ v (( a,*)u—a)) (5.5.5)

~ colim Hom
a,a—peEAT

By the following lemma (Lemma 5.5.4), the above colimit is isomorphic to

: N(K)WP,X < ren -
eotim oy ey, (A N Gramiimalls = A= .20 AV 5ol 200,
Up to tensoring by a line, we denote by (0xta—p)u—a € Shvge (1*:1)“,& (respectively, (0a)u—a €
Shvge (F1),—a) the ! (equivalently, *)-extension of the Kummer sheaf corresponding to y — a on
Fl xpy, AT (respectively, Fl xp, t) to FL

wP
Here AV!N(K) ’X(é,\i_a_u)lha[m—)\—a,2[)>] is the !-extension of the generator of
Whit, ( ;\{a*u)#ia to Fl, and Avi™(da)u—al{®,2p)] is the x-extension of the generator of
Whitg %;ro‘_“)u_a to Fl. Hence, by adjointness, we have (5.5.5) is e if A=y and is 0
otherwise. 0

LEMMA 5.5.4. For A € A", € A, we have:

(1)
AVE((00) ) (A 29)] = AV () )

2)
AV X (33,01 (0 20)] =~ AN X (3 ),)-
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Proof. For part (1), note that if A is dominant, then N(X)*"t*[*" = N (%)~ I°"t*I“". Hence,
both sheaves in (1) are *-extensions from their restrictions on S%l C FL As they are (N(X)“", x)-

equivariant, we only need to prove that their !-stalks at any lift of t* € Fl coincide. It follows
from the constructions that the !-stalks of both sides are isomorphic to e[—(\, 2p)].
The proof of the second claim is absolutely similar. O
Remark 5.5.5. In particular, if A is dominant, there is an isomorphism
ver 5-1.5)  N(%), y
Ay~ AY" =" Ay, ( )X(5)\)[—<)\, 2p)].

5.6 t-structure on Whittaker category
Recall the following lemma in [BRO7].

LEMMA 5.6.1. Let C be a compactly generated category with compact generators {c;}, then
there is a t-structure given by

€20 := {¢| Home(ci[k],¢) =0 VA € A and k > 0}.

In particular, we define a new t-structure (different from that from the tautological t-structure
on Shvge (F1&)) on Whity(F1g) by the compact generators Ay, i.e. we have the following.

DEFINITION 5.6.2. We have F € Whit,(F1£')2 if and only if
HomWhitq(Flg”)<A>\[k]v F)=0 VieAandk>0.
After we have proved our main theorem, we show that Ay and V) are in the heart of this
t-structure (see Corollary 6.6.3). Furthermore, Ay and V) are of finite length for all A € A if and

only if ¢ is generic. When ¢ is a root of unity, costandard objects and irreducible objects are not
even compact, but standard objects are still compact.

5.7 Coinvariants
By considering the coinvariant-Whittaker category, we can obtain the definition of the Verdier
duality functor for Whit,(F1£).

DEFINITION 5.7.1. We define Whit, (F1¢)eo as the quotient DG-category of Shvge (F1¢) by the
full subcategory generated by

Fib(AvYeX(F) — F) (5.7.1)
for all F € Shvge(F1Z') and k € Z.
5.7.2 The functor Avi™ (see (5.5.3)) maps all morphisms of the form (5.7.1) to

isomorphisms. In particular, it induces a functor Av'®® from Whit(FI& )., to Whity(F1£).
The following lemma is proved in [Ras21, Theorem 2.1.1].

LEMMA 5.7.3. The functor
AVI®™ : Whit, (F14) oo — Whity(F12) (5.7.2)
is an equivalence of categories.
5.7.4 For a DG-category C, we denote by CV the dual category of € if it is dualizable.
By definition, it is given by the DG-category of functors Funct(C, Vect). Since Whitq(Flgp)

is compactly generated and any compactly generated category is dualizable, Whitq(Flg) is
dualizable. By Lemma 5.7.3, Whit(F1%)., is also dualizable.
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By definition, Whitq(F1£")Y, is the full subcategory of Shvga (F1¢")V spanned by the functors
Shvge (F1g") — Vect
F — (F,F), (5.7.3)
such that for any F € Shvge (F1¢) and &,
(AvIRX(F),5%) — (F,97),
that is,
(F, AvNeX(30)) s (F, ),
In other words, we require Avex (39) ~ FY for any k. Hence, the duality functor
Shv gey-1(FIg) ~ Shvge (FI)Y, (570
Fo— (F—(F,F0)).
induces an equivalence of full subcategories
Whitq(FI1&)Y, ~ Whit,—1 (F1g’). (5.7.5)

DEFINITION 5.7.5. The Verdier duality functor for Whittaker sheaves is defined as the
composition of functors

DVerdier . Whit,, (F1<)Y (Aﬁ)v Whit, (F1£)Y, (5%5 Whit, 1 (FIZ). (5.7.6)

In particular, it defines an equivalence of subcategories generated by compact objects.
DVerdier ; (Whit, (F1g)¢)% > Whit, 1 (F1&)“. (5.7.7)
The dual of the standard object Ay can be described by the dual BMW sheaf J;]\).
PROPOSITION 5.7.6. For any A € A, Ay € Whit,(F1%), we have
DVerdier(Ay) ~ Avien(ﬂ\])). (5.7.8)
Proof. The object Ay corresponds to the functor
Whit (F1£) — Vect

(5.7.9)
F— %omWhitq(Flg))(A,\, F)
in Whit(F1£"). By definition, its image under (Av:")Y is the functor
Whit(F1%)eo — Vect
e (5.7.10)

F fHomWhitq(Fng)(AMAvien(?’)).
Using the adjointness, there is

Homypig, (erery (Ax, AVIEH(T)) = Homgy, - grory (Tn, AVIH(T)).

Note that J) goes to JY under the equivalence (Shvge(FIg))Y ~ Shv(gc)q(Fl“ép), we have
Homg, , G(Flgp)(J)\,Avffn(S"’)) ~ (AVI™N(F), Jl?}.
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Thus, by regarding Whit,(F1&)Y, as a subcategory of Shvge (F1¥)V, the image of Ay in
Shvge (F1&)Y can be realized as

Shvge (F1¢') — Vect

F s (Ao (3), D). (5.7.11)
Since there is an isomorphism
(AVER(3), IP) = (3, AV (D)),
(AVI™)V(A)) is the functor
ShVSG(Fl“ép) — Vect (5.712)
F i (F, AVER(JY)).
By the construction of (5.7.5), the image of (Avi™)Y(Ay) under (5.7.5) is Avi(J?). O

6. The functor to the category of factorization modules

In this section, we will construct the functor from the twisted Whittaker category to Q{;—Factl\/[od
mimicking the constructions in [GL19]. That is to say, [GL19] uses the Jacquet functor, which
is the pullback-pushforward functor along Grg «— Grg- — Gry.” We construct an Twahori
Jacquet functor.

In brief, our Iwahori Jacquet functor is an adaptation of the pullback—pushforward functor
Whit(Flg) — Shv(Gryr) of the following diagram.

Fl,. —— Flg

|

Grp

Here, FI}B, is substack of
Flg- := Grg- x pt/B
pt/G
where we require the B~-bundle and the Iwahori structure to be transversal at xz. The

A-component of this functor is H(Flg, j« (wS;l,A) é —). In fact, the A-component of functor
!
constructed in this section is H (Flg, ji (wsgl,x) ® —).

The organization of this section is as follows.

In §6.1, we will construct a closed sub-prestack (?E’ﬁ Ran,)oo-z Of the Beilinson-Drinfeld affine
flags Fl“éfRanw. Lemma 6.1.12 ensures that we can regard a Whittaker sheaf on F1£ as a Whittaker
sheaf on (?;Uﬁ Ran,)oo-z With factorization property.

In §6.2, we introduce the configuration version affine flags which is important for the
construction of the functor.

In §6.4, we construct the functor F™ that appeared in Theorem 4.3.1. We also construct
another closely related functor FP¥ in this section.

In §6.5, we describe the functors defined in the previous section by calculating the !-stalks
of F¥“ and FPX at -z € Confn.,.

" The Jacquet functor is also the functor needed for geometric Satake equivalence.
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In §6.6, we prove the main theorem of this paper modulo Proposition 6.6.2.

6.1 Whittaker category on FlG Ran,
6.1.1 Recall that we defined the Beilinson-Drinfeld affine flags Fl“é’jRanm in §§2.3 and 2.4.2.

The idea of the construction of the functor F is to regard a twisted Whittaker sheaf on F1¢ as a
twisted Whittaker sheaf on Fl‘éﬁRanz (and Fl‘gjconfwz), and then pushforward along the projection

to Confu.,. Let us start by explaining the definition of Whittaker sheaves on FlgRanz.
Let N(X)%. . (respectively, N(0)%’ ) be Ran-ified loop group of N. It is the prestack classi-

T o
fying the data (J, ), where J € Ran(S) and « is an automorphism of w” x B on Dg (respectively,
Dy), which is compatible with the identification of w”. Similarly, one can define N (K)Ran and

N(O)gon -
We define a character

XRan, © N(3)fan, — N () fan, /[N (K)fan,» N(I)Fan,] — Whan, (%)
M pan (K) "2 G, (6.1.1)
of N (IK)Ran Similarly, we can define a character
XRan : N(K)fan — Ga (6.1.2)

of N(:K)Ran
For # = {x1,%2,...,2,} € Ran, we denote by Xz the restriction of yRan to N(X)¥" :=
N(X)er >< {z}. Note that the character x of N(X)“" in (3.1.1) equals x, here.

T

6.1.2 Left multiplication gives an action of N(X)%" on Gr“G)fRan, and an action of N (JC)%{;HI
on Flcé/jRanm' Following [GL18, Proposition 7.2.5], the pullback of §¢ on Fl‘éfRanx (see §2.4) to
N (K)ﬁ;nz is a multiplicative gerbe, in particular, the gerbe G¢ on Fl“épRan is equivariant with
respect to N (K)‘ﬁgn against G@. Since N is unipotent, N (K)R’;n is an ind-pro-affine space over
Ran,. There is a canonical trivialization of G on N (K)Ran Hence, the gerbe §& on Fl“’pRan
equivariant with respect to the action of N (fK)Ran In partlcular we may consider the category

of (N(X)%nn. » XRan,)-equivariant sheaves.
DEFINITION 6.1.3. We define

P

Whit(F14 pan,) = Shvge (FI& pay, ) I Rang XRane

6.1.4 Now we define a closed N(X)f,, -invariant subspace (Sq Ran,)oow C FlG Ran,

DEFINITION 6.1.51 A Point (3, Pq,a,€) € Fl‘éﬁRanz belongs to (SFlo,Ranx)OO'I if and only if for any
dominant weight A\ € AT, the composite meromorphic map

s (@202 v, V(00 ) (6.1.3)
is regular on X \ z. Here V’;\)G (respectively, Vé\xé ) is defined as the vector bundle associated

T -
with P (respectively, P := w” x G) with fiber the Weyl module Vg. The first map is the map
mapping to the highest weight vector, and the second map is induced by «.
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DEFINITION 6.1.6. A point (J,Pg, ) € Gr“G’i)Ran belongs to S%ryRan, if for any dominant weight
A € AT, the composite meromorphic map

W (W22 Vé”c -V}, (6.1.4)
is regular on X. §
If we require that x* in (6.1.4) is injective on X for any A € A, the resulting prestack SgnRan

is the unique open dense N(X)%" -orbit in ﬁ();ryRan.

6.1.7 Factorization property. Following the argument in the proof of [BFGMO02,
Proposition 2.4], we can prove that the prestacks defined above satisfy the following factorization
property.

LEMMA 6.1.8. We have that:

-0 . . . . . . . .
(1) SGrRan 1S @ factorization prestack, i.e. there is a canonical isomorphism of prestacks

—0 —0 —0
SGrRan X (Ran x Ran)gisj ~ SGrRan X SGrRan X (Ran x Ran)gisj; (6.1.5)
Ran RanxRan

(2) (ﬂlfflo Ran, Joo-w factorizes with respect to Sg, pan, i-€. there is a canonical isomorphism of
prestacks

(?gﬁRanm)m.x RX (Ran x Rany ) qis;
ang

~ (6.1.6)

70 —
SGr,Ran X (Sglo,Ranz)OO'l‘ X (Ran X Ranm)disj-
RanxRan,

6.1.9 Let Fl‘épx (respectively, Gr‘gjﬂ:i) denote the fiber of Fl‘é’jRanz (respectively, Gr‘éfRan)
over x (respectively, x;), it is isomorphic to Fl“G’p (respectively, Gr“G’p) by choosing a uniformizer.
Denote by F(()}w the closure of the NV (K);’f—orbit of t9 € Gr“éfxi.

