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Implicit Discontinuous Galerkin Methods
for Transport Equations in Porous Media

@YSTEIN S. KLEMETSDAL AND KNUT-ANDREAS LIE

Abstract

We explain how you can use discontinuous Galerkin methods to formulate implicit
higher-order discretizations of transport equations on stratigraphic and polytopal
grids and outline how this is implemented in the dg module of the MATLAB
Reservoir Simulation Toolbox (MRST).

3.1 Introduction

The single-point upstream-mobility weighting (SPU) scheme, introduced in sub-
section 9.3.2 and section 9.4 of the MATLAB Reservoir Simulation Toolbox
(MRST) textbook [9], is robust and widely used but has certain limitations that
can show up when simulating complex flow physics. First of all, the reason the
method is robust is because it adds numerical diffusion that inhibits the creation
of spurious oscillations near discontinuities and sharp gradients in the solution. In
some cases, this can result in excessive smearing of linear or weakly linear waves
that can be found as trailing waves in compositional and enhanced oil recovery
(EOR) simulations (see Chapters 7 and 8). Fluid mobility and rock wettability
typically change significantly across such waves, and smearing them out can lead
to largely erroneous predictions of the displacement efficiency of a given injection
strategy. A second problem with the SPU scheme is that it is only first-order
accurate and thus gives relatively low resolution in smooth parts of the solution.
Last, but not least, the method introduces preferential flow directions perpendicular
to cell interfaces, which may lead to strong grid-orientation effects for flows
with adverse mobility ratios [3, 7] (an examples is shown in the MRST textbook
[9, subsection 10.4.2]). These effects result from instabilities in the multiphase
flow equations and should not be confused with grid-orientation errors caused by
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inconsistent discretizations of single-phase fluxes, as discussed in chapter 6 of the
MRST textbook [9].

The three problems just mentioned can to a varying degree be mitigated by
introducing high-resolution spatial discretizations. Higher-order discontinuous
Galerkin (dG) methods [5, 16], first introduced by Reed and Hill [15], are one
example of mass-conservative methods that are well-suited to capture sharp dis-
placement fronts without introducing spurious oscillations or excessive numerical
smearing. In contrast to other higher-order (high-resolution) methods, such as
total-variation diminishing (TVD) [4, 19] and weighted essentially nonoscillatory
(WENO) schemes [6, 11], that use a wider stencil of cells to achieve higher order,
dG stencils are local to a single cell for all orders and thus give linearized systems
that preserve the sparsity structure of the SPU scheme in a blockwise sense.

This chapter outlines how to formulate implicit discontinuous Galerkin methods
for a wide class of meshes, including stratigraphic grids and general polytopal
meshes. We describe rules for numerical integration, discuss various strategies to
diminish spurious oscillations near discontinuities (e.g., slope limiters), and explain
in detail how you can use the overall methodology to set up simulations within
a sequential solution approach. The cases include the classical Buckley—Leverett
problem in 1D, an unstructured polytopal mesh generated by the upr module, and
a 2D Cartesian case with strongly channelized heterogeneity.

3.2 Model Equations

For the time and spatial scales of interest in the simulation of conventional
reservoirs, changes in fluid pressures will usually propagate much faster than
changes in fluid phases and chemical components. You can also see this in the
model equations. The pressure part of the system is mainly governed by second-
order differential operators in space and has a certain elliptic character, whereas
the transport of fluid phases and chemical components in most cases, except
for capillary-dominated flow, is primarily governed by first-order differential
operators in space and has a dominant hyperbolic character. Hyperbolic and
elliptic operators are discretized somewhat differently, and in sequential solution
methods the overall flow equations are decomposed into a pressure and transport
part and solved in sequence; see chapters 8 and 10 of the MRST textbook [9]
for details. Discontinuous Galerkin methods can be used to discretize both the
elliptic and hyperbolic parts of the model equations, but herein we will only use
this formulation for the hyperbolic part. To simplify the discussion, we henceforth
assume that fluid pressures, and all quantities that depend on these, are known or
have been discretized in some appropriate manner.
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To develop the discontinuous Galerkin schemes, we start with the conservation
equation for fluid phase «, discretized in time by the standard backward Euler
method and written in residual form:

1 -
Ryl = 2a M = M) + V- T - gt =0, (3.1)

The three possible phases are the aqueous phase (a), the liquid or oleic phase (£),
and the vaporous or gaseous phase (v). For immiscible multiphase flow, the mass
term M, flux term F, and source/sink term Q read:

M) = $puSur  FW) = puBar  Qultt) = Pua- (3.2)

As a shorthand, we use the (somewhat imprecise) notation u to represent the
unknown variables, which for an immiscible multiphase transport problem consist
of the phase saturations S,. The porosity ¢ and the density p, of phase o
are generally pressure-dependent quantities that we here assume as given. The
volumetric source terms, g,, are assumed to be known temporal functions for
injection wells and functions of the unknown phase saturations S, for production
wells. For the volumetric flow rates, v, usually referred to as the macroscopic
Darcy velocity, we use a fractional-flow formulation to derive the following
expression (see the MRST textbook [9, subsection 8.3.2]):

U = fu |5+ D 25(Ga—Gp) |- (33)
B=a,l,v

The total velocity v generally depends on fluid pressure and saturations but
is temporarily assumed to be a known quantity in the next section. The frac-
tional flow f, and the gravity/capillary flux terms éa are known functions of
saturation:

= Aa Gy = pugKVz + KV p? (3.4)
- )\a+)\'e+)\‘va a—potg Z pc‘ *

fa
To complete the specification: K is the absolute permeability, g is the gravity accel-
eration, and A, is the phase mobility, defined as the ratio between the relative
permeability and the phase viscosity.
Altogether, this gives us a system of m transport equations for m fluid phases,
which can be reduced to a system of m — 1 equations by using the assumption that
the fluids fill the pore volume; i.e., Za Se = 1.
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You may wonder why we only use a first-order femporal discretization in (3.1).
Higher-order temporal discretizations involve explicit terms that limit the time
step, and to be able to take very large time steps we thus accept the reduced
accuracy of the unconditionally stable backward Euler method. Moreover, the
formal spatial order reduces to one half in the presence of discontinuities,
which are often the most important part of the solution.

