A NOTE ON DIVISION ALGORITHMS IN IMAGINARY QUADRATIC NUMBER FIELDS

D. W. DUBOIS and A. STEGER

An integral domain E is said to be Euclidean if there exists a non-negative, integer-valued function g defined on the non-zero elements of E such that for every non-zero x and y in E,
(1) $g(x y) \geqslant g(x)$;
(2) (division algorithm) if x does not divide y then there exists an element q in E, depending on x and y, with

$$
g(y-q x)<g(x)
$$

The function g will be called a Euclidean function.
The elementary properties of Euclidean domains may be found in Van der Waerden (4, p. 56).

The problem of determining all quadratic number fields $K(\sqrt{ } m)$ in which the norm is a Euclidean function (on the sub-domain of algebraic integers in $K(\sqrt{ } m)$) has been solved. See (2, ch. xiv) for a partial discussion and bibliography. The following is unsolved: are there any Euclidean quadratic fields for which the norm is not a Euclidean function? That is, can the norm be generalized so as to enlarge the class of fields possessing division algorithms? The following theorem asserts that for imaginary quadratic fields the answer is no; the proof, based on the scarcity of units in these fields, fails for the real fields. This theorem answers a question of Hasse (3) concerning whether the field $K(\sqrt{ }-19)$, known by Dedekind (1, suppl. xi, p. 451) to be a principal ideal domain in which the norm is not a Euclidean function, is Euclidean in the general sense defined above, and appears to be the first proof that a principal ideal domain need not be Euclidean.

Theorem. An imaginary quadratic field $\dot{K}(\sqrt{ } m)$ is Euclidean if and only if the norm N is a Euclidean function.

Proof. The norm N is a Euclidean function for imaginary $K(\sqrt{ } m)$ only when $m=-1,-2,-3,-7,-11$; see (2) for a proof. Let $m<0$ be different from these and suppose that $K(\sqrt{ } m)$ is Euclidean with Euclidean function g. There exists an integer t in $K(\sqrt{ } m)$ distinct from zero and units, such that $g(t)$ is a minimum of the set of all $g(x)$ for which x is neither zero nor a unit. Then for every integer b there is an integer q with b - $q t$ either zero or a unit; this means that every integer in $K(\sqrt{ } m)$ is congruent to zero or to a unit $(\bmod t)$. But the only units are ± 1. It follows that

$$
N(t)=N((t)) \leqslant 3
$$

Received May 13, 1957.

But for the m chosen above, this inequality implies that t is zero or a unit, contrary to the choice of t. The contradiction establishes the theorem.

References

1. L. Dirichlet and R. Dedekind, Vorlesungen über Zahlentheorie (4 Aufl. Braunschweig, 1894).
2. G. H. Hardy and E. M. Wright, The Theory of Numbers (Oxford, 1954).
3. Helmut Hasse, Ueber eindeutige Zerlegung in Primelemente oder Primhauptideale in Integraetsbereichen, J. reine angew. Math., 159 (1928), 3-12.
4. B. L. Van der Waerden, Modern Algebra (New York, 1949).

University of New Mexico