By definition, the fiber of (F%UﬁRanz)oo.w over the point J = {z,x1,z2,...,2;} € Ran, is
isomorphic to the product Fl‘é’jz X Hle E%w, and the fiber of §%an’Gr over the point J =

{x1,x9,..., 2} € Ran is isomorphic to Hle SGra;e

6.1.10 Relation with Whitq(F1Z"). Consider the product space Ran, x FI¢,. The N(X)%"

action on the second factor gives a N(XK)%"-action on Ran, x Fl“épx The pullback of the gerbe

G% on Fl“épx to Ran, x Flépm is still N(X)%"-equivariant, hence we can consider the Whittaker

category on Ran, x Flgﬁx,

Whit,(Ran, x FI,) := Shvge (Ran, x Flgp,, )NE2x, (6.1.7)
There is a closed embedding
unit : Ran, x FI&, — (SplRan, )oo-as (6.1.8)

which sends J € Ran,, (Pg, a,€) € Fl‘épw to (J,Pq,a,€) € (?}”ﬁRanx)m.x. Similarly, we have

unitg, : Ran x ?OGr — F?;r,Ran. (6.1.9)
The !-pullback along the projection

PTRan, @ Rang X Fl‘é’Px — Fl“G’px
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gives rise to a functor

PrRan, © Shvge (F1Z,) — Shvge (Ran, x FIg,). (6.1.10)

w
x

By definition, prg,, commutes with N(X)
the corresponding Whittaker categories

Whitq(F1g',) — Whitq(Ran, x FIZ,). (6.1.11)

P . | .
-actions, SO PIy,, induces a functor between

6.1.11 Consider the pullback functor along (6.1.8)
unit' : SthG((?ﬁjﬁRanz)oo.x) — Shvge (Ran, x Fl“G’px)
We claim that this map induces a functor between the corresponding Whittaker categories
unit' : Whitq((Sp gan, Jocz) — Whitq(Ran, x F1£,). (6.1.12)

Indeed, consider the closed subgroup N’ in N(XK)%’ whose fiber over a point

Ran,

{x,21,29,...,7;} € Ran, is given by N(X)~” x Hle N(0)2”. Restriction to « gives a projection
N’ — N(K)“". (6.1.13)

The map (6.1.8) is compatible with N’-action, where the action of N’ on Ran, x Fl‘épx is given

by the projection (6.1.13) and the action of N(X)%” on Fl“épx Since the kernel of the projection
(6.1.13) is pro-unipotent, the forgetful functor

/ wP
Shvge (Ran, x Fl‘éﬁw)N X— Shvge (Rang X Fl‘é’;)N(f’qz X
is an equivalence. Hence, unit' induces a functor

— wP ’
Shvga ((SpyRan,)oos)” “Vhane XRane — Shy oq (Ran, x FI1&, )X

~ Shvge (Ran, x FIZ, N5 x, (6.1.14)
that is,
unit' : White ((Spi Ran, )oc-z) — Whitq(Ran, x FI&,). (6.1.15)
Similarly, we can define
unitly, : White (Sgy ran) — Whit(Ran x Sey,). (6.1.16)

According to [Gai20, Theorem 6.2.5], the functor (6.1.16) is an equivalence. By an argument
similar to [Gai20, §§6.2-6.6], we can prove the following lemma.

LEMMA 6.1.12. The functor (6.1.15) is an equivalence.

Proof. We only sketch the proof.

Given a finite set J with a distinguished point, let Xg be the subspace of X7 such that
the coordinate indexed by the distinguished point is z. Note that Ran, = COliHng , and we can
define Whitq((Sgy x2)ooz) and Whitq(X7 x FIg,) similarly.

It is sufficient to show that unit} : Whitq((ggﬁ X3 )ooz) — Whitq (X x Fl‘g’;pm) is an equiva-
lence for any finite set J with a distinguished point, then the desired property follows by taking
limit. For any such J, one can give X2 a stratification { X2} according to the collision of points.
Note that there is (Egﬁxg)wx ~ (((X — z)* — Diag) R>< ?%nRan) X Flé;, where k is the number

an
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of different elements in B without the element containing the distinguished point. Thus, we have
. T N(H)2l X
Whltq((sglo,X?)oow) = ShVSG((((X - J}) - Dlag) X SGr Ran) x Fl‘é‘fx) xP

wP
~ Shvge (X — 2)" — Diag) X 58, run) % x Tl )V

~ Shvge ((((X — x)F — Diag)) x F]wﬂ )N(K)z Xe ~ Whitg (X2 x Flﬁ’jx).
(6.1.17)

Here, the second equivalence follows from the fact that g%r,Ran\S(()}r,Ran does not carry non-
zero Whittaker sheaf, and the third equivalence follows from N(X)% ~ (((X — x)* — Diag) x

X3 =
z an
N (X)gan) X N(X)2". It implies that the restriction unitg, : Whitq((Sgy x)oc-a) — Whitq (X2 X
Fl“c’;x) is an equivalence.
In particular, umt!j is conservative, and we only need to construct the left adjoint functor
(unit5)™ such that Id — unit5 o(unit})" is an isomorphism.
For n >0, let I, := Ad_,,(G(O)~" X N(O/t"0)*"). There is a canonical way to
G(O/tn O)«P
extend the character X[, y(gx)wr to In such that it is trivial on the negative part (ie.

B~(0)N1I,), we still use the same notation x.

wP
A quite non-trivial result of [Ras, Theorem 2.7.1] says that the left adjoint AVIN(SQ X s well-

wP
defined for any (I, x)-equivariant sheaf. With the same proof, one can show that AV!N(K)j X

is well-defined for any (I, x.)-equivariant sheaf on FIG x5 - Here, I, C G(X)%" is the subgroup

n
whose fiber over {z,z1,x2,...,2n} is I, x [[}; G(O )xp, and Y5 is the character given by the
map I — I, X G,.

wP
To construct the left adjoint functor (unitg)L of unit!j, we should prove that AV!N(K)j "

well-defined on the image of the composition

is

P
w
N(X) X U.Illt|

Whitq (X7 x FI2) 5 ™ Shvge (XI x FIZ) ™ Shvgo (S x2)ocs)-

wP
Then, (unit})" is given by the composition of the above functor and AV!N(K)j K

~ WP
Note that the category Whit,(XJ x F1%) is generated by applying AV,N(K) X2 t0 (In, Xz )-

equivariant objects on X7 x Fl“’ Thus, we only need to show that Av, N3 xa is well-defined
on the image of

unit

SthG ()(x:i X Fluérp) — ShVSG((SFl XJ)OO 1-) (6118)

Inv x

Shvge (X2 x Flg/)fmxe P

Furthermore, note that unity: XJ x Fl“G’px — (?%Uﬁ X7 )oow 18 Ip-invariant, where I, acts

on X2 xFl¥ via I' — I,. In particular, the image of (6.1.18) is (I’,, x,)-equivariant, and
A N(K)%JP7X:’

v is well-defined for those equivariant sheaves.
Finally, by repeating the same argument as in [Gai20, §6.5] we can prove that the functor
(unit5)" satisfies the desired property, i.e. Id — unit} o(unit,)" is an isomorphism. O

DEFINITION 6.1.13. For F € Whity(F1&"), we denote by sprdp) Ran, (F) the Whittaker sheaf on
(Sp) Ran, ooz corresponding to pr!Ranz (F) under the equivalence (6.1.15).
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Using the fiber description of (S%LRanx)oo.x in §6.1.9, we can describe sprdg; gay, () more
explicitly. Namely, the restriction of sprdp gap, (F) to Fl‘épm is &, and its restriction to goGr,xi is
the generator of Whitq(go(;mi).

DEFINITION 6.1.14. Let Vac denote the Whittaker sheaf on §%T7Ran which is uniquely charac-
terized by the property that its !-pullback to Ran via the canonical section

sian + R = 5 an (6.1.19)
J— (3,P&,id)
is the dualizing sheaf on Ran, i.e. S!Ran(Vac) ™ WRan-
It is important that Vac and sprdp gy, (F) satisfy the following factorization properties:
COROLLARY 6.1.15.

. . . a0 . . . . .
(1) Vac is a factorization algebra on S, pay, i-€- there is a canonical isomorphism

~ Vac|zo

Vac X Vac| <o <0
|(SGr,Ran><SGr,Ran)diSj SGr,RanRX (RanXRan)disj ’
an

which is compatible with (6.1.5);
(2) sprdp) ran, (F) € Whitq((?ﬁ)ﬁRanz)wx) is a factorization module over Vac, i.e. there is a

canonical isomorphism

Vac K sprdpy gan, ()|

<=0 SW
(SGr,Ran X (SFIO,Ranx)OO'Z)diSj

~

SPrdpy Ran, (F)|(520. ) 0) x (RanxRang)a’
’ z Rang

which is compatible with (6.1.6).

Proof. Part (1) is [GL19, Theorem 8.4.6 (a)]. We only show part (2).
It is known that for any = € g(();nRan \ 5S¢ Ran» We have

Staby ger (z) € Ker(xRran)-
It implies Whitq(Scs ran \ S&; ran) = 0 In particular,

Whitcl(g((]}r,Ran) = Whitq(‘g%r,Ran)'

Since N(X)%g.  acts transitively on S%nRan over Ran and N(X)%’ is ind-pro-unipotent, taking
I-stalks along sga.n induces an equivalence of categories

Whitq (S8 ran) ~ Shv(Ran).
Consider the following commutative diagram.

wP unit —wo
Ranm X FlG,x (SFI,Ranz)OO'x

o i

p SRan Xunit_ —
(Ran x Rang x Flg’,x)disj (SGI,Ran X (S;‘UERanI)OO‘I)diSj
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By Lemma 6.1.12, we need to prove
(Ug X id)! o unit!(SprdFLRmc (F)) =~ wran X unit!(sprdFLRanz (F))|aisi»

which follows from the facts that unit!(sprdFLRanz(ff")) ™~ WRan, X F, and the (twisted) sheaf
WRan, ON Ran, factorizes with respect to wran, i.e. we have

U;(WRanw)’disj ~ WRan X WRan, |dis;- O

6.2 Configuration version of Gr‘ép and Flgp

The most important prestacks in this paper are constructed in this section. They are analogs
of the constructions in [GL19]. The target of the functor F™ lives on Confs..,. Hence, it is
convenient to consider prestacks over the configuration space. In this section, we explain the
configuration version Gr“ép and Fl‘ép and related factorization prestacks.

DEFINITION 6.2.1. Let Gr“éﬁconf (respectively, Fl“é’jconfwz) be the prestack over Conf (respec-
tively, Confs.,) which classifies the data (D, Pg, «) (respectively, (D, Pg, a,€)), here D € Conf
(respectively, Conf.), Pa € Bung, a: Pa|x\supp(p) = PE|x\supp(D), and € is a B-reduction of
P at x.

Similarly, we can define the configuration analog of N(X)%’ , N(0)g. N(X)g.  , N(O)g,

Rang> Rang>
etc. We denote the resulting prestacks by N(X)&, ., N(0)2r .. N(ﬂ()“égnfom, and N(0)&
respectively.

P
onf’ Confeo.z?

6.2.2 Note that

Gr&é’:Ran X (Gr%:)Ran)neg = Grngonf X (Gr%pRan)neg
Ran Conf
As a result, the gerbe G¢ on Gr“é[jRan gives a gerbe on Gr‘é’jconf xconf(Gr%fRan)neg. By
Lemma 2.2.3, it descends to a gerbe on Gr‘é’jconf. We still denote it by G¢. Similarly, we can
define gerbes on other prestacks in Definition 6.2.1.

To define the functor F*, we need to define two sub-prestacks of Fl“é‘jconfom: one carries
Whittaker sheaves, and the other one carries the kernel. The former space is given by

—wo . —,Confes.z
(SFLConfa,., Joo-z, and the latter is Fl.Conf o -

DVEFINITION 6.2.3. Denote by ?%rvconf the closed sub-prestack of Gr‘éﬁconf such that the maps
k> in (6.1.4) extend to regular maps on X and satisfy the Pliicker relations. )
We denote by (?gﬁ Confa, . )oo-e the closed sub-prestack of Fl‘é‘:confmz such that the maps x*

in (6.1.3) are regular on X \ x and satisfy Pliicker relations.

DEFINITION 6.2.4. Let Sé;CCO;ff (respectively, ?{;rcggflf) denote the prestack classifying the data
(D, Pq, ), such that for any A\ dominant, the induced map

KN VR, = Ve — (YR, - D)), (6.2.1)

which is a priori defined on X \ supp(D), extends to a surjective (respectively, regular) map on
the whole curve X and satisfies the Pliicker relations. Here ’ V%‘,G (respectively, / Va\»é ) is the vector

T ;
bundle associated with Pg (respectively, P¢g = w” x G) with fiber the dual Weyl module ’ V/C\;.
The first map is induced by « and the second map is the map mapping to the highest weight
vector.
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) denote the prestack classifying the data from

— . ——,Confoe.o
Let SFI(CJ?)?lffO;i (respectively, SFI”C(;?lfOOAz
_ . ——,Conf :
G;Cé)élrff (respectively, SG;%):M) plus a B-reduction of Pg at x.
The fiber of Fl‘éﬁconfwz (respectively, Gr‘é’jconf) over the point (2.2.4) (respectively, (2.2.1))
is canonically isomorphic to
Pl x [ 6. (6.2.2)
1<i<k
<respectively, H Gr“éﬁmi> (6.2.3)
1<i<k

6.2.5 Factorization property. Similar to Lemma 6.1.8, ﬁ(];r’conf and (?}”ﬂCOnfwm)oo.x are

factorizable. That is to say,
—0
Scr.cont X (Conf x Conf)qi;
Con
~ (6.2.4)
—0 —0
SGr.cont X SGrcont . X (Conf x Conf)gj;,
Conf x Conf
and
—wo
(SFI,Confoo.z)OO'ﬂﬂ X (COHf X Confz)disj
Confeo. o
~ (6.2.5)
—0 —wo
SGr,Cont X (SFLConfu,., ooz X (Conf x Conf,)aqis;-
ConfxConfso.z
Furthermore, S~ %™ is a factorization prestack, SmS%%== is factorizable with respect to
» M Gr,Conf b » MFL,Confoo. w. P
—,Conf
Gr,Conf*
—Confoos  Amits a stratification given by the relative

6.2.6 Relative position. The prestack Spy Confos
position of the B-reduction given by e and the B~ -reduction given by the morphisms {K,_’j‘}.

To be more precise, the morphisms {f@_’j‘} are surjective, so they induce a B~ -reduction of Pg

at x, i.e. we have a map
—,Confo.s _
FLConf ., — Bung pg;G pt/B (6.2.6)
given by sending a point (D, Pa, a, €) of Soy%<= 6 P and its B -reduction at x induced by
F1,Confoo. 4
(6.2.7)

Slonteor L Bung x pt/B.