3.3 Discontinuous Galerkin Methods

To also discretize the residual equations in space, we introduce a mesh that par-
titions the computational domain €2 into nonoverlapping cells {€2;}7< . Figure 3.1
shows an example of such a mesh in 2D. The mesh is assumed to have matching
faces, so that each cell €2; shares a unique face I';; with each of its topological
neighbors ;; indices of these cells are given by the set N (i). We use double
subscript to denote quantities evaluated at the interface between two cells. We
also assume that each cell has a set of associated geometric properties, includ-
ing cell and face centroids, face areas and normals, and vertices. In MRST, this
information is part of the standard grid structure developed to represent general
unstructured meshes.

3.3.1 Weak Residual Form

As in any weighted residual method, like a continuous Galerkin method, we start by
multiplying the residual equation (3.1) by a test function v from a function space
V of sufficiently smooth functions and then integrate over each cell €2; to obtain

|G = pebiGrid2n(1/8, [1,11); % PEBI grid ‘

Figure 3.1 Polytopal mesh constructed with the upr module. The right figure
shows a cell Q; in gray and its topological neighbors A (i) outlined with thick
lines. Source code for these plots and the examples in this section can be found in
dgExampleDiscretization.m.
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0=/ Rawdv:i/(/\/ta—Mg)l//dv+/(v.ﬁa)1//dV—/ Qv dV.
Q; At Q; Q; Q;
(3.5)

Here, we have dropped superscript n 4+ 1 for the next time step. To move the
derivative in the flux term to the test function, we write the weighted divergence
of the flux as a sum of a surface integral and a volume integral

/w.ﬁawdv: (]?axp)-ﬁds—/ ForVyav. (36
Qi Q;

Fle
In finite element theory, it is common to replace integrals involving test functions
by the equivalent L? inner products

(h.¥)g, =/Q‘ hpdv, (), =/ hy dS. 3.7)

082;

i

In this notation, the weak form of the residual equation (3.1) reads

1
(Ral).¥)g, = - (Malw) = Malu"). ¥,

+ (Ful) - 7)o — (Fal), V) = (Qulw),¥) o, =0.
(3.9)

3.3.2 Basis Functions

We obtain a fully discrete weak formulation of (3.1) by replacing the (infinite-
dimensional) function space V by a finite-dimensional subspace V), of functions
that are piecewise polynomials on each cell but discontinuous across cell interfaces.
We may represent this space locally on a cell €2; by a set of basis functions {1/ o,

which we also use to express an unknown function u € Vj, in €;,

u=ul¥) = iuftﬁf(i). (3.9)

k=1

We refer to uf.‘ as the kth degree of freedom of u in €2;. There are several different
ways to choose basis functions. For linear problems, one can use orthonormal basis
functions, for which (wi", wf)gi = &k, to ensure that the mass matrix is diagonal.
Our flow equations are generally nonlinear, so using an orthonormal basis will not
reduce sparsity. To get a dG method with polynomial basis functions of order k or
lower, we instead define the basis to be the set of all functions of the form
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Figure 3.2 Polygonal cell 2; from Figure 3.1. The bounding box has dimensions
AX; = (Ax;, Ay;), is aligned with the axial directions, and is computed so that the
centroid of the box coincides with the centroid x;. Basis functions are constructed
to be symmetric about the dashed coordinate axes through ;. (Hence the small
gap at the left edge.)

o e(GEs) () e(Es) irfean
1//1-1 (x) — p Ax,-/2 q Ay,-/2 AZ,’/Z . (310)
otherwise,

where p,q,r > 0 and p + g +r < k. Here, £, is the pth Legendre basis function,
X; = (x;,yi,z;) is the cell centroid, and AX; = (Ax;, Ay;, Az;) are the dimensions
of the smallest bounding box aligned with the coordinate axes that contain £2; so
that its centroid coincides with X;; see Figure 3.2. The dimensions of each bounding
box are computed using computeCellDimensions (G).

Using kth-order polynomial basis functions gives a dG method of formal order
k + 1, which we denote by dG(k). The total number of basis functions for a dG(k)
method in d spatial dimensions equals

k+d (k +d)!
Ngof = ( d ) —W (311)

We now have a fully discrete formulation for the weak bilinear form of (3.1):

Foralli = 1...n,, find (u}, ... u;*") € R so that

Ndof
(Ra (Zﬁwf),wf) =0 Vk=1,...,n4r (3.12)
Q

=1

i
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Prx) = %(éxz -1 ' ¥ox) = %(3&2 -1

Figure 3.3 The six Lengendre-type basis functions in a dG(2) method for the cell
indicated in Figure 3.1. Note that the basis functions are expressed in reference
coordinates. (Color shows function values.)