{k~*}. In addition, € also gives a map
Fl,Conf .4 pt/G

Note that their compositions with the functors of inductions to G-bundles coincide, so we

~ Bung x B\G/B. (6.2.8)
t

have a map of relative position
— Bung x pt/B X pt/B~
pt/G

—,Confoo.o
p: S
Fl,Confoo. o pt/G pt/G

The Bruhat decomposition gives a double coset decomposition of (B, B) in G and it induces
a stratification of B~\G/B. We denote by Br” C B~\G/B the Bruhat cell corresponding to

B wB.
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DEFINITION 6.2.7. For w € W, let us denote by Sg; %oa?nfm “ the preimage of Br" Sglg‘;ﬁffzz
,1,Confoo x Confoo x
In particular, SFI Confor. " 1s open dense in Sgy Confa -
Similar to Lemma 6.1.8, the prestacks Sy %Oi?nfm * and SFI %‘;ﬁf{"’ * (and their closures in
FlG Conf...,) factorize with respect to SGr C Orff (respectively, SGr,COHf),
—w,Confoo.o
SFI Conf . X (Conf X Confoo-x)disj
’ T Confoo-z
~ (6.2.9)
,Conf —,w,Conf .
S~ e X Conf x Confss.z)disi
Gr, Conf F1,Conf .4 COHfXConfoo‘z( 00 a:) isj
w ConfOo .z
(respectively, Sg| Cont., X (Conf x Conf..z)disj
Confoo.o
~ (6.2.10)

Conf w,Conf oo

SGr ,Conf SFI ,Confoo.po X (Conf X ConfOO'I)diSj)'
ConfxConfeo.2

6.2.8 Description of fibers. The fiber of Spy léocntfmf"" ® over the point D = Az -2+ >, \i -2 €
Conf ., is canonically isomorphic to

Flz HSGr x;° (6211)

Here Sgl,;%w C Fl‘é’; denotes the N~ (K)“"-orbit of t*sw € FIG 2> and SG; ' C Gr‘é‘:z denotes
the N~ (X)“’-orbit of t" € Gr/,
Remark 6.2.9. The above identification of the fiber is compatible with that given in (6.2.2).

,Confos.p
6.3 Semi-infinite sheaf on S/ 'Conf e

In Appendix A, we review the theory of semi-infinite sheaves on affine flags. In this section, we

use it to define the !-extension semi-infinite sheaf on SF1 q“é Ocn?nf"" ®

Consider the sub-prestack SFI,R&HZ of FIG’Ranx, which classifies the data (J,Pg, a,€), such
that for any A dominant, the induced map

KN ,VS\?G —/ V{})g — (w1/2)<;\’2p>, (6.3.1)

which is a priori defined on X — J, extends to a regular map on the whole curve X and satisfies
the Pliicker relations. We let Sl*:f}%anz be the substack where we require that the extended map

K= to be surjective and the induced B~ -bundle and € to be transversal at x.

The restriction of (G%)~! to SFI Ran is canonically trivialized, we denote by wg-1  the
Fl,Rang

(G9)~!-twisted dualizing sheaf on S’F1 Ran, - According to Proposition A.1.5, the l-extension is
well-defined for w,—1 , and we denote it by ji(wg-1 ).

F1 Ranz Fl,Rang
6.3.1 The twisted dualizing sheaf w1 and its l-extension ji(wy—1 ) naturally acquire
F1 Rdl‘lz Fl,Rang
T(0)g)  -equivariant structures, and (G%)~! is T(0)%.  -equivariant, we can think Mwg-1 )
z T Fl,Rang

as a sheaf on T(0)%. \gﬁ’lRan . In particular, the construction of ji(wg—1 ) admits a T-twisted
® ’ z F1,Rang

construction.
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That is to say, given a prestack Y with a map Y — T (O)ﬁ;nz \Ran,, we consider the fiber

product
ldFl = y X T(O)ng;nz \FltéfRanz'

T(O)ﬁanm \Rang
We let (yG%)~! be the pullback of the descent gerbe on T(0)gan, \FI“G’fRanz and y jg(wsgl,; N ) be

the !-pullback of ji(ws—.1 ) along the projection

Fl,Rang
yF1 — T(0)#an, \F1& Ran, - (6.3.2)
6.3.2 LetY = (Gr#fRanx)gg.gm, we have the following identification

yFl = Fl‘éff{anz R;<n (Grti)’fRanz)gggx = Fl‘éﬁConfoo.x Con>f< (Gr%fRanz)goe-gz' (633)

Under the above identification, the preimage of T(O)ﬁgnr\Sﬁ”hanz under (6.3.2) is iden-
tified with the product S hConfoon o (e (Gr%f’Ranr)ﬁﬁ.gz. In addition, the gerbe (yG¥)~! on

1,Conf ooz

Fl“é’iconfwz X Confoe.s (Gr‘:‘ﬁfRanz)gggx is identified with the ratio gerbe

9G7T,rati0 _ (SG)—l ® 91\. (634)

Since (Gr‘%’fRanm)gggm — Confs., is an isomorphism in h-topology, the gerbes and the

corresponding categories of twisted sheaves on yFI and Fl‘éﬁconfwz are the same.

DEFINITION 6.3.3. We denote the sheaf corresponding to yji(wg-1 ) by ji(wg—.1,confez) €
F1,Rang Fl,Confoo.z
Shv g6, 7.ratio (FI& gong. ) - Its Testriction to Sﬁégﬁ;i"‘;z is the dualizing sheaf under the canonical

trivialization of G&Tratio|

—,1,Confog.g «
Fl,Confo. 2

6.3.4 The above constructions also work for affine Grassmannian. To be more precise, let
j!(ws&oaan) € Shv(gc)q(géfl{an) be the l-extension of the dualizing sheaf on SéfRan (which is

defined similarly as Sb:l”%anz, but without the Iwahori structure). Given Y := (Grr‘ipRan)]rleg —
T (O)f{gn\GrgRan, we can also define a twisted sheaf j!(wség%’;ff) € ShVSG,T,ratio(Gr“G)’jconf) which

corresponds to yji(wg-.0 ).
Gr,Ran

Using the fact that ji(wg-1 ) is factorizable with respect to ji(wg-o ), and pulling-
Gr,Ran

Fl,Rang
back along yFl — T(O)‘ﬁ’;nz\Fl“é?Ranw and yGr — T(O)‘ﬁ’;n\GrgRan preserve factorization

structures, we conclude that j[(ws—,Conf) and j[(wsf,l,Confoo.z) satisfy the factorization properties.
Gr,Conf Fl,Confoo.z
—,Conf

That is to say, ji(Sq, cone) 15 @ factorization algebra,

| W o—,Conf )|=5—,Conf
J ( SGr,Conf) SGr,Conf ><Conf(conf><Conf)disj

=~ MW o—,Conf @jg W o—,Conf )|5—,Conf _——,Conf 6.3.5
( SGr,Conf) ( SGr,Conf) SGr,CoanSGr,Conf ><COanConf(Confxconf)disj, ( )
and ji(wg-1,conte.») factorizes with respect to ji(wg-.cont), i.e.
Fl,Confoo.2 Gr,Conf
n(w —,1,Confoo.2) | 5—,1,Confoo-
J'( SEI Confoora I) SFI Confon X Confoo.z (ConfxConfeo.z)disj
s .
—]l W o—,Conf IZ]' W o—,1,Confoo. ——,Conf —=—,1,Confoo. . 636
( SGr,Conf) ( SFl,Confooﬁz)|3Gr,conf><SF1,confooo.of X Conf x Conf s (COnf X Confeo.2 ) disj ( )
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6.4 Constructions of functors
In this section, we define the functor F™: Whity(F1£") — Shvga (Confe..), which is used in
Theorem 4.3.1.

To start with, let us summarize the prestacks defined in previous sections of this paper in
the following diagram.

wP
FI& confo .

Confoo.z
(SFI ,Confoo. 3:)00 T SFI Confz .z
WP unlt Conf
Ran, x FIg, —— (SpiRan, )oos (SFLConfos . Joow N ST Conf e
(6.4.1)
l eranI
lwp VConfoo.z
Conf .5

The morphism unit : Ran, X Fl“é’jr — (?gﬁ Ran, Joo-z 15 given by (6.1.8).

6.4.1 Construction of F. We can construct F* via the following steps.

(1) Given a twisted Whittaker sheaf F € Whitq(Fl“é‘:x), first of all, we !-pullback it to Ran, x
Fl“G’[:x along the morphism prg,, . By Lemma 6.1.12, it gives rise to a twisted Whittaker

sheaf SprdFl,Ranz (F) o (5 Fl Ran,)oo x-
(2) Consider the image of sprdg gan, (J) under the following functor

ShVQG ((SFI Ranz)OO ﬂf) - ShVSG ((ggﬁf{anz)m'l‘ RX (GrT Ranz)gggx)

ang

= ShVSG ((gglo,(]onfoolz)oow X (Gr%DRanz)gggx) = ShVSG«glI;‘]ﬁConfoo.z)OO'I)'

Confeo.z
The first functor above is given by !-pullback. The second follows from the isomorphism

(SFI Ranx)oo r X (GTT Ranl)oo x = (SFl ,Confos. x)oo xz X (GTT Ran,)neg
Rang Confoo.z

The third is given by Lemma 2.2.6. We denote the resulting sheaf by sprdg (F).
sprdpy : Whitq(FI&") — Shvge ((Spy confo., )ooz)- (6.4.2)

(3) Take !-tensor product of sprdp(F) with the semi-infinite !-extension sheaf ji(wy—1,confocz)

Fl,Confoo.
defined in §6.2.
(4) Then take ! (or, equivalently, take x)-pushforward along the projection vcons,, , with
cohomology shift (A, 2p) on the connected component Conféo,x of Conf ...
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DEFINITION 6.4.2. To summarize, the functor
F" : Whitq(F1¢,) — Shvga (Confoc.s)

is defined as

|
3' [d Uconfoo'$7*(sprdFl(gj) ® j!(wsf,l,Confoom)’ 7—,Confoo.z)[deg], (643)

F1,Confoo.x (§1§}BConf®.x)oo'meFl,Confoom
. . A
where the shift [deg] equals (\,2p) on the connected component Conf?_ .

Remark 6.4.3. The resulting sheaf FL(F) is G*-twisted. Indeed, sprdp (F) € Shvga ((?ﬁﬁRanl)oo.x)

. ——,Confso.o FO .
and j;(ws_,l,confom) € Shvge, T ratio (S 1”0%;00‘1). Note that G&Trato j5 the quotient of G& by GA.

Fl1,Confoo. 2
Hence, the tensor product of the sheaf sprdp (%) eShvgc((?ﬁﬁ Ran,)oo-z) and the sheaf
——,Confeo.

j!(wsﬁ’ldfffriﬁx) € Shvge Tratio (S| Confu. ) 18 GA twisted.

6.4.4 Construction of F§,. Similarly, we consider the following diagram.

WP
Gr& cont
-0 ——,Conf
SGr,Conf SGr,Conf
unitGr —0 —0 ——,Conf
Ran x SGr (SGr,Ran) (SGr,Conf) N SGr,Conf
(6.4.4)
i PTRan
—0
SGI‘ VUConf
Conf

By applying the same steps (1) and (2) as in the above construction (with a tiny modification:
replace affine flags by the affine Grassmannian), we get a functor

sprdg, : Whitq(gg;r) — Shvge (g(();nconf). (6.4.5)

DEFINITION 6.4.5. The functor
F&, - Whito(Sg,) — Shvga (Conf)
is defined as

!
F — var«(sprdg, (F) ® Ji(wg— Cont )| —— cont )[deg]. (6.4.6)

=0 —0
‘(SGr,Conf) Gr,Conf (SGr,Conf)mSGr,Conf

Recall that Whitq(g(();r) QWhitq(Sgr) ~ Vect, hence, there exists a unique irreducible

Whittaker sheaf on gogr. We denote it by Fo. Set Q5 := FL (3). The following lemma is proved
in [Gai21lb, Theorem 6.2.5].
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LEMMA 6.4.6. In the setting of D-modules, when q avoids small torsion, there is an isomorphism
. . Ly L
of factorization algebras q" ~ Q.

PROPOSITION  6.4.7. Given any J € Whit(F1&'), F“(F) has a naturally defined
L, o
Q" -factorization module structure.

. —0 ——,Conf —— Confoo.z
Proof. By the factorization property of S¢; conf; SGr,(?;lnf, (ﬂﬁﬁconfwz)oo.x, and SFLC%I;fOM (see

(6.2.4), (6.2.5), (6.2.9), and (6.2.10)), we obtain that the prestack ?%r,&mf m?{;fg;ff is fac-

. — ——,Confec.z . . . .
torizable, and the prestack (S;Uﬁ Confay.y )oo-z SFLCOI;fZi is a factorization module space with

—0 ——,Conf
respect 10 Sy cont N Sar,Conf- NOte that voons and voont

. —0 ——,Conf —w, ——,Confso.2 .
tion structures on Sq, cont N Sar,cont and (SFﬁconfow)oo.x N SFl Conf....,.» hence, it suffices to show

that

are compatible with the factoriza-

oo-T

!

) & j' (ws—,laCOﬂfoo-x)
Fl,Confoo.2

sprdg (F)

.
(B0 conts oors

!
® Ji (ws—,conf).

-0
’(SGr,Conf) Gr,Conf

According to Corollary 6.1.15, the Whittaker sheaf sprdg gay,, (F) on (?"P’i{) Ran,)oo-z factor-

izes with respect to the factorization algebra Vac. Since the !-pullback from (?‘;10 Ran,)oo-z tO
(ﬂlﬁf Confa.,)oo-z 18 compatible with the factorization structure and sprdg,(Jo) is exactly the
pullback of Vac, we obtain that sprdg(F) is a factorization module over sprdgq, (o).
By (6.3.6), ji(wg-.1,contec.) factorizes with respect to ji(wg- cont ).
Fl,Confoo. 2 Gr,Conf
Now Proposition 6.4.7 follows from the fact that the tensor product of factorization modules

is a factorization module over the tensor product of the corresponding factorization algebras. [

The functor F" defined in (6.4.3) factors through Q4”-FactMod. We also denote by FU the
resulting functor

factorizes with respect to sprdq,(Fo)

FU : Whitq(F1g") — Q/-FactMod. (6.4.7)
Of course, Theorem 4.3.1 can be deduced from the following stronger statement.