Discontinuous Galerkin discretizations are implemented in MRST in the class
DGDiscretization, which can be found in the dg module:

mrstModule add dg % Load module
G = computeCellDimensions (G) ; Compute cell dimensions
disc = DGDiscretization(G, 'degree', 2); % Construct dG(2) discretization

o°

By default, this class constructs basis functions of the form (3.10):

>> disp(disc.basis) >> disp(disc.basis.psi{3})
psi: {6x11 cell} Polynomial with properties:
gradPsi: {6x11 cell}
degree: 2 k: [0 1]
k: [6X12 double] w: 1
nDof: 6 dim: 2

type: ’'legendre’

The basis structure holds basis functions psi and their gradients gradPsi, in
addition to other associated quantities. The basis functions are conveniently imple-
mented in the Polynomial class, which defines the associated exponents k and
coefficients w. This class has overloaded operators for elementary algebraic oper-
ations, as well as derivatives, gradients, and tensor products, which enables sim-
ple generation of basis functions of arbitrary order. Figure 3.3 depicts six basis
functions for dG(2), plotted using plotDGBasis (G, disc.basis, c) for a given
cell c.
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3.3.3 Numerical Integration

Closed-form expressions for the bilinear forms in (3.8) are not readily available
for unstructured grids and are not convenient to use when integrated relative per-
meabilities, pressure—volume—temperature functions, and other physical properties
are represented in tabulated form. We must therefore resort to numerical integration
using cubature rules [1]. We make the simplifying assumptions that all grids are
polytopal; i.e., they have planar faces. The resulting rules can also be applied as
an approximation for stratigraphic grids but need to be replaced by more accurate
rules for bilinear faces that are strongly curved.

Given a cubature rule with a set of points X1, ..., X,, and corresponding weights
Wi, -« e Wy, the bilinear forms over 2; are approximated as
(Mo (). V), ~ 1] Y wieMa(u(F))P (Fe). (3.13)
k

A cubature rule is of precision k if it is exact for all polynomials of order k or less.
This means that the weights w; must sum to 1 for each cell — a convenient check for
any cubature rule. For a dG(k) method, we have to integrate polynomials of total
order 2k, and we must thus ensure that the cubature rule has precision 2k or larger.

Perhaps the simplest way to construct cubature rules for a general polyhe-
dral cell is to subdivide into simplices, for which well-known cubature rules
exist. This approach is implemented in the TriangleCubature (2D) and
TetrahedronCubature (3D) classes, which both inherit from the Cubature
class. The underlying cubature rules in these classes are taken from [18] and are the
default used to evaluate the bilinear forms over cells in the dG implementation. We
can visualize the cubature using plotCubature (G, 1) ; the left plot in Figure 3.4
shows the result.

To evaluate an integral numerically, we get the cubature points and weights,
transform the coordinates from physical to reference space, evaluate the integrand
in the points, and take the weighted sum. As an example, the integral of the basis
functions over £2; is

[W, x, w, cells] = disc.cellCubature.getCubature(i, 'cell');

x = disc.cubature.transformCoords (x, cells);

cellfun(@(psi) Wxpsi(x), disc.basis.psi) % approximate integral computed by
% matrix-vector multiplication

‘ ans =
‘ 1.0000 -0.0000 0.0000 -0.1178 -0.0006 -0.1948

Refering back to Figure 3.3, we see that the first basis function is constant and equal
to 1. This means that the first integral is simply the sum of the quadrature points,
which should be equal to 1. The second and third basis functions are linear, and
their integrals over €2; vanish by construction.
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Triangulation (36)

triCubature = disc.cellCubature;
mfCubature_nr = MomentFitting2DCubature(G, 2#+degree, 'chunkSize', 1, 'reduce', false);
mfCubature = MomentFitting2DCubature(G, 2+degree, 'chunkSize', 1);

)
subplot(1,3,1), plotCubature(G, triCubature, c, 'faceColor', gray)
subplot(1,3,2), plotCubature(G, mfCubature nr, c, 'faceColor', gray)
subplot(1,3,3), plotCubature(G, mfCubature, c, 'faceColor', gray)

Figure 3.4 Three different cubatures for numerical evaluation of integrals
over 2;: TriangleCubature, based on triangulation. The cubature point
markers are scaled by the corresponding integration weights. (Source code:
dgExampleDiscretization.m.)

Triangulation is clearly inefficient, because it results in a cubature rule with
significantly more points than strictly needed for the cubature rule to be correct.
This is particularly true for implicit simulations with automatic differentiation,
in which evaluation in a cubature point consists of potentially costly operations
involving the Jacobians. Efficient cubatures can be constructed using moment
fitting [12], which is implemented in the MomentFitting2DCubature and
MomentFitting3DCubature classes, which rely on functionality from the
vemmech module. In this approach, we use a set of m predefined points and define
the cubature rule for €2; as the solution to the following linear system (omitting cell
subscript i):

wl(il) 1ﬁl()_ém) wq 1 fgwldv
: : Sl = : , or Wi =bh.

YrED e YR ] W ! Jo v dv

Here, {'}"_, is the polynomial basis (e.g., Legendre) for the space of polynomials
the cubature is intended for, with n < m. The right-hand side can be computed
by any suitable means — typically a triangulation quadrature. The corresponding
weights are then found as the constrained linear least-squares solution to the under-
determined minimization problem
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min(Ww — b) such that i > 0. (3.14)

The quadrature is reduced by iteratively removing the least significant point having
the smallest value of ), Y*(X;) and recomputing the solution to (3.14). If the
residual || Yw — b | is sufficiently small (10~'* in our implementation), the point
is removed. We repeat the process until no points can be removed. The middle
and right plots in Figure 3.4 illustrate a MomentFitting2DCubature without and
with reduction. Even without reduction, we see that the cubature uses significantly
fewer points (28) than TriangleCubature (36). With reduction, the cubature uses
only 15 points, which equals the number of basis functions needed to represent all
polynomials of order less than or equal to 2 x 2. Cubatures are computed once in a
preprocessing step.