THEOREM 6.4.8. For any ¢, the functor F" in (6.4.7) is a t-exact equivalence that preserves
standards and costandards.

6.4.9 By constructions similar to F“ and FCI;r, if we replace the semi-infinite !-extension
sheaves ji(wg— cons
Gr,C

) and j ((.USf,l,Confoo.z) by the semi-infinite *-extension sheaves, then we can
r,Conf Fl,Confoo.z
define the following functors.

DEFINITION 6.4.10. We have
FPX - Whitq(F1g,) — Shvga (Confac.s)

» (6.4.8)
T = VConfo.a,x (SPARI(T)|guo, ) ® Jelwg1.coniec))[deg],
FRX : Whit,(Sg,) — Shvga (Conf)
| (6.4.9)
F = vana(sordar(Fl gy, ) ©Jx(Wsg con ))ldeg).
Similarly, we define Q4" := DK (Fp). When ¢ avoids small torsion, we have Q5 ~ QP

(see [Gai2lb, Theorem 3.6.2]). By the same proof as that of Proposition 6.4.7, we have the
following result.
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PROPOSITION 6.4.11. FPX factors through QqDK’/—FactMod, i.e. it gives rise to a functor
FPX : Whitg(F1g,) — Q¢ -FactMod. (6.4.10)

6.5 Calculation of the !-stalks of FU and FPK

By Lemma 4.1.5, in the category of Q-FactMod, the standard object Ay o is always uniquely
characterized by the requirement that its x-stalks at pu-x,u € A is e if A = 4 and 0 otherwise,
and the costandard object V) o is uniquely characterized by the requirement that its !-stalks
at p-x,pu € A is e if A= p and 0 otherwise. Hence, in order to prove that F sends standard
objects to standard objects, costandard objects to costandard objects, we only need to find an
explicit expression of the l-stalks and #-stalks of the image of F.

The theory of sheaves on prestack is friendly with taking !-stalks. There are two reasons for
this: the first is that the !-pullback functor is always well-defined, the second is that we have a
base change theorem for !-pullback (see [GR17b, Corollary 3.1.4]), hence, the calculation will be
much easier than the calculation of x-stalks.

In this section, we give an explicit formula (Proposition 6.5.2) for the !-stalks of F* and FPK
at A-x.

6.5.1 Consider the following Cartesian diagram.

——A —— Confoow _ ,—wo
Selz = SFI Conf e () (SFLCONf ., )00

l J{ S (6.5.1)

A-x COIlfoo.x

Choosing a trivialization of the fiber of G* at \-z. By the base change theorem [GR17b,
Corollary 3.1.4], we have

!

) © (@ g o) (A, 20

Fl,Confoo.2

i\(FY(F)) 2 63 © UCont g, (sP1dR) (F)

|((§;‘010,Confoo.z)oo'z
B b Confoo.s,!/ 3
= H(Flzf,’xv Z'/\,Confooz (SprdFl(?)) ® Z)\,C(?nfoo,gC (.7! (wgglvégsfnfoof))K)‘v 2p>]) (652)
In the above formula:

.— fooz . A\ . ——,Confeo.z
-1 )\Es;lfwz denotes the embedding of Sp, into Sg| confr s

——,Confeo.g
S

~ i),Confe., denotes the embedding of Fl“é’jx into El,COnfoow'

First, by the construction (6.4.2), there is
i\ Conto, (SPTdpy (F)) 2 F VA€ A and F € Whitq(FIg,).

Second, by Corollary A.2.9, we have a base change theorem for !-pushforward and !-pullback for
semi-infinite sheaves. Namely, there is an isomorphism
.—,Confo.g,!

!X, Confeo.y (J (wsbjllcgr?f“;ozx)) ~ (WSP:I:’;> VA e A

Here, w - .» denotes the (G¢)™' ® GA| ..~ twisted dualizing sheaf on 551’2 and ji(wg-) denotes

SI*:I,Z Fl,x

its I-pushforward to ?E{?E. By choosing a trivialization of the fiber G*|y., (which is equivalent

to choosing a trivialization of G%|,ncp), we can think Jilwg-x) as the l-extension of the
Fl,x

(G9)~1- twisted dualizing sheaf on SF_li under the unique N~ (X)%"-equivariant trivialization.
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From the above observations, we deduce the following proposition.

PROPOSITION 6.5.2. Choosing a trivialization of SA],\.m, there exists an isomorphism

i\(FY () ~ H(F GW"J”@J'( VA, 20)]). (6.5.3)

Flz

Similarly, we have the following proposition.

PROPOSITION 6.5.3. Choosing a trivialization of 9A] Az, there exists an isomorphism

A(FPR() = H(FIE,, 5@ (g I 28) (65.4)

6.5.4 The following corollary relates the functor z')\(F L) with the standard objects that we
constructed in Definition 5.5.1.

COROLLARY 6.5.5. Given X\ € A and a trivialization of SA\ ).z, there exists an isomorphism
z')\(FL(SF)) = U‘COmWhitq(Flép)(A,\, 7). (6.5.5)

Proof. According to Proposition 6.5.2, we have to prove

H(F Gza‘rfr@J'( A, 2p)]) ~ }ComWhitq(FluGJ”)(AAv F).

Flz

By the assumption, J is (N (X)%”, x)-equivariant. In particular, it is (N (0)%”, x)-equivariant.
Note that x|y (@) is trivial, we have

H(FIZ, 5 @ s ) 20)]) = HEE,, 30 AvX O Giwg )l 20)]),

Fl,z

By Proposition 6.5.6, we have
H(FI,, F o AV (r(wg )X 20))) = H(FIE,, 5 ®.JP)

According to the construction of the convolution product in §5.3, it is isomorphic to the !-stalks
of the convolution product F x (J_y) at tY € Fl. Furthermore, there exist isomorphisms

Homgp, e iy, ((B0) T x (J-x)N

~ Hom AVIEOX((50)2), F* (J_2)n)

Whitq (F1) (

~ Hom A POX((Jo)n), T (J_x)a)

Whit ( 1) (
=~ Homyy, (riery (Av) YEIX((Jo)a) * Iy, F)

e
=~ oMy, (p12f) (AV!N( X(3), F)

~ fHomWhitq(Flép)(A)\, F). O
PROPOSITION 6.5.6. Given \ € A, there is an isomorphism
N(0)=" y
AV (g ) [N 20) = IR (6.5.6)

Proof. We regard ji(wg-») as a (G9)~'-twisted sheaf. Thus, it is the !-extension of the
Fl,x

(GY)~-twisted dualizing sheaf on SEI’; under the unique (up to a choice of trivialization of
(S9) " Yper) N7 (K)“ -equivariant trivialization.
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Assuming a to be very dominant, we have t*[“’t=FtA[«" /[«" ¢ N=(K)*"t* " /I*", and
tA oA [P = (O N7 (1O)@ A" /197 Here, N~(tO)*" denotes the negative part
of I+".

Since I° is pro-unipotent, the twisting (G¥)~1 on I ¢=a+A[@" /[@" = [04=aFA[" /T9" has
a unique (up to a choice of trivialization of (G%)71|,—ataep) I%-equivariant trivialization.
By definition, J_o4x; is the !-extension of the (%)~ !-twisted constant perverse sheaf on
TPt HA T /19" with respect to this trivialization.

Given an element g € G(X)*” and a trivialization of (G%)~!|,, we can define the left transition
functor g - — : Shv(gay— (F1¢') — ShV(SG)—l(Flgp). Now, we choose a trivialization of (§%)~! at
t* € T’ (X) such that it matches the chosen trivializations (§%)!|,—asrcp and (S%) 7 pep
under the isomorphism (§%) e ® () 7 iatrem = (59) " Hperr-

Left-multiplying with ¢®, the I%-equivariant trivialization on I*’t~*+A[“" /T“* hecomes the
unique Ad,I%-equivariant trivialization on t*1«"t=+A[«* /T“” 8 Tt coincides with the restriction
of the unique N~ (K)“’-equivariant trivialization on N~ (K)*"t* " /1*" (since different trivi-
alizations differ by a tame local system on the affine space t*J*"¢t=@TA[«" /T «” which has to
be trivial). In particular, t*J_,4 1 exactly coincides with the !-extension of the l-restriction of
j!(wSF’l’;) on [« =AY /T“" up to a shift by (a — \,2p). The adjointness of !-pushforward

and !—bullback gives rise to transition maps between t*J_o 1 1[(ov — A, 2p)].
Now we write ji(wg-a)[(A,25)] as colimgy o_yep+ t*J_atr[(@,2p)]. Note that J oy is
Fl,x

I%-equivariant and T-equivariant with respect to a character b_y,,. For such a sheaf F, we
have

wP
AVY O o F) (0, 25)] 2~ (Jax) - rraxT.

Indeed, for any such a (%)~ !-twisted sheaf F, taking *-averaging of t* - F with respect to N (0)*’
is given by taking the convolution of F with the x-extension of the twisted constant sheaf on
N(0)“’t*. Since F is (I“”,b_y,q)-equivariant, we can first take right (I“",b_y,o)-averaging

of the constant sheaf on N(0)*"t® and then take the convolution with F after descending
wP

I
along G(X)“” x F1&' — G(X)*" x F1<'. Up to a shift, the right (I*”,b_y,«)-averaging of the
constant sheaf on N(0)“’t< is isomorphic to the pullback of (Ju ) _xia-
Thus, there is

wP
AV colim T _qiaa(0,20)]) ~  colim (Jas)ria * J—asrs = JL. (6.5.7)
a,a—AEAT a,a—AEAT
wP
Here we use the fact that Aviv(o) commutes with colimits. O

Similarly, we can calculate N(O)“’-averaging of j, (Wg—n).
Fl,x
PROPOSITION 6.5.7. For A € A, we have

N0’ . y .
AV (g A 20)]) = colim (Jas)rma * Joatae
Flz a,a—AEAT
6.6 Proof of Theorem 3.3.2 modulo Proposition 6.6.2
This section is devoted to the proof of Theorem 4.3.1 using Proposition 6.6.2.
First of all, let us check the compatibility of costandard objects under F'“.

8 However, conjugating the canonical trivialization of §% on T'(0)“” by ¢* will change the trivialization by the
character sheaf b,. Thus, left-transition will change the T(O)”p—equivariant structure.
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PROPOSITION 6.6.1. For any A € A, there is an isomorphism
L -~ )
F*(V)) ~ VA7Q£,, . (6.6.1)
Proof. By the isomorphism (6.5.5), there is
i (F*(V))) ~ Homys, rize) (B V)-
Now the claim follows from Proposition 5.5.3. ]

Then we prove Theorem 6.4.8 with the help of the following proposition. In particular, by
Lemma 6.4.6, we actually prove Theorem 4.3.1 (=Theorem 3.3.2).

PROPOSITION 6.6.2. For A € A, the functor
FY : Whitq(F1g,) — Q’-FactMod

sends standards to standards, i.e.

FY(A)) = A, gL

Proof of Theorem 6.4.8. To prove the fully faithfulness of F“, we need to prove that the following
map is an isomorphism

FL
%OmWhitq(Flg’fz)(9717rf2)—>3{om (F™(1), F¥(F2)),

QL' -FactMod

for any F1,%Fs € Whitq(Fl‘gjx).
Since the standards {Ax, A € A} generate the category Whitq(Fl‘é’:x) by cohomology shifts,
colimits and extensions, it is sufficient to prove

FL
Hompig, i ) (Br, F2) = Hom FY(AY), FH(F2)), (6.6.2)

QqL”-FactMod(

for any J5 € Whitq(Fl‘é’;)
Fix a Ay. Since both Ay and FF(A),) = A, oL, are compact, we only need to construct a
2 tq

collection of compact generators {A) ;, w relevant} of Whitq(Fl‘gjx) and prove that F" induces
an isomorphism (6.6.2) if F» = A 5

Without loss of generality, we can assume that A is dominant, the construction of A’)\@ for
general A follows by taking the convolution with twisted BMW sheaf.

In this case, we let A) - = Ay if w =t and A\ == VY if w # t*. Tt is not hard to
see that they form a collectlon of compact generators Indeed according to Proposition 5.1.7,
{VE", w relevant} is a collection of compact generators. Furthermore, Vi* is a finite extension
of A\ y = Ay and VT, for w # tA.

If w#t*, by Corollary 6.5.5 and Proposition 6.6.2, we have %OmWhitq(Flg”z)(AN%) =
i\ (FY(F2)) = j{ome;”-FactMod(FL(A)\)’ FY(33)) = 0. The map (6.6.2) has to be 0.

If w = t*, by Proposition 6.6.2, both sides of (6.6.2) are e, the map (6.6.2) is an isomorphism
since F¥ sends id to id.
Then, we note that standards {A/\ QL
»iq

ogy shifts, extensions, and colimits, and the functor F is compatible with cohomology shift,
extensions, and colimits. Hence, F is essentially surjective by Proposition 6.6.2.

To prove the t-exactness of F", note that according to (3.3.1) and (4.1.5), t-structures on
both sides are defined by the 'THom’ with standard objects. According to Proposition 6.6.2, the
functor F* preserves standards. Hence, F" is t-exact. O

} generate the category Q{;’I—FactMod under cohomol-
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COROLLARY 6.6.3. The objects Ay and Vy are in the heart of Whitq(Fl‘*ép).

Proof. Note that F“ preserves standards and costandards, and F'“ is t-exact, we only need to
prove that A)\ oL and V \qL/ are in the heart of the t-structure on sz’/—FactMod. The later
1S Eq " Eq

claim follows from the fact that QI(; is perverse, and all standard objects and costandards in
Q-FactMod are perverse if {2 is perverse. O

The proof of Proposition 6.6.2 is hard. It occupies the rest of the paper and is finally given
in §8.3.

7. Global Whittaker category

From now on, we focus on the proof of Proposition 6.6.2. As we noted before, it is very hard
to calculate *-stalks. Luckily, we can use duality functor to transfer the calculation of x-stalks
to a calculation of !-stalks. To make the calculation possible, we introduce the global counter-
parts of the category Whitq(Fl“G’p) and the functor F. In this section, our aim is to transfer
Proposition 6.6.2 to 7.6.6 by the local-global comparison.