3.3.4 Evaluating the Interface Flux

The integrand ]?a - 71 in the second term of (3.8) is in principle discontinuous in all
points at d€2; and consequently requires a more delicate treatment. First, we write
the bilinear form as a sum of integrals over all interfaces {I';;} jenri) of £2;,

(Fol) -1 9)a0, = Y (Falw) i), (3.15)
jeN (i)

Looking back at the phase flux in (3.3) and (3.4), we see that it consists of a
combination of saturation-dependent terms and terms that are either constant or
depend on pressure. The total Darcy flux v - 7 and the gravity/capillary terms
éﬁ - 1 across each interface are discretized using a standard two-point scheme,
giving constant values for each interface I';;; see [9, section 9.4] for details. For the
saturation-dependent mobilities, we use single-point upstream weighting in each
cubature point:
Ai(X)  if Uu(x)-n >0,

Ao (X); Uy - 1) = . (3.16)
{ b Aj(x) otherwise.

Note that this involves an implicit upstream definition, because the direction
of v, depends on the unknowns u. Fortunately, it is possible to replace the
implicit definition by an explicit evaluation procedure outlined in [9, section 9.4].
Applying this at each cubature point, we can approximate the interface bilinear
forms as

(Falt) - 1,91, ~ 1031 D wied Fo (F). vadij ¥ (o). (3.17)
k

Figure 3.5 illustrates the cubature rule between €2; and one of its neighbors.
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Figure 3.5 Cubature over the interface I';; between cells €; and ;. The
integrand is evaluated from €2; or from €2; depending on the direction of the flux
in the quadrature the point. As in Figure 3.4, the size of the points are proportional
to the corresponding integration weights.

3.3.5 Velocity Interpolation

The only remaining term that we have not yet discussed is the volume integral
of fa - Vi, which is generally nonzero for linear or higher-order basis functions.
The two-point scheme we just used to discretize the total Darcy flux and the
gravity/capillary flux only gives us values v;; and G;; associated with each
interface. The constant gravity contribution gKVz is evaluated exactly. For the total
Darcy velocity, we apply a simple scheme, inspired by the mimetic finite-difference
method discussed in section 6.4 of the MRST textbook [9], to define a constant
velocity v inside cell €; that is consistent with the volumetric interface fluxes v;;:

- 1 .
b= o D vy Eg - E). (3.18)
" jeN@

Here, X; and 55,»]- refer to the centroids of €2; and I';;, respectively. The same
approach is applied to the capillary term. (Consult [8] for more accurate interpola-
tion methods.)

3.3.6 Limiters

As any other high-order method, dG(k) tends to exhibit spurious oscillations near
discontinuities for k > 1. To get a high-resolution method that has at least second-
order spatial accuracy in smooth parts of the solution and is free of oscillations
near discontinuities, we need to add a nonlinear mechanism, called a limiter, that
effectively introduces enough numerical diffusion to dampen oscillations. We use
two such limiters by default: a total variation bounded (TVB) limiter [17] that
adjusts the gradient whenever the jump across an interface is greater than zero
and a physical limiter that scales the solution to be within physical limits inside
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each cell. In our experience, these limiters must be applied after the time step,
because applying limiters in between nonlinear iterations tends to severely impede
convergence.

Finite-volume (FV) limiter: After a nonlinear iteration, MRST does not nec-
essarily update the unknowns directly but performs a number of operations on
the increments calculated by the Newton solver before they are applied to update
the unknowns. This involves restricting the cell averages to stay within physical
limits, in addition to damping strategies such as chopping with absolute or geo-
metric penalties; see [9, sections 12.2 and 12.3]. For miscible flow, we also handle
complex physical processes such as phase appearance/disappearance. In the dG
implementation, we use some of these ideas: First, absolute penalties are used when
updating the unknowns. If the underlying base model uses a maximum absolute
update Auy,y for the unknown u, we apply a maximum update of Aup,y/ndor fOr
the dG unknowns. Then, after updating the dG unknowns uﬁ-‘ of u;, we apply the
following limiter:

Ndof ' (Sl/_l, . .
Lry(u;) = kzz; (ui + <E — 1) Aui> yk, (3.19)
Here, Au; is the update of the cell mean i; resulting from the updated dG
unknowns, and du; is the actual update in u; after passing Au; to the update
function of the base model. In effect, this limiter scales the updates to the higher-
order degrees of freedom so that the mean value is updated according to the same
rules as the base model, honoring physical limits.

TVB limiter: The TVB limiter [17] is applied after nonlinear convergence and
adjusts the gradient in all cells where the jump across the interface to any neigh-
boring cell exceeds a given tolerance € y. To explain the limiter, let us renumber
our basis functions so that 1/ is the constant function, ¥, ... ! are the linear
test functions, etc. With this, the limiter reads

wly + a4 ady i |ul] > erv on 9
uj, otherwise, (3.20)

ﬁf‘ = minmod(uf, {Vuqu :p#4q,p.q € N(i)})-

Lry(u;) =

The minmod operator is a standard limiter, defined as

min(vy,...,v,) ifallv;, >0,
minmod(vl, .. vn) = 1 max(vy,...,v,) ifallv; <0, (3.21)
0 otherwise.
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In other words, if the jump across 9€2; is larger than the tolerance ery, the limiter
adjusts the degrees of freedom associated with linear basis functions (e.g., only v2
and v in Figure 3.3), whereas all higher-order degrees of freedom are set to zero.
If the jump is less than the tolerance, the solution in €2; remains unchanged. The
gradient is adjusted by comparing the original degree of freedom uf in the cell with
approximations of the derivative obtained from the mean value of €2; and the mean
values in neighboring cells Q;, j € N(@); see [14, 20]. This reconstruction
is relatively simple on rectilinear grids but complicated on polytopal grids.
In our implementation, we therefore borrow a technique from the particular
WENO discretization in MRST that obtains a number of gradient approximations
Vuipg = (u}p g ,ufp ,) by building planar reconstructions using triplets of values
(u?, ug,ug) from £2; and two of its neighbors, €2, and &, for p,q € N(i); see [10]
for more details. The kth degree of freedom ﬁf‘ is then taken as the minmod of the
original value uf.‘ and all of the derivative approximations. Note that this limiter

adjusts the gradient in each coordinate direction independently.

Physical limiter: To ensure that each unknown u value stays within its physical
bounds, [#min, Umax], We also use a physical limiter [2] that scales the solution after
nonlinear convergence,

L) = 9+ 6 =),

0
U; — Umin

u? — min(u;)

(3.22)
6; = min { , 1}.

0
‘ Umax — U;
9

max(u;) — u?

Here, min(u;) and max(u;) are measured as the minimum and maximum value
of u at all cubature points inside or on the faces of €2;. This limiter ensures that
the minimum and maximum values of u are within the physical bounds at the end
of each timestep. During the nonlinear solution process, however, we allow the
solution to violate the physical bounds, because this generally tends to aid nonlinear
convergence.

Observant readers may have noticed that because our basis functions are not
orthogonal by definition for general cell geometries, applying a limiter to adjust
the higher-order degrees of freedom may have the unfortunate side effect of also
changing the cell mean i;. However, because all linear basis functions are orthog-
onal by construction, we can avoid this by replacing u? with the cell mean u; in
(3.20) and (3.22). Likewise, applying the TVB and physical limiters after nonlin-
ear convergence effectively changes the mass flux out of a cell and may there-
fore introduce a mass error. In our experience, however, this is necessary for a
robust, implicit dG implementation, and the mass error does not seem to grow
unacceptably large.

This concludes the description of the dg module. Figure 3.6 illustrates the solu-
tion of one timestep with the module.
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(Compute (Ra(u),L//)Q’T for all a,i k < <

—— Unlimited
== Limited

Linearize and solve (Ro(u).¢)g, =0
— dof updates Auf.‘

v

(Update solution: u* +min{Auk %} FV limiter: u; = Lpy(u;) ]—:«—’
I

i i’ Ndof

Figure 3.6 Flowchart describing the steps necessary to advance the solution one
timestep. To compute the weak residual, we evaluate the conservation equations
and basis functions in all quadrature points of all cells. If the residual exceeds
the nonlinear tolerance €, we linearize the system of equations using automatic
differentiation (see Chapter 6) and solve to find the dG updates. The solution is
then updated using the FV limiter (3.19). After convergence, we apply the TVB
limiter (3.20) and the physical limiter (3.22) to dampen spurious oscillations and
ensure that the solution is within physical limits.

3.4 Numerical Examples

In the following, we will go through a few numerical examples to demonstrate how
you can use the dG method just outlined, as implemented in the dg module of
MRST, to solve transport problems.

3.4.1 1D Buckley-Leverett Displacement

The first example considers the canonical Buckley—Leverett displacement
in a 1D domain with unit permeability and porosity (see dgExampleBL
Displacement.m for full code). We start by constructing a standard MRST
grid structure and extending it with additional geometric information required by
the dG discretization:

G = computeGeometry (cartGrid([30,1])) ;
G = computeCellDimensions (G) ;
rock = makeRock(G, 1, 1);

That is, we extend the grid to include a mapping from cells to their bounding
vertices, represented as two fields G.cells.nodes and G.cells.nodePos that
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are analogous to the fields faces and facePos that map from cell to bounding
faces. In addition, each cell has an associated bounding box represented by the
fields xMin and xMax plus the redundant dimension, dx. Similar bounding boxes
are added to each face as part of the G.faces structure. In addition, G. faces
contains two function handles, phys2ref and ref2phys, that map coordinates
from physical space to reference space and back again. These are trivial for a 1D
mesh but inevitable for general unstructured meshes.

We assume a two-phase model with water and oil, in which both fluid phases
have Corey relative permeability curves with quadratic exponent and unit viscosity:

fluid = initSimpleADIFluid('phases', 'WO' , 'n', [2,2], ...
'mu', [1,1], ‘'rho', [1,1]);
model = GenericBlackOilModel (G, rock, fluid, 'gas', false);

The reservoir is initially filled with oil, and when water is injected from the left we
get the classical Buckley—Leveret profile consisting of a leading shock, followed
by a rarefaction wave. To simulate the problem using the standard finite-volume
discretization in MRST, we first set the flux explicitly in the initial state:

state0 = initResSol (G, 1, [0,1]);
state0.flux(1:G.cells.num+l) = 1;

and then define a TransportModel, which is implemented as a wrapper around
the base model (in this case, the GenericBlackOilModel). This ensures that we
handle the physics in the exact same way as in fully implicit simulations:

tmodel = TransportModel (model) ;
[~, stFV, repFV] = simulateScheduleAD(state0, tmodel, schedule) ;

To simulate the transport problem with dG, we use the class TransportModelDG,
which is a subclass of TransportModel from blackoil-sequential. The
class constructor takes optional arguments for DGDiscretization, such as
degree:

tmodelDGO = TransportModelDG(model, 'degree', 0);
[~, stDGO, repDGO] = simulateScheduleAD(state0, tmodelDGO, schedule) ;

The transport model with dG holds the discretization, along with the base model
(or parentModel), etc.
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Figure 3.7 Limited and unlimited solutions for the Buckley—Leverett example.