7.1 Drinfeld compactifications
Fix z € X. The Drinfeld compactification is introduced in [BG02, § 1]. In this section, we define
the Whittaker category on the (Iwahori version) Drinfeld compactification.

DEFINITION 7.1.1. Let (Bunf')l.., be the stack classifying the triples (Pa, {K*, X € AT}, e),
where P € Bung, {k e AT} is a family of morphisms of coherent sheaves
K (w1/2)<5"2f’> — Vé‘;G(oo x) VAeAT,

which satisfy the Pliicker relations, such that it is regular over X \ z, and € is a B-reduction of
Pa at x. )
If we omit the Iwahori structure (i.e. ¢) at = and ask x* to be defined and regular on the

whole curve X for any dominant weight \, we denote the resulting algebraic stack by Bun%/ .

/
oo

7.1.2 Note that there is a projection map from Flgw to (Buny,)

TFlg Fl“é[:x — (Bun%/ )" (7.1.1)

oo T

This morphism sends (Pg, a, €) € Fl“épx to (Pg, {/@5‘, A€ At} e). Here K is induced from Q,
i.e. for any dominant weight X,
K (1411/2)0"2’3> — V%‘M o) V%‘;G.

Similarly, by omitting €, we have a projection map from ggr to Bun¥/,

TGra ?gr — Bun¥/. (7.1.2)

7.1.3 Here (Bun¥’)’.., and Bun%’ project to Bung. By taking the ratio of pullback of g¢

oo

o0

on Bung and the fiber SG‘T‘g)EBung’ we get gerbes on (Bun%/)’.., and Bun%’. We denote the

resulting the gerbes by G¢. By constructions in § 2.4, their pullbacks along the projections (7.1.1)
and (7.1.2) are isomorphic to the same-named gerbes on F1¢ and Grg'.
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7.2 Global Whittaker category
In [FGVO01], the authors defined the category Whit,(Bun%; ). We can define the twisted Whittaker
category on (Bun%;)’,., similarly.

Given a point § = {yl, Y2, -..,Yn} in Ran, which is disjoint from z, i.e. = # y; for any 1.

DEFINITION 7.2.1. We define ((Bun%/)... )good at 7 as the open substack of (Bun%)! such

oo

that for any dominant weight A, the map x* is injective on the fiber over any point y; € .
Since {ﬁj‘, A € AT} are injective bundle maps near 7, they give rise to a N“"-reduction of
Pe near g, which means there exists a B-bundle Pp on the disk Dy, such that
B
Tg‘gg ~ TB’D@ X G,
and ﬂﬂT c P xBT ~wh,

Similar to [Gai08, §2.3], we construct a N(0)%’-principal bundle ((BunN ).z )good at § OVer

the stack ((Bun® )i.z)good at 3- This bundle classifies data from ((Bun%)...)good at 5 Plus a
choice of identification of the B-bundle Pp|p, with the B-bundle induced from w”, such that it
is compatible with ﬁg .

P

By a standard gluing procedure (see [FGV01, Lemma 3.2.7]), we can extend the N(0)s"-

action on ((BunN )oo.z)good at § tO an action of N(fK)‘;p.

DEFINITION 7.2.2. A twisted Whittaker sheaf on (BunN ).r 18 a twisted sheaf on (Bun%/ ). .,
such that its pullback to 7((BunN )oo.z)good at § 18 (N(iK)y , —Xg)-equivariant for any gy dis-
joint with x. We denote the category of G¢-twisted Whittaker sheaf on (Bun%/).., by

Whit’l((Bun )oo x)

Applying the method of the proof of [Gai20, Theorem 5.2.2], we have the following.
LEMMA 7.2.3. We have:
7T‘!F1,m : Whitq((m)oo 2) = Whitq(FluGﬂjx)
is an equivalence of categories; and
T+ Whity(Bung’) — Whit, (Sg,)
is an equivalence of categories.
We denote by Ag‘lob the twisted sheaf W%Lx(A \)[dy], where d, := dim(Bun¥y).

REMARK 7.2.4. Although the local Whittaker categories are equivalent to the global Whittaker
categories, we have to use both of them in this paper: we use the local Whittaker category
to show the factorization property, and we use the global Whittaker category to show prove
Proposition 6.6.2.

7.2.5 Proof of Lemma 7.2.3. The second claim of Lemma 7.2.3 is the statement of [Gai20,
Theorem 5.2.2]. To be self-contained, we prove the first claim.

First, we give the algebraic ind-stack (Bun%; )’ ., a stratification. By definition, the algebraic
ind-stack (Bun%;)...,

— aff G G
is a section of X — x in T\N\Ga x Pg which generically lies in T\ (NV\G) x Pg, such that the
induced map to T'\pt is given by w”, and € is a B-reduction of P¢ at x.

classifies the data of points (?G,a, €), where Pg is a G-bundle on X, o
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According to [Zhul6, Lemma 1.3.7], we can trivialize P on the formal disc D,. Furthermore,

T
we can choose an isomorphism Pg|p, g P¢, such that the Iwahori structure e goes to w” x B|,
under this isomorphism.

o
S o taking the restriction of o to D, we obtain a map

J|2<>) : Dx — T\(N\G) >< Pe ~ T\(N\G) >< P&, such that the induced map to T'\pt is given by

T

For any geometric pomt in (Bun

wP. It gives rise to a point in (N\G)*"(X). In addition, different identifications ¢ preserving the

B-reduction structure at z differ by a multiplication by Iwahori I”. Hence, for any geometric

point in (Bun%’)...,, we can obtain a point in [(N\G)*"(X)/I*"| = |[N(X)*"\F1&'| = W,
For any t'w € W, we denote the corresponding locally closed substack by (Bun%/ )% e 1T

has an open substack (Bun%; )% Y \.z Where we require x* to be injective on X — .
The projection 7y, induces a map for each stratum:

ML S8 — (Bun®)%).q- (7.2.1)
We claim that 7Ti;1 , induces a strata-wise equivalence, i.e.
Th1e © Whitq((Bung)”,..) —> Whitq(Sh%). (7.2.2)

First, using the same proof as [FGV01, Lemma 6.2.8], one can show that (Bung/ )Y, , —
(Bun%/ )Y, , does not carry non-zero Whittaker sheaf.
Furthermore, there is an isomorphism of stacks

(Bun%)i)\m — x\SFlg:7 (723)

where N;"(p_x is the mapping space X — z — N“” and the right-hand side of (7.2.3) is understood
as the fpqc (equivalently, étale) sheafification of the prestack quotient.

In addition, for any geometric point § = {y1,y2,...,yn} € Ranx_,, we have
w wP
(BUDN) =A-z,good at § — (BUDN) — NX —y— x\ :l_‘[SGr,yZ X Sle’ (724)
i=1

where N;gp_g_m acts on [[", S(C)}r,yl SF1 Y diagonally.
It follows immediately that

g(Bun?)v ) =X\-z,good at § — N \H N(j{) SFI T (725)

and the (N(K);ﬁp,—xg)—equivariant twisted D-modules on g(Bun“](fp)‘:”)\_L good at § aT€ exactly
those twisted D-modules on SI'?I’:‘; which are (N%” ., xz)-equivariant.

Now, the strata-wise equivalence follows from

Whit((Bung/)%, ) =~ [ Shv NS oo (g0 Sta) =~ () Shvga e (gt o Sth”Qw X (SEY).

(7.2.6)

To prove Lemma 7.2.3, it is sufficient to show that 77%1 , induces a functor between the

Whittaker categories and is fully faithful. (Then, the essentialiy surjective property follows from
Whitq(Fl“G’;) is generated by *-extensions of objects in VVhltq(SF1 o))

The functor 7TFL$ sends any global Whittaker sheaf to local Whittaker sheaf:

Whit, ((Bunf ) is generated by *-extensions of objects in Whitq(Bun%)¥, ), and W%l’x

)OOJJ
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sends any such sheaf to a local Whittaker sheaf, then using the fact that the local Whittaker
category is a full cocomplete subcategory of Shvge (Fl"épx), we obtain that 7ri;17x sends any global
Whittaker sheaf to a local Whittaker sheaf.

Consider the following commutative diagram.

P
Rany , x FIg ,

FIZ, S

w
(SFERanx)OO'I

TFl,x
7TFI,RanX z
xr

(Bunf )%,

Since Ran, is contractible (see [Gail3, Theorem 1.6.5] and [BD04, Proposition 4.3.3]), we only
need to show that the !-pullback along the right-hand side induces a fully faithful embedding;:

Whitq((Bung, )ae..) — Whitq((Spy Ran, Joo) — Whitq(Rany , x FIg ). (7.2.7)

x0T
According to Lemma 6.1.12, there is Whitq((gg)ﬁ Ran, Joo-z) =~ Whity(Ranx xFl‘é‘jx).
Thus, we only need to show 7p|Rany, : Whity((Bung')L,.,) — Whitq((ggﬁ Ran, Joo-z) 18 fully

xXO-T
faithful. Note that Whity((Buny )..,) and Whitq((gglo’ Ran,)ooz) are full subcategories of
Shvge ((Bunf)s.,) and SthG((y’;‘)ﬁ Ran, )Joo-z); Tespectively. We only need to prove 7 Rany.,
Shvga (Bung )s..) — Shvga ((SpyRan, o) s fully faithful.
N,gen

Denote by Bung the stack which classifies principal G-bundles on X with a generic
N“"_reduction. Consider the following Cartesian diagram.

—wo wP
(SFI,Rangc)OO'm C;I.G,Ram

i l (7.2.8)

(Bun¥ ) — Bung’gen
Now the desired fully faithfulness follows from the fact that Gré g,, — Buny 5" is universally
homologically contractible [Gai22, Theorem A.1.10].

7.3 Global semi-infinite !-extension sheaf
Before we define global functors corresponding to the functors F* and , we should construct

the global analog of the semi-infinite sheaves ji(wy-.cont ), ji(Wg-w Contos..) defined in §6.2.
Gr,Conf F1,Confoo. 2

FDK

DEFINITION 7.3.1. We denote by Bun’B_ the algebraic stack classifying B~ -bundles on X plus
a B-reduction of the induced G-bundle at the point z. In other words, it is the fiber product of
Bung- with the classifying stack of B over the classifying stack of G.

We define Bun,_ as the Drinfeld compactification of Buny_. It classifies the quadruples

{Pr, Pe, {m_’j‘, X € AT}, e}, where Pr € Buny is a T-bundle on X, Pg is a G-bundle on X and
KAV, o (WA yie At (7.3.1)

is a collection of morphisms which are regular on X and satisfy the Pliicker relations.
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By omitting the Iwahori structure €, we get the Drinfeld compactification Bung- of Bung-.
Remark 7.3.2. If we require k= to be surjective in the definition of Buny_ (respectively,
Bunpg- ), the resulting stack is Bun'y_ (respectively, Bung-).

G,Tratio

DEFINITION 7.3.3. We define the gerbe Sglob

(§9) e (8h).

Here BunjB, has a relative position map

on Bung- (respectively, Bun;_) as

Bunfy. — Bung x pt/B x pt/B” ~Bung x B7\G/B. (7.3.2)
pt/G pt/G pt/G

We denote the preimage of the Bruhat cell Br ¢ B~\G/B in Bun;_ by Bun}j_, w € W. For

convenience, we denote by Bun’;_ the stack Bun}g,.

By the definitions of §¢ and G7 in § 2.4, we see that the gerbe Sgi’raﬁo is canonically trivial

" i . G, T ratio .
on Bunfz - C Bun’;_ and Bung- C Bung-. Hence, the categories of 9g10b -twisted sheaves on

Bun’,_ and Bung- are equivalent to the categories of non-twisted sheaves on the corresponding
stacks. In particular, we can consider the constant sheaf in the twisted case.

G,T,ratio
glob -
twisted perverse constant sheaf on Bun’,_ (respectively, Bunpg-) to Bun’y_ (respectively, Bung-).

DEFINITION 7.3.4. We denote by ji o1, (respectively, J1 glob ;) the l-extension of the G

7.4 Zastava spaces
Zastava spaces are introduced in [FM99]. They play an important role in our global construction
of the functor. Let us recall the definitions of the Zastava space and related stacks in this section.

DEFINITION 7.4.1. We define the compactified Zastava space Zqg, and Zastava space Zg, as

Zar = Bun%’ x’ Bung-,
Bung

Zar 1= Bunfvp x' Bung-,
Bung

where x’ means the open substack of the fiber product such that the composition of K> and K~
is non-zero for any dominant weight \.

DEFINITION 7.4.2. Similarly, we define the affine flags version of Zastava spaces as

_ —
(Zr1z) oo == (Bun¥’) . ><'/ Bun,_,
Bung, (7 A 1)
-, 4.
(ZFl,x)oo~oc = (Bun%p)oo,w X// Bun%_.
Bung

Since we assume that [G, G] is simply-connected, taking zeros of the composition of x* and
KA gives ind-proper maps
VFLglob © (ZFlLa)ooe — Confy, (7.4.2)

and
VGr,glob Zar — Conf. (7.4.3)

By [BFGMO02, §2.3], the Zastava spaces satisfy the factorization property.
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LEMMA 7.4.3. There exists isomorphisms

Zge x (Conf x Conf)gisj ~ (Zgr X Zay) X (Conf x Conf)gis;,
Conf Conf x Conf

and
(ZFL:c)oo-m X (Conf x Confu.z)disi

onfoeo. g
~

(Z(}r X (ZFl,m)oox) X (Conf X Confoo-x)disj‘

ConfxConfsg.z

7.5 Construction of global functors
Let us consider the following diagram.

(ZFl,x ) 00T
P
dy
(Bung’)’.q Frbelob Bun’,_
Conf .o

DEFINITION 7.5.1. We define global functors Fngob and Fg]iff) as

Flio, : Whity(Bung’)%.,) — Shvga (Confo.s)

oo

! —_ R .
Fe UFLglob,!(q/z’!(?) ® p%!(]!,glob,Fl [dim Bung])),
and
FDR - Whit, ((Bun¥’ ).y ) — Shvga (Confoe.)

glob 00T
1 Ly .
F = URlglob,! (CIIZ (F @ plé (J*,glob,Fl [dim Bung])).
Similarly, we consider the following diagram without the Iwahori structures.
ZGr
AL
az

.
Bun%; UGrglob  Bunpg-

Conf

DEFINITION 7.5.2. We define functors Fngob,Gr and Fgﬁobgr(i}") as

Fglfob,Gr : Whitg(Bun) — Shvga (Conf)

!

F = ver,glob ) (07 (F) @ P2 (] y1ob, ., [dim Bung])),
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and
Fyab.ar : Whitg(Bun%’) — Shvga (Conf)
, (7.5.6)

F = var,glob ) (07 (F) @ P2 (J; g1op, e [dim Bung])).

7.6 Comparison between local—global functors

7.6.1 Recall that in § 6.3, we define a Y-parametrized prestack yFl, for any prestack Y with a
map to T(0)g5, \Ran,. Now, we consider two cases: Y = (Gr{/g,,. )ac and Y = Buny x Ran,.
We denote the resulting prestacks by gr,F1 and gun, Fl, respectlvely

Note that the restriction of G¢ on Bun’;_ :=Bung- X pt/B is canonically identi-
pt/G

fied with G7, which implies that G&Tratio op Bun’,_ is canonically trivial. Let j;glob’Fl €
=t . .
Shv ((g)G.T.ratiey-1 (Bung-) be the l-extension of the (twisted) constant perverse on Bun’, .
The algebraic stack Bunjg_ is an algebraic stack over Buny and can be regarded as a
— P - P
T-twisted construction of (Buny-)!' (the negative analog of (Buny )*° in § A). In other words,
P
it is a stack over Bunt and the fiber over Pr is the Pp-twisted (Bun‘fv_)l. We have a natural
projection
! 5/
Bunr7TFLRan, * BUHTSFLRanz — Buan.
A relative version of the proof of Lemma A.2.1 yields the following lemma.

LEMMA 7.6.2.

| .— .
Bunr TF1,Ran, (JLglob’Fl)[dlm Bun-] = BungJji(w Yoo ‘han ). (7.6.1)

Furthermore, by definition, the !-pullback of gyn,. ]u( —1 ) along gy F1 — Bun, F1 goes to
Fl Rang

GrpJi(w Wt ). This implies the following lemma

LEMMA 7.6.3. We have

| .— . / ~ A
ﬂ-Sconf—>BunB (JLg]ob,F]) [dlm BU.HB,] — .]'( Sl:l 1CC0fﬂfoo z )’ (762)
onitoo-x
,l,ConfOc .z
where Ts.,,,—Buny 1S the natural projection from Spy Confa., U0 Bun| B--

With the preparations above, we prove the following proposition, which is the analog of
[GL19, Proposition 20.3.4] in the affine flags case.

LEMMA 7.6.4. We have

Fglob ~ F" O7Tz Fl[d I,

and

|
Fat ~ FP¥ o py[dy].

,Confoo.z

Proof. The Zastava space (Zp) +)oo- i isomorphic to (Sgy Confas. Jooz N (SEI Conf e ) (see [GL19,
Proposition 20.2.2]). Under this identification, voont.., is identified with vpygiob.
Now the lemma follows from the following two facts.
— The !-pullback of j , p[dim Bung| along (Zpiz)sc.c — Buny_ is isomorphic to the sheaf
j'( S_ C(:Illffoc I) [deg +d :H(ZFLQE)OCZ °

— The sheaf sprdp owFLI(H’) is isomorphic to the !-pullback of F along (?ﬁ)f Conf ., Joow —

(Buan)oo.x.
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The first fact follows from Lemma 7.6.3, and the second follows from Lemma 7.2.3. O

Similarly, by a local-global comparison, one can prove that
—1 ! =1 — .
Q,I;’/ 2~ VGr,glob (A7 (Fp) ® p‘Z(]!,glonr [dim Bung])),

and

/

! — P .
QqDK = VGr,glob,* (q'Z(?Q)) ® p!Z(J*,gh)b,Gr [dim Bung])).
Here Fy is the unique irreducible object in Whit,(Buny/).

Remark 7.6.5. A priori, it is not easy at all to show that Finob factors through a category of

factorization modules and the image of Fjy under F ngob’Gr admits a factorization algebra structure.
It is the reason why we have to start from the local Whittaker category and construct Ran-ified
affine flags in preceding sections.

By Lemma 7.6.4, to prove Proposition 6.6.2, we only need to prove the following proposition.
PROPOSITION 7.6.6. For any A € A, there exists an isomorphism

Fliob(AA ) ~ A

. alob (7.6.3)

Q5

8. Proof of Proposition 7.6.6: duality

In this section, we study the relationship between F| ngOb and Fg]ifﬁ. We want to prove that F ngOb

FDK

glob al€ Verdier dual to each other

and

Fyiop, 0 DYrdier(F) ~ DVerdier o FDI (F) : Whitg((Bung, )..,)' ¢ — Qg -FactMod.

glo g 00T

The method is given by reducing the above isomorphism to some stack where we can apply the
universally locally acyclic property (ULA).

8.1 Universally locally acyclic

In [BGO2, §5], the authors introduced the notion of ULA.? Roughly speaking, a sheaf is ULA
with respect to a morphism if its singular support over each fiber is the same. The following
lemma (it is straightforward from the definition in [BG02, §5.1.2]) explains why the notion of
ULA is important.

LEMMA 8.1.1. For algebraic stacks X,Y and W, consider the following Cartesian diagram of
algebraic stacks.

p1
XxwY —=X
\Lm l(h
q1
Yy—>W

Given ¥, € Shv(X),Fz € Shv(Y). If we assume that F; is ULA with respect to qa and W is
smooth and of dimension d, then the following canonical map (see [BG02, §5.1])

PL(F1) & p(F)[—d] > 1 (F1) © ph(F)[d]

is an isomorphism.

9Tt is expected to be equivalent to the notion of universally locally acyclic introduced in [Del77].
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8.2 Duality of Fgliob and F, g]?gf)

We denote by Bun?' the substack of Bun’,_ such that the degree of the T-bundle is —\ +

(29 — 2)p, and denote by m};ﬁ,@ the open substack of m’l’;‘, such that the total order of
degeneracy of the generalized B~ -reductions is no more than p.

The following lemma is a tiny modification of [Cam19, Propsoition 4.1.1] (see [Yan21] for a
detailed proof).

LEMMA 8.2.1. There exists an integer d which depends only on the genus of X, such that, for
any p € AP and X € A satisfying the condition (X): for any 0 < u’ < p,

(—)\ — ,U,I, d2> > d,
the restriction of j,_ glob,F1 O Bun?ig 18 ULA with respect to the natural projection

Bun/j;‘_é“ — Bung,. (8.2.1)

In this section, we prove the following theorem using Lemma 8.2.1.

THEOREM 8.2.2. We have that Fngob and Fg%f) are Verdier dual to each other, i.e.

L Verdier . mVerdier DK
Fglob [¢] ID) =~ ]D) O Fglob‘ (822)

The proof of Theorem 8.2.2 follows a standard factorization argument that has been used
in various references such as [GN10, § 16.4], [Gail8a, Proof of Proposition 3.6.5], [GL19, §21.2],
ete.

8.2.3 Step I. We want to prove that the natural transformation

|

DV (0 ot (8 (F) @b (77 1o 1 [dim Bungy]))
!

. 'y .
UL glob, (@7 (DY () @B (i yiop, i [dim Bungy])),

which is obtained in [BG02, §5.1] is an isomorphism for any locally compact object F €
Whit ((Bun%y )., ).
By definition, vy glop, is ind-proper, hence, it suffices to prove

i ' - . - erdier ! I :
DY (gl () @ By (g, ldim Buniy])) = gl (DY (5)) & Bl (7 i Bun).

We only need to prove

!

* —x rdi — . ! o=l — .
35 (F) © py (DY (= )= dim Buny] = 5 (F) & Bl (igp, ) [lim Bung),
for any F € Whit,—1((Bunf/)5.,)'°%¢. Since Jeglobr a0d Ji g, g are dual to each other, we
should prove
— * —% - . — ! — e .
az(F) ®PZ(Jz,glob,F1))[— dim Bung;] =~ §(%) ®p!Z(]!,glob,Fl)[dlm Bung]. (8:2.3)

This indicates to us that we should use Lemma 8.1.1. That is to say, if we can prove
that j .1, 7 8 ULA with respect to the projection morphism (8.2.1), then (8.2.3) follows from
Lemma 8.1.1. But, in fact, we do not need such a strong property. We can recover the isomorphism
(8.2.3) by factorization property from its restriction to an open subset.
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DEFINITION 8.2.4. Denote by (ZFLE);’)%“ the preimage of Bunj’g/\_éﬂ in (Zp1z)oor under the

projection morphism (Zpl,m)oom — Bunjg_. Note that (ZFL:E)?,Z.%“ is open in (ZFLI)OO.QC for any

N €A, pe AP,

Combine Lemma 8.1.1 with Lemma 8.2.1, we obtain the following corollary.

COROLLARY 8.2.5. If \, u satisfy condition (X), then the natural transformation (8.2.3) is an
isomorphism on (Zpy, x)éo ', for any twisted sheaf ¥ € Shvge ((Buny,)

oox)

We set

(Zr1a)oon = U (Zre) 25 (8.2.4)
AEA, n€APOS | condition(X)

then by the corollary above, (8.2.3) is an isomorphism on (Zp )%,

8.2.6 Step II. Now we want to extend this isomorphism to the whole affine flags Zastava
space (Zp1z)osoz Via the factorization properties.
We denote by Zér the fiber product

Zar % Conf?.

Conf

Similarly, we denote by (Zp, 2)2.. the fiber product (Z¥1.2) 00w X Confa, ConféQ .
By Proposition 7.4.3, the afﬁne flags Zastava space (Zpl’m)oo .z isa factorization module space
with respect to Zg,. Note that the factorization structure is compatible with degree, i.e.

28 X (Zp12) 32 X (Conf* x Confd2,,)ais
Conf* xConf)2.,
= (8.2.5)
(ZFI x))\1+)\2 X (Conf’\1 X Confg‘g‘x)disj.
Conf;\ol.;;)\2
Denote by Z¢,. 1= Bun‘j{,ﬂ x’ Bunpg-. Taking the restriction of (8.2.5), we get the following map
Z&N X (Zp12) 2. X (ConfA x Conf22.,) ais;
Conf* x Conf32.,

! (8.2.6)

(ZF11>/\1+>\2 X (Conf)‘l X Confég.x)disj.
Confi\ol.;g)\2
We note that for any point in ZGr , the B~ -structure is genuine (non degenerate). As a result,

given an arbitrary point zo € (ZF1 x) . and arbitrary point z1 in ZGr , the corresponding object
on the right-hand side of (8.2.6) has the same order of degeneracy of generalized B~ -bundle
as 2.

8.2.7 Here ZoGM X(Zp1a)A2a X

morphisms to (ZFl,x)oo-zi

A A :
CoanGConfggw(Conf ! x Confl? )4y admits two smooth

— one is given by the projection to (Zpy )22,

s ZoN X (Zpya) 22 X (Conf* x Conf2? ) aisj — (Zr1e)A24; (8.2.7)

Conf)‘1 X Confégm
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— another one is given by the factorization map (8.2.6) composed with the projection to
(ZFl,sc)oo-x
D23 AL (ZFl,x)ég.m X (Conf* x Confé‘g.m)disj
Conf? XConfég.w
(8.2.6

6) 5 A1 A A
— (Zp1g)ad i X (Conf™ x Confl?,)dis;
ConfA1+A2

— (Zpie) 2t (8.2.8)
The key observation for the proof of Theorem 8.2.2 is

— for any p € AP, \; € A™2, and Ay € A, we can take an open subset (Z(; Ay X (Zp10)22.2)
of Zéf‘l x (Zp12)A2., whose image under r21 lies in (Zp1 )50, and if we let A\; and p vary,

the collection of stacks {(Zér’\1 X (Zp12)22.0) s b € AP?S, N € A8} gives a smooth cover of
(Zp1,2)22, by the map 1“1 .

Now let us explain the construction of (Zé’r’\1 X (thx)é‘g,x)“.

DEFINITION 8.2.8. Given p € AP, \; € A™2 and Ay € A, a point of (Zé’r)‘1 X (Zp12) 22 ) disj
belongs to (Zé’r)‘1 X (Zp12)22.5)p if and only if:

(1) the order of degeneracy of the generalized B~ -structure is no more than y;
(2) A := A1+ A2 and p satisfy condition (X).

If we allow A\; and p to vary, the collection of (Zér)\l X (Zp1,2)52.2), forms a smooth cover of
(Zp12)22, by rll The claim (8.2.3) is local in smooth topology, so we only need to prove that
the !—pullback of the morphism (8.2.3) to (Zé’r)‘1 X (Zp12)22.4)u along 21 is an isomorphism.

By the same argument as [Gail8a, §3.9], we can see that the pullbacks of the morphism
(8.2.3) along ri‘ and rg‘l differ by a lisse local system. To be more precise, by factorization
property, the !-pullback of the restriction of (8 2.3) on (Zp).)A A2 along 7"5\1 is given by the
restriction of the external product of g, (Fy) ®' pZ(ngthr [dim Bung|) and (8.2.3). On the other
hand, the !-pullback of (8.2.3) along ri\l is given by the restriction of the external product of the
dualizing sheaf on Z ’)‘1 and (8.2.3).