>> disp (tmodelDGO)
TransportModelDG with properties:
discretization: [1X|1 DGDiscretization]
limiters: [2X|1 struct]
storeUnlimited: 0
formulation: ‘totalSaturation’
parentModel: [1X|1 GenericBlackOilModel]

Setting up the second-order dG(1) scheme is completely analogous, except we
now need to specify the orders of the basis functions in each coordinate direction.
Because we use a 2D grid with a single cell in the y-direction to simulate the 1D
case, the test functions are set to be constant in this direction:

tmodelDG1l = TransportModelDG (model, 'degree', [1,0]);
tmodelDGl.storeUnlimited = true; % Store the unlimited state in each step
fn = plotLimiter (tmodelDG1l, 'plotld', true, 'n', 500); % afterStepFn

[~, stDGl, repDGl] = ...

simulateScheduleAD (state0, tmodelDG1l, schedule, 'afterStepFn', fn);

To see the effect of the limiters, we specify that the solver should store the
unlimited solution and then use the optional argument afterStepFn in
simulateScheduleAD to plot the unlimited and limited solution after each
timestep. Figure 3.7 shows how the limiter adjusts the slope of the dG(1) solution.

In principle, the dg module supports arbitrary order, as long as we can also pro-
vide a sufficiently accurate cubature rule. Figure 3.8 shows the solutions obtained
using dG(0), dG(1), dG(2), and the standard SPU scheme, compared to the exact
solution. Notice that using constant basis functions in dG(0) gives a stair-stepped
solution and that this coincides exactly with the SPU solution. Whereas using dG(2)
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Figure 3.8 Solutions computed using dG(0), dG(1), dG(2), and FV together with
the exact solution for the Buckley—Leverett example.

gives a slightly smoother solution than dG(1), we see that most of the accuracy
gained in this example comes from introducing linear basis functions in dG(1).

Readers familiar with explicit dG methods may be somewhat disappointed by the
resolution of the higher-order dG schemes in this example. The reason is that we use
a first-order implicit temporal discretization to escape the severe timestep restric-
tion imposed on explicit schemes. This introduces significant numerical smearing
that counteracts the effect of the high-resolution spatial discretization. Chapter 5
shows an example of how an adaptive-implicit method (AIM) solution method can
be combined with a high-resolution spatial discretization to significantly reduce
the numerical smearing. Another method to reduce smearing is to use a more
compressive limiter — i.e., a limiter that tends to choose steeper reconstructions —
but this runs the risk of turning smooth bumps into discontinuities.

3.4.2 Smearing of Trailing Waves

In the Introduction we mentioned more accurate resolution of trailing waves as
a motivation for introducing a higher-order spatial discretization. Such waves
typically arise in multicomponent systems (see Chapter 7 for examples from
surfactant—polymer flooding). We can mimic the same behavior by consider-
ing a Buckley—Leverett problem with an piecewise linear approximation to the
fractional-flow function. Here, we use an approximation consisting of five line
segments.

As explained in section 8.4 of the MRST textbook [9], the solution of the Rie-
mann problem underlying the Buckley—Leverett displacement theory is solved by
determining the concave envelope of the fractional-flow function between the right
state (the resident fluid) and the left state (the injected fluid). Figure 3.9 shows
that this envelope consists of three linear segments: one that lies above the original
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Figure 3.9 Resolution of trailing waves without self sharpening. The left plot
shows the piecewise linear flux function f and its concave envelope f, that defines
the Riemann solution. (Source code: dgExampleTrailing.m.)

fractional-flow function f and two that coincide with segments of f. Effectively,
this means that the characteristic profile, consisting of a leading shock and a trailing
rarefaction wave, turns into a shock followed by two trailing (linear) discontinuities
that contain no self-sharpening.

The right plot in Figure 3.9 shows solutions computed with three different
schemes. As expected, dG(1) with implicit discretization delivers approximately
the same resolution of the leading discontinuity as the explicit SPU scheme but
better resolution of both trailing waves. To explain this, we can look at the analysis
of truncation errors for the SPU scheme for linear waves; e.g., as outlined in
subsection 9.3.2 of the MRST textbook [9]. The numerical smearing of the
explicit SPU scheme increases with decreasing Courant number but decreases with
decreasing Courant number for the implicit variant, thus giving equal resolution of
the slowest wave.

3.4.3 Inverted Five-Spot Pattern on a Perpendicular Bisector Grid

The next example is a 2D scaled-down version of the SPE10 benchmark case.
Using a function from the spe10 module, we construct a fully implicit simulation
model for an inverted five-spot posed on a subset of the 13th layer from the Tarbert
formation:

[init0, modelO, scheduleO] = ...
setupSPE10 AD('layers', 13, 'J', (1:110) + 30);

However, instead of simulating directly on this 60 x 110 Cartesian model, we use
the pebiGrid2D function from the upr module (see Chapter 1) to construct an
unstructured mesh with approximately 20 cells in each direction. In addition, we

https://doi.org/10.1017/9781009019781.007 Published online by Cambridge University Press


https://doi.org/10.1017/9781009019781.007

88 ?.S. Klemetsdal and K.-A. Lie

Figure 3.10 Setup of a coarse perpendicular bisector grid based on a 60 x 110
subsample from the 13th layer of the SPE10 benchmark. Well positions are
marked in red.

impose a certain degree of near-well refinement so that cells containing wells are
40% the size of the cells in the middle of the reservoir. This gives a polytopal
mesh with 449 cells; see Figure 3.10. You can find the necessary details of how
to construct this coarse mesh and set up the corresponding wells, petrophysical
and initial data, and modified simulation schedule in the script dgExampleIFS.m.
(Notice that because petrophysical properties are sampled and not upscaled, it
will not make sense to compare results directly with the fine-scale model.) To
simulate the model on the coarse grid, we start by defining a two-phase, fully
implicit model:

| model = GenericBlackOilModel (G, rock, modelO.fluid, 'gas', false); |

We then use functionality from the blackoil-sequential module to set up a
sequential simulation model consisting of a standard pressure solver and an implicit
dG(0) transport solver:

pmodel = PressureModel (model) ; % pressure model
tmodel = TransportModelDG(model, 'degree', 0); % transport model
segmodel = SequentialPressureTransportModel (pmodel, tmodel, 'parentModel', model) ;

which we can simulate using the standard simulator interface from ad-core:

[ws, states, reports] = simulateScheduleAD(state0O, segmodel, schedule) ;

The setup for dG(1) is completely analogous. Figure 3.11 shows 3D plots of the
water saturation at the end of each simulation. Unlike a standard finite-volume
method, which only computes averaged values per cell, the dG methods give point-
wise solutions that are continuous inside each cell but discontinuous across cell
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Figure 3.11 Saturations computed by the dG(0) and dG(1) schemes for the
inverted five-spot case.
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Figure 3.12 Difference in cell-averaged values for the dG(1) and the dG(0) (SPU)
schemes shown in Figure 3.11. Because both solutions are mass conservative,
dG(0) will have lower values than dG(1) behind the displacement front and higher
values ahead of the front.

interfaces, as can clearly be seen in Figure 3.11 both for dG(0) and dG(1). From the
difference in the corresponding cell-averaged values shown in Figure 3.12 it is
clear that dG(0)/SPU smears the solution much more than dG(1), and this affects
the prediction of water breakthrough (see Figure 3.13). An increased number of
transport iterations, from 112 for dG(0) to 417 for dG(1), bears witness to the
increased nonlinearity.

3.4.4 Grid-Orientation Errors for Adverse Mobility Ratios

In the standard SPU scheme, the intercell phase fluxes are computed entirely based
on cell-averaged saturation values from the two grid cells on opposite sides of each
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Figure 3.13 Water rate in the two producers with water breakthrough during the
simulation period. Because dG(0) smears more than dG(1), it will overestimate the
time to breakthrough in P3, which has early breakthrough because of fingering,
and underestimate the breakthrough in P2, where the approaching displacement
front is more planar.

interface. This dimension-by-dimension type of evaluation introduces preferential
flow along the axial directions of the grid and can lead to strong grid-orientation
effects when the displacing phase is more mobile than the displaced phase. The
resulting errors grow in time as a result of the dynamic coupling between the
pressure and transport equations. Higher-order dG schemes use subscale saturations
inside each cell to evaluate the intercell fluxes, which significantly reduces dynamic
grid-orientation errors for cases with adverse mobility ratios.

To illustrate, we revisit the setup from subsection 10.4.2 in the MRST textbook
[9], comparing solutions of a two-phase, quarter-five-spot problem computed on
two different Cartesian grids. The first 32 x 32 uniform grid follows the axial
directions. This induces a preferential flow direction in the SPU scheme toward
the stagnant zones along the axes connecting the producers and impedes flow along
the diagonal from injector to producer. The second grid has the same resolution but
follows the diagonal directions between injectors and producers. The SPU scheme
will therefore exaggerate flow in the diagonal direction, as seen in the left plot of
Figure 3.14.

The second-order dG(1) scheme has four degrees of freedom inside each grid
cell, which effectively means that the saturation-dependent parameters are evalu-
ated in a more multidimensional manner than in the SPU scheme. As a result, the
dynamic grid-orientation errors are eliminated almost entirely and can only be seen
near the leading displacement front, which is resolved much sharper on both grids.
(Altogether, dG(1) required 66% and 41% more nonlinear transport iterations than
SPU on the original and rotated grids, respectively.)
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Figure 3.14 Quarter-five-spot solutions for displacement scenario with an adverse
mobility ratio of 10:1 between water and oil, computed on the rotated (solid lines)
and original (colors) geometry with a 32 x 32 grid. The left plot shows SPU and
the right plot shows dG(1). (Source code: dgExampleGridOrient.)

3.4.5 Channelized Medium

Higher-order discretizations are particularly useful to accurately capture viscous
fingers that develop in strongly heterogeneous or fractured media. To illustrate
this, we consider another subsample from the SPE10 benchmark case, this time
a 60 x 110 subset from the 51st layer, which is part of the fluvial Upper Ness
formation. We move two of the producers in the original inverted five spot so that
they all are completed in cells with good sand quality. We also move the injector a
bit to the north to ensure a better overall sweep. Full setup of the example:

[state0, imodel, schedule] = setupSPE10 AD('layers', 51, ...
'J',1:110, 'make2D', true, 'T', 3xyear, 'dt', 20xday);

G = computeCellDimensions (imodel.G) ;

schedule.control .W(3) .cells 6550;

schedule.control .W(4) .cells 6578;

schedule.control .W(5) .cells = 3811;
model = GenericBlackOilModel (G, imodel.rock, imodel.fluid, 'gas', false);