Hence, we only need to prove that the pullback of (8.2.3) along rg‘l is an isomorphism when
restricted to (Zg X (Zp1e) 2.0 ) -

By Corollary 8.2.5, we know that our claim is true on

(Zp1e)ii ™2 i= (Zp1g) e N (Zr1e) 20002

oo

Hence, the pullback of the morphism (8.2.3) to the open subset (r 1) Y(Zpe)s >‘1+A2) in Zé’r)‘l X
(Zp12)A2., 1s still an isomorphism. Now the claim follows from the fact that (Zg; A1 X (Zp10)22.2)

is contalned in (r3") " ((Zm x)f,o).‘{rh) by our choice of A1, Ay and pu.
Thus, we have proved Theorem 8.2.2.

8.3 Proof of Proposition 7.6.6
We define V) 410 to be the Verdier dual of Ay giop-

ProPOSITION 8.3.1. There is an isomorphism

DK /o ~
Fglob(vA,glob) = v)\’QqDK,/.
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Proof. In order to simplify the notation, we omit the twisting notation here.
According to Lemma 7.6.4, we have F’ DK ~, Fgliff) o Tp1 z[dg]|. Furthermore, since the Verdier

duality functor commutes with 7p;[dg], we only need to prove that the image of 6>\ =
DVerdier(A ) under the functor FPX is isomorphic to V 3\ QDK -
whg

Proposition 5.7.6 asserts that the twisted sheaf Vy ~ DVerdier(A ) is isomorphic to AV (D).
By Corollary 6.5.3, in order to show the proposition, it suffices to show

|
(Fla 9 Avien(JlI\D) ® Jx (WSF—l#;)[<Na 2p)]) =0
if A # u, and

H(FIZ, AV (I9) © (g ) (0, 20)]) =

if A= p.
Note that Avi®(JY) is compact, so it is supported on finitely many N(X)“’-orbits in

Fl . Furthermore, the intersection SF N SFI’” is of finite type for any t*w and u (since it

S

is the central fiber of a finite type scheme (Bun¥' )%, , X’ Bun " over p1 -« € Conf?, ). This

x
HHG
implies that there exists a very dominant 7 such that supp(Avi(JY)) N[« ¢ HH]" /12" =
supp(AvZ(JY)) N Sglg Let t"F17THH = ¢ [« =1 FH[" /19" " and denote i (wyyp-n+n) as the
x-extension of the twisted dualizing sheaf on t"F1~"7TH,
Since AvI®(J?) is N(0)* -equivariant, we have

H(FIZ, AV (I9) @ (g ) (0, 20)

ZH( G’x?A ren(J)\)@)]*(wtnFl W'W)K:UH 2ﬁ>])

N(0)«"

~ H(F1g,, Avi™(JY) ®Av) (G (Wengr=n+) [(15 20)1))

= H(FIG x Avien(ﬂ\])) ® Inos * Jntpie)
= j'comShVSG(Flg’jw)((SOv AVien(Jll\)) * s x Jp )
= }ComShvgg(Fl‘éf’x)(‘]Tlalv AVIEN(IR) > Ty )
X wP ren
~ By ier ) (A (), AV (IR 5 Ty )

j{ W ren
=~ Homyyi o(FIEZ, )(AV, N(X) (J,%!),AV*e (‘]11\)-5-77—#))

N(K)«” o ren o
= }ComWhitq(Flg’jz)(AV #9 (5n,!)[_<777 20)], AV (Oxqn—pw) [(A + 11— 1, 20)]). (8.3.1)
And the latter space is 0 if A # u and is e if A = p. O
Combining Proposition 8.3.1 with (4.1.4), there is an isomorphism

v)\ QDK , ~ DVerdler(A)MQ&)'

Now Proposition 7.6.6 follows directly.
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Proof of Proposition 7.6.6. According to Theorem 8.2.2; there is

Fgion(Ax glob) ™ Faion (DY (V3 giob))

~ mVerdier DK /v
~D Faiob(Vglob)

~ T Verdier
=~ D (V)\ﬂqul,/ )

~ A/\7Qg,/.
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Appendix A. Semi-infinite sheaves on affine flags

To be self-contained, we review the theory of semi-infinite sheaves developed in [Gail8a] and
[Gai22] and provide additional details. Our goal is to supply the necessary materials for the
l-extension semi-infinite sheaves ji(w—.cont ) and ji(wg—w.contos») in §6.2.
Gr,Conf F1,Confoo. 2
To simplify the notation, we consider the semi-infinite sheaves on N (X)-orbit, whereas in
the main content, we consider semi-infinite sheaves on N~ (X)-orbit.

A.1 Existence of !-extension semi-infinite sheaf
Recall the prestack 5’%

rRan defined in Definition 6.1.6. Since k is injective for any X, the

collection of maps {x*} determines a N“’-reduction (in particular, a B-reduction) of Pg
at x € X. The fiber product Sg|Rran, := S%nRan t>/<G pt/B admits a relative position map to
p

pt/B x pt/B~ B\G/B. For any w € W, let S{ g, be the preimage of the Bruhat cell
pt/G ) €T
B\ BwB/B under the above relative position map.

A.1.1 Now, we define the !-extension of semi-infinite sheaves on Sgp, n, - Similar construc-
tions work for SIE”LRanI and S%r’Ran as well.

. o . =0
Denote nglo Ran, @S the closure of Sifg,, in Fl‘é’jRanm, it is isomorphic to S, Ran t>;G pt/B.
p

If A € A", let (Conf* x Ran,)< C Conf* x Ran, be the subspace such that (D,J) € Conf* x
Ran, belongs to (Conf* x Ran,)C if and only if supp(D) C J.
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Let < be the semi-infinite Bruhat order. For any t*w < wg, we define

Sﬁﬂl:ﬁanz C (Conf’\ x Rang, )< x FIRan (A.1.1)

ang
as the sub-prestack such that the map K> induced by a extends to an injective map
1/2y(A\2p) (/X A
(W 75)PH(=(X, D)) — Vi, (A.1.2)
on X, and the relative position of the resulting B-reduction at x and the Iwahori structure e
is w.
For any such S’Fl Ran,» the map

A w |, otrw A C SWwo
i S8 '%an, — (Conf* x Rany)S % Sp'Ran, — S Ran, (A.1.3)

Rang

is a locally closed embeddlng, and {SF1 Ran, 7w < wp} gives rise to a stratification of ?;10 Ran, -

The projection p SF1 Ran, — (Conf* x Ran,)< has a section st (Conf* x Ran, )< —
T
SF1 Ran, Which sends (D,J) to (D,J,Pq,a,¢), where Pg =wf(—D) x G, a is given by the
T
identification of w”(—D) and w” on X —J, and € is given by w”(—D)|, X wB.

DEFINITION A.1.2. We define the semi-infinite category SIj;’fRanz := Shvge (?ﬁﬁRm )N )8 ang
W (0%,

Rang |

and SIq Fl Ran = ShVSG(SFl Rang

One can check that the pullback G along (A.1.3) is canonically identified with the pullback
of GA along

t>‘w
SFI %an, — (Conf* x Ran,)= — Conf”. (A.14)
In particular, we define

trwy! . qr=t*w A
(s7*)": SIgFr'Ran, — Shvga((Conf” x Rang)%), (A.L5)

A

(Pt - Shvga ((Conf* x Ran,)<) — SIZ?ﬁf{anz.

Here, we use the observation that (pt" )" : Shvga ((Conf* x Ran,)<) — Shvga (S%Alfﬁanz) factors
=t w

through the full subcategory SI_ 'Ran, -
Since (Conf* x Ran,)© x N (fK)Ran acts transitively on SFI Ran, and is (ind-

Rang
pro-)unipotent, the functors in (A.1.5) are equivalences. Furthermore, we have the following.

LEMMA A.1.3. We have (SIq Fl Ranx) T(Ofane = 0 if A ¢ A*. Here, A* denotes the kernel of the
bilinear form b (i.e. by is tr1v1al)
Proof. By the factorization property, we only consider the point case Shvge (S i w)N (30" T(0)<"

~ Shvga,, . (pt) (0" According to [GL18, § 7.5], the T'(0)“"-equivariance structure on the fiber
9A\ arz corresponds to the character by. In particular, it is trivial only if A € AY O

A.1.4 With the preparations above, we prove the following.

PROPOSITION A.1.5. The left adjoint functor of ( wyt SIjngan %SI?%ﬁ?ﬁanz is well-
defined.
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Proof. By considering the dual category, it is equivalent to proving that (itkw)* exists, which is
further equivalent to the following;:

(i) for any finite set J with a distinguished point, the functor

< A
(i) : SIS SFLxI SI 1'% (A.1.6)
exists where SI:?IO’ X3 (respectively, SI_Fl X:,) is the base change of SI;{;’ER%I (respectively,

SIq Fl ,Rang ) along Xj — Rang;

(ii) for any surjection preserving the distinguished point ¢ : J — J, denote Ay : X} J e X J the
corresponding diagonal embedding. The natural transformatlon

(23 “)* o A¢ — A¢ (i5 “’)* (A.1.7)
is an isomorphism.

Once the above two points are proven, we obtain the desired functor by passing to the limit.

The category Sljglo 3 admits a block decomposition according to different characters of T
indexed by A/Af. To show the existence of adjoint functor, it is sufficient to show in the block.

We assume \ € A%, and prove parts (i) and (ii) for T-monodromic objects in Sl<gl° X3
In this case, (i) and (ii) are corollaries of the Braden theorem in [DG14, Theorem 3.1.6].
Similar to the construction of Sf?l‘gp, we can define SF1 X3 Let sg’tAw : (Conf* x X< —

Pw .t —trw W 2 t*
S X;”, S SFIX NSpixs — Sp x7,and py SFI,X;;) — (Conf* x X7)C denote the cor-
respondmg maps.
. . = . 2 .
Consider the Gy,-action on the fiber of S;i}ﬁ Ran, Via G .7~ Spy Ran,- I our specific
A A
case, the Braden theorem says that the functors (sg wyto (it;w) and (s ATwyx (zgt V' are
well-defined for G,,-monodromic D-modules on S’Fl Ran,> and are canomcally isomorphic. In
addition, (s5’ i ) = (py # “)« for G,,-monodromic D-modules.
A
Since (A.1. 5) are equivalences, we have (it;“’)* = (pt;“’) o(sy i “)* o (ij’t )= (pt;“’)! o
-t . <
(pj w)* © (713 ) SI> %U{)XJ — SL
we observe that the !-pullback and #-pushforward satisfy base-change, in particular (pt;w)! o

Fl Xj This implies part (i) immediately. For part (ii),

A . . . .
(P4 ) o o (iy’ # “)' commutes with taking !-restriction to the diagonal. O

A.2 Local-global comparison

Recall the substack (Bun%/)¥, . of (Bun‘j{,p);ox in §7.2.5. In this section, we focus on the
l-extension of the constant D-module on (Bun¥; )*° := (Bun%; )9 ...

The restriction of G& to (Bun%/ )™ is canonically trivialized. Let j!7 globF1 P the l-extension of

the twisted constant sheaf on (Bun%; )"0, it is well-defined since the constant sheaf is holonomic.
In this section, we aim to prove the following.

I eE——
LEMMA A.2.1. Pulling-back along 7p) Ran, : ?}ffﬁRanz (Spy ‘Rany)oox — (Bungy) ., induces an
isomorphism of semi-infinite sheaves
! -N
TF],Rang (J!,glob,m)[d ]~ J'(wsﬁomnx)' (A.2.1)

A.2.2 Let Bun} be the preimage of the Bruhat cell B\ BwB/B under Buny := Bung x
pt/G
pt/B — B\G/B.
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For any t*w < wg, we define

P\
(Bun% )" := Bun% x Conf?
N B ’
Bunp

where the map Conf* — Bung is given by D — w?(—D).

Let zglob be the locally closed embedding
P trw wPy
glob - (BUDN) - (BunN )oox

B B . .
which sends (Pp,e, D) to (Pg,{k*},€). Here, Pg = Pp x G, and w* : (w/?)NM2) — V?G is
given by (w/2)A20) s (u1/2)A20) (—(X, D)) — véa.
The map i""* factors through (Bum]\,p)“’0 = Bunfvp x pt/B. The collection {(Bun‘]"vp)tkw,
pt/G
t*w < wo} gives rise to a stratification of (Bun%)wO.
Furthermore, the following lemmas follow from definitions.

LEMMA A.2.3. The diagram

A
th

o
S8 an, — SElRan,

\L TF1,Rang TF1,Rang l
~t>‘w

B Py Zglob B WP .
( UHN) > ( UHN)

is Cartesian.

LEMMA A.2.4. The morphism

SFI Rang (Conf)\ X Ranz)c - Conf/\ (A22)
is identified with
pt>‘w
SFI Ranl (Bun%p)t)\w iot; Conf/\- (A.2.3)
Here, pglob (Bunf )’5A = Bunj X Conf*—Conf?* is the projection.
Bunp

Similar to Definition 7.2.2, if We erase the character x, we can define the global semi-infinite

sheaf category SI, m glob on (Bunf; ) »- We denote by Sljg’ﬁ glob and SIfFl ‘glob the corresponding
categories on (BunN)w0 and (BunN)t W respectively.

Since the equivariance property is against a unipotent groupoid, the global semi-infinite
sheaf category is a full subcategory of the category of D-modules. The pushforward and pullback
functors for plain D-modules give rise to the corresponding functors for semi-infinite D-modules.

That is to say, we have the following functors:

—grswo - thwd

Z»t’\w . SI:tAw
glob,! - P4¢,Fl glob q,Fl,glob * glob

.t>‘w,* -<'w0 =t \w Lt Aw
Zglob : SI q,Fl,glob PSIq Flglob * Yglob, s

One can check that the full subcategory SIq Fl ‘alob C Shvge ((Buny )t %) coincides with
the image of the fully faithful functor p gl b : Shvga (Conf*) — Shvgc((Bun“’p)t *). Thus,
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for any object F € Sljgloglob, its restriction to the strata (Bun‘j’vp)tkw is the !-pullback of a

GA-twisted sheaf on Conf®. Combined with Lemmas A. 2 3 and A.2.4, il o W%l Ran, (F) lies

in the full subcategory Shvga((Conf* x Ran,)<) ~ ST H'h Fl Ran, - Note that for any object F in

SthG(ggﬁRanz), it belongs to SI:?IO’R&H if and only if it’"!(F) e ST} Fl Ran, for any trw
. ! <

In particular, Ty gay, (F) € SIR Ran, - 10

In order to prove Lemma A.2.1, we need to show for any t*w < wg, we have

(") 51 Rany, U tob,r1) = 0. (A.2.4)

It is sufficient to use the Braden theorem again. Recall that (stkw)! in (A.1.5) is an equivalence,
the equation (A.2.4) equals

A

A Ak .
(s o (i) 7T'F1,Ranz (J!,]\élob,m) =0. (A.2.5)

In addition, there is an action of 7' on (Bunﬁfp)wo given by the adjoint action of T" on N,
which is compatible with the T-action on the fiber of Sgﬁ Ran,- 10 particular, since j,{élob’Fl is

T-monodromic, the sheaf F};\I’Ranz (j!’]\élob’m) is T-monodromic. In particular, (A.2.4) is true if
¢ AL
If A € Af, using the Braden theorem, we have
A | A ! - N
(s"") o (i) O7TF1 ,Ran, (J' ,glob, F) = (87 # V)t o(iT # w) © TF],Ran, (J!,glob,Fl)

A | N
t w) (Z ’t w) OWFl,Ranz(]!,glob,Fl)' (A26)

Let Bun)E‘;’q;U be the algebraic substack of Bun’y_ such that the degree of the induced T-bundle
is =\ + (2 — 2g)p and the relative position of the B~-bundle and the Iwahori structure at = is w.

=(p

We denote by (BumNp)“’0 x! Bun ¥ the sub-Zastava space of (Zpjz)ooz- It has a projection
Bung,

— WP
v%‘l glob tO Conf?, and we denote by s : Conf* — (Buny )* x/ Bun"

e its section.
Bung,

LEMMA A.2.5. In the following, the upper diagram is commutative and the lower diagram is
Cartesian.

S S—,tA’LU
Fl Ranz F1,Ran,
7’t)\w

((Bunifp)wo NG Bun%’f’) X (Conf)‘ X Rang )~ (Conf’\ x Ran,)C

Bun/ A X
G Conf PTConfxRan
\L Id xpr? pr
H—w’ A U glob
(Buny )0 x’ Bunp? ® A
Bun/, B Conf

In addition, pulling-back the gerbe §¢ along

SFl Ran, ﬂSFl ‘Ran, (Bun(fvp)wo %! Bun" (Bun(fvp)wo

Bung, B~

10 However, the naive analogy of Lemma 7.2.3 in the semi-infinite setting is not correct.
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is canonically isomorphic to the pullback of the gerbe G* along
?%Uﬁ Ran, SF_I:tR)\gIJIm — (Coan x Rang ) — Conf?.
Using the above lemma, we obtain
(A.2.6) = préoanRan,* o (Id x pr*) o EIIZ!(j!,]\élob,Fl)

_ AN Aw 1N
Base change (pr?) o UFl,glob,* © UIZ(J!,glob,Fl)

A! A N/ .N
Braden thoorem P ) © (565)" © 7 (Ggion,)- (A.2.7)
It remains to show
Awyx =N N
(5213%) ° q/Z(]!,glob,Fl) =0. (A.2.8)

In the affine Grassmannian case, it is well-known that the !-pullback from the Drinfeld
compactification to the Zastava space sends !-extension (respectively, IC) sheaf on (mp)oow
to l-extension (respectively, IC) sheaf on the Zastava space. The analogous result also holds in
the affine flags case.

ProrosiTION A.2.6. Up to a cohomological shift, there is

/N .
q,Z(]!,glob,Fl) = ]!(C(Bun‘]"vp)wo «! Bung’f)' (A.2.9)
Bun’G

»w) is the shifted !-extension of the (twisted) constant sheaf on the
Y

Here, j!(C(Bun“]‘(IP)WO X’ Bun
Bun’G
, A
open Zastava space (Bunf; )"* x’ Bunp”.
Bun/
G

Proof. The proof adapts a similar argument of §8.2.3-8.2.7. Here, we sketch the proof.
We fix a u, and let A be very anti-dominant. Taking projection defines a map

1 : ((Bun¥y B><' Bun’,_) x ((Bunu&p)wo BX/’ Bun)]‘g’z_”))disj — (Buan)wo x Conf¥. (A.2.10)
ung ung

The factorization structure gives another map, i.e. composing the factorization map

((Bun, x' Bun’,_) x ((Bun}u\,ﬂ)wo x/ Bung’q;”))disj
Bung Bung,

— (Bun%)w0 x/ Bun‘l‘;)"w x  (Conf* x Confa,.,)dis; (A.2.11)

/
Bung, Confgj.;‘

with the projection

(Bun?(,p)wo x/ Bun%“’w x  (Conf" x Conf . )dis — (Bunf\;)“’O x Conft,  (A.2.12)

BUHIG Confgof;‘
gives a map 7o.
P
Furthermore, the images of both maps land in the open subspace ((Buny )*° x Conf*)g504 C

(Bur1u]<,p)wO x Conf”, where we impose the condition that the generalized N“”-structure is genuine
at the support of the point in Conf*.
P
Similar to §7.2, one can define a N(0)¥ .-bundle ((Buny )“o x 001r1f“)}geovj}jl on

((Buan)w0 x Conft)go0q, and the action of N(0)& . extends to an action of N(XK)& ..
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One can check that further compositions of r1, 79 with the projection

(Buny )™ x Conf")gooq — ((Bumy )*“* x Conf#)\evel /N (A.2.13)

P . ; °
npe Which contains N(O)& u-

are the same if N’ is a large enough sub-pro-group of N(K)¢

p
To prove (A.2.9), since the composition of 7; and the projection to (Bunpx )*° x’ Buni‘?’qf}
Bung,

is surjective, we need to prove that the !-pullback of the !-extension sheaf on (Bunf\,p)“’0 along

(Burfj(:)“’0 x Conft — (Buan)”““0 and 7y is the l-extension sheaf on ((Bun%/ B1>1<11/G Bun';_) x

P
((Bunﬁ, ywo  x! Bun)l;,’ﬁ"))disj.
Bung,
By the identification of composed maps 71,7y with projection (A.2.13), it is equivalent to

proving that the !-pullback of the !-extension sheaf on ((Bunoji,p)wo x Conf#)g00q along ry is the

l-extension sheaf on ((Bung’ x’ Bun/,_) X ((Buan)“’O x/ Bung?))disj.
Bung Bung,

Since the !-extension sheaf on ((Bunfvp)w() x Conf#)g00q is the !-pullback of j!]\élob F1, We only
need to show that the !-pullback of j!]\fglob ) along ((Bunfvp)wo x Conft)g00q4 — (Bun‘fvp)wo and
ro is the l-extension sheaf. Now, it follows that if A + p is anti-dominant enough, the composed

P - P
map of ry and ((Bunjy )™ x Conf")gp0q — (Bunp )™ is smooth. O

Now, the desired isomorphism (A.2.8) follows immediately, since the image of sgg{o lies in

the complement of (Bun%/ )*° x' Bun%’fj.
Bung,

T

A.2.7 Comparison between j!],\f[glob,Fl and j;(wSzFulo) Let Wgwo be the twisted dualizing sheaf on

Sgl’ under the canonical trivialization of G% on Sg’. In this section, we prove the following.
LEMMA A.2.8. We have ﬂ%l’m(j!’]\élobm)[dg] ~ j (WS;O)'

w

P . . . .
@’ -equivariant and T-equivariant.

Proof. Similar to the Ran case, mi x(j!]\glob p) is also N(X)
Thus, we can use the Braden theorem once again.
Recall the notation ji,, p : S%Alw — Fl“ép in Definition 5.1.5, and let us denote by it;w the

closed embedding pt = {t)‘w} — S%Al’;c’ According to Proposition 5.1.4, we only need to prove
RN | (N
(Zx w) © ];{/\w,Fl © 7TFI,Q:(]!,glob,Fl) = 07 (A214)
if t\w # 1. If X ¢ A, it is true since semi-infinite sheaves on ng; is not T-monodromic (to be
more precise, it has a different 7-monodromy structure from mh _ ( j!]\élob FL))-
Assume A € Af. By the Braden theorem,

- ! .
(A.2.14) = H(Sg" %, Wi«“l,x(J!,]\élob,Fl)‘ (A.2.15)

A )
—,tMw
Spy

By base change and Proposition A.2.6, (A.2.15) is just the shifted !-fiber of the sheaf vl’;iélob L ©

j!(C(Bunf\f)wo " Buan,iu) at t* - & € Conf?). Using the Braden theorem again, we have

Bun/G

Aw . _ P wyx _
VR, glob,x Oj’(C(Bun;Jv”)wo « Bun™®) = (Sgioh) OJ!(C(Bun%)wo ' Bunw) = 0. (A.2.16)
Bun/G B Bun/G B

O
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As a combination of Lemmas A.2.1 and A.2.8, we obtain

COROLLARY A.2.9. The !-restriction of j (wswloR ) to F1&, is isomorphic to j) (wswlo )
Fl,Rang ’ Fl,z

Appendix B. Semi-infinite equivalence vs Iwahori equivalence

w

In the untwisted case, it is known that for a category € with a strong action of G(X)“”, and any

A, i € A, the following functors are equivalences:

Ad#IWP/T(O)“’p

eAd,\I“’p obly GT(o)w" Av, eAdHI“’p
B.0.1
P AvNi(fK)wp P P ( )
el b EN~ ()= T(0)="

The first is implicit in [AB09, Lemma 8] and the second is proved in [Ras14, Theorem 17.2.1,
Corollary 17.2.3].1' For self-completeness, we prove the metaplectic version of the above
equivalence with a similar proof as in [Ras14] and [Gail8a, Proposition 5.2.2].

PROPOSITION B.0.1. For a category C with a strong action of (Shvga(G(XK)“"),*), and any
A, i € A, the functors in (B.0.1) are still equivalences.

Proof. Let us first consider the first claim.
The gerbe §¢ on G(X)“” has a canonical trivialization on 7'(0)*”, which canonically extends
to Ad“I“’p preserving the multiplication structure. We consider the constant sheaf on Ad“I"JP

e . Ad, 1+ /T(0)~" L
under this trivialization, denoted by cpq,wr. By definition, Avy (F) is given by

wP
CAd, I+° T((;) F for any AdyI*’-equivariant object F € C.

Choose a trivialization of G& at t=* € G(X)*", which determines a left transition functor
A — Shvge (F1¢') — Shvge (F1¢). Applying this functor to F, we obtain an I%-equivariant
GC-twisted sheaf. However, note that conjugating the trivialization on T(9)*" by t—* will change
the trivialization by a character sheaf b_ on T(0)“’. So, t=*F is (I*”,b_))-equivariant.

Similarly, if we choose a trivialization of G& at t~* € G(X)*’, it determines a transition

functor t7# - —. Let crory—p := 17" - cpq, jor. We have
T(0)~" T(0)~" T(0)~"
CAd,, [+° (*) Fothcruepn (*) F o th cpupymp - 1 (*) T (B.0.2)

Since t~*F is I%-equivariant, we can take right I%-averaging of c¢jwr, ut* € Shvge (G(X)*")

before taking convolution. Up to a shift, it is isomorphic to the pullback of (J_,4x«)—x along

G(X)*" — Fl.
wP wP I
In conclusion, we obtain that, up to a shift, Avidul/T(0) (F) is given by tH(J_qx)—x *
I

t~F. The functor (T pgas) =2 xt~ . — is an equivalence since transitions and convolution
with twisted BMW sheaves are equivalences.

Now, we prove the second claim.

_ WP
First, we need to prove that AV!N (%) (F) is well-defined for F in the image
_ wP

of " e We only need to prove AV,AdQN (t0) (F) exits for any dominant «,

(3)<*

and then AvY @7 () = colim AvAN O () Since Adal“” = AdaN(O)" - T(O)*" -

1 The original statement of p-adic groups belongs to Casselman, Borel, and Bernstein, cf. [Bor76, Lemma 4.7].

1414

https://doi.org/10.1112/S0010437X24007139 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007139

TWISTED WHITTAKER SHEAVES ON AFFINE FLAGS

Ad N~ (t0)*", and Ad,N(0)*" C I“’, we obtain that for F lies in the image of e’ C,

_ wP wP wP
N7 (0) (F) ~ AV!Ad“I /T (F). The latter exists and is the left adjoint functor

17 (o)’
7P oblv GT(O)WP Av, ( e]wp.

Ad
we have Av,

of the equivalence functor €Ada
wP
To be more precise, for J lies in the image of €/ — €,

_ wP
AvMNTEOT gy gy F(a, 25)]
In particular, there is

wP _ WP
Aviv(o) OAV!N (%)

wP
(F) ~ colim AVYO) (YT xF (@, 2p)]) ~ (Jas)—ax J_a)x F = F.
(B.0.3)
N=(H)“" | ore” N= (5~ T(0)" s
We note that the functor Av, G —C is the left adjoint functor of
wf - w w w wP
Aviv(o) L NI T, @I Thus, it remains to show Aviv(o) is conservative, i.e. if
wP wP
AvYO) (F) =0 and F is N~ (K)*"T(0)“’-equivariant, then AVYO) (F) = 0 implies F = 0.
P
Indeed, since N~ (tO)“"T(0)*" =Nyeas I“" NAdaI*”, we have F= AvY O (F) =

WP WP wP
colim Ayl NAde! /() (F). In particular, if F # 0, there exists a very dominant «, such that

Avi‘“pmAdapr JT(0)=" (F) £0.
Using the fact that F is N~ (K)“"T(0)*"-equivariant, we have
AviwpmAdaIWp/T(O)“’p (F) ~ AvixdaN(O)wp ().
The latter is an Ad,J*"-equivariant object.
Now, note that
AVYO gy o AN A AN O gy

wP wP
the desired property AVY©) (F) #0 follows from AvdeN(O) (F) #0 and the fact that
wP wP wP . . .

AVYOTeAdal” @I ig ap equivalence (the first claim of (B.0.1)). O
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