We can then construct sequential simulators with dG(0) and dG(1) exactly as in
the previous example. As shown in Figure 3.15, the second-order dG(1) scheme
resolves the advancing fingers more sharply and predicts a more rapid movement
of the tip of the fingers compared with dG(0). Increasing the accuracy from second
to third order does not improve the resolution of the advancing fingers significantly,
as also observed previously by [13]. Whereas higher-order solutions primarily stay
within the high-permeability channels, the dG(0) solution is more smeared out and
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Figure 3.15 Water saturation overlain on permeability for the Upper Ness sub-
sample simulated by dG(0) (left plot) and dG(1) (right plot). (Source code:
dgExampleNess.m.)
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Figure 3.16 Water production rate in the two wells located along the southern
perimeter of the Upper Ness test case in Figure 3.15. Well P1 is located in the
southwest corner and P2 in the southeast corner. Because dG(1) introduces less
smearing of the water fingers, it also predicts earlier water breakthrough.

will overestimate areal sweep and the time to water breakthrough; see Figure 3.16.
(Altogether, dG(1) uses 2.9 times as many nonlinear transport iterations as the SPU
scheme.)

3.5 Concluding Remarks

This chapter has introduced you to implicit discontinuous Galerkin methods,
which you can use to increase the resolution of the transport step in a sequential
implicit formulation. This may be particularly beneficial for cases with unfavorable
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displacement ratios and significant fingering introduced by heterogeneity. We end
the chapter by discussing some advantages and disadvantages of dG methods.

Size of the discrete system: One advantage of dG methods is that because the
higher-order approximation is introduced locally to each cell, it is relatively simple
to develop adaptive versions that adapt the order in space. The disadvantage is
that increasing the order significantly increases the number of degrees of freedom
per unknown: to 3 in 2D and 4 in 3D for dG(1), to 6 in 2D and 10 in 3D for
dG(2), and so on. For compositional flow and other transport equations with many
primary unknowns, this will rapidly amplify the size of the linear systems. In our
experience, however, the largest effect on accuracy comes from replacing SPU by
dG(1), and in 3D it may even be sufficient to only increases the order in the lateral
directions, which requires fewer quadrature points than a full dG(1) scheme.

Nonlinear solvers: Increasing spatial order also increases the nonlinearity of the
discrete residual equations, so that standard Newton—Raphson solvers may not be
able to take as large time steps for a dG(1) method as for SPU. However, because
the extra degrees of freedom are local to each cell, the nonlinear system arising from
a dG(k) discretization will have the exact same sparsity structure as the SPU system,
except that each matrix entry for the SPU system is replaced by an nger X ngof
matrix block in the dG(k) system.

In sections 5.3 and 10.3 of the MRST textbook [9] we discussed how it is
possible to permute the SPU discretization matrix to a (block) triangular form (see
Figure 3.17), using an ordering based on fluid potential or total flux, so that it can
be solved very efficiently using a nonlinear back-substitution method that solves a
sequence of single-cell problems for cases that predominantly have cocurrent flow.
In most displacement scenarios, the Newton updates are localized around (strong)
displacement fronts so that cells further away can converge within a few iterations
or not require any iterations at all if the cell residual is below the prescribed iteration
tolerance. By localizing the nonlinear iteration this way, significant computational
savings are possible. The same approach can be applied to dG schemes, except
that we now have to solve local nges X n4or nonlinear systems, which still is sig-
nificantly less expensive than having to solve the full global nonlinear problem.
This advantage of dG over other high-resolution schemes was first observed by
Natvig and Lie [13].

Disclaimers about the current implementation: As with many other add-on
modules to MRST, the dg module is primarily a proof-of-concept implementation
that has not yet been optimized for computational speed. The solvers in dg are
admittedly quite slow, in part because of many redundant computations in the
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Figure 3.17 The sparsity structure of dG(1) on a perpendicular bisector grid with
natural and potential ordering. An injector is placed in the southwest cell and a
producer in the northeast cell; the polynomial order of dG is set to zero in both of
these cells. (Source code: dgShowSparsity.m.)

evaluation of numerical cubatures and in part because a few key data elements are
accessed row-wise, which is at odds with MATLAB'’s internal compressed sparse
column (CSC) storage format. You should therefore try out the dG solvers on a
representative smaller case before attempting to run models with more than O(10%)
grid cells. The standard solvers in MRST are hardly affected if you represent your
domain using a mesh of higher dimensions than necessary; e.g., represent a Carte-
sian n x m grid as an n x m x 1 model. For dG(k) with k > 0, this will introduce
unneeded basis functions and cubature points and incur extra computational cost.
As a general precaution, you may consider shortening the time step somewhat com-
pared to the SPU scheme to avoid potential convergence problems in the nonlinear
solver. (We also remark that the dG(2) solver is less robust and does not seem to
provide much more resolution than dG(1) due to the implicit time discretization.)

Implementing a finite element—type method like dG for unstructured polytopal
grids is significantly more involved than a finite-volume method. It requires an
appropriate set of basis functions and accompanying cubature rules for numerical
integration. Constructing efficient cubature rules is challenging for polytopal grids.
Robust and correct limiting strategies are also not straightforward to implement for
implicit simulations. Herein, we have presented simple choices that seem to work
reasonably well for dG(1) applied to immiscible multiphase flow. Optimizing and
tuning these choices and applying them to more complex flow scenarios will be
subject to further research.

Acknowledgement. The research leading up to the dg module has been partially
funded by the Research Council of Norway through grant no. 244361 and by Total
E&P Norway.
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