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LARGE MATCHINGS IN GRAPHS
J. WEINSTEIN

1. Introduction. How large a matching must a graph have?

We consider graphs G (finite, undirected, with no loops or multiple edges),
with order #G (always =1) and mG the maximum number of edges in a match-
ing of G. The matchability pG of G is the fraction (2m/n) of nodes covered by
a maximum matching. For any class .S of graphs we define the maichability uS,
the essential (or lLimit or large-graph) matchability w*S, and the class wS of
worst-matched graphs:

wS is the greatest lower bound of the values uG for G € S, with uS = 0 if
S is empty.

w*S is the least upper bound for positive & of the values u(S;), where Sy
comprises all graphs in .S of order =k.

wS is the class of all G € S with uG = uS.

We study matchability in the attempt to generalize [4] (which looked at
matching in order to study critical graphs in coloring problems). We shall
seek a nontrivial lower bound for uG in terms of the “local structure” of G.
Concerning this ‘“local structure’” we assume given both a uniform /lower
bound ¢ and a uniform upper bound j for the degrees of all nodes of G (else,
for all we know, G has very few edges, making uG close to 0, or G has a small
set of nodes of high degree which intercept all edges, again making uG close
to 0). We shall also use the additional information that G is k-connected
(where & = ¢ and “h-connected” is taken in any of several senses, cf. § 2, S).
Given such %, ¢, 7, and letting 7" be the class of all graphs satisfying these
conditions for %, 7, j, we shall determine the values u7", u*7T", w1 : in this sense
we shall determine just how the local structure of a graph controls the match-
ability.

§ 2 gives needed preliminaries. § 3 gives some reductions of the problem.
In § 4, our main result, 4.8, gives lower bounds for g which are shown exact
by the examples of § 5. In § 6 we calculate p* for cases not already resolved.
§§ 7, 8 treat variations of the problems relating to the condition ‘‘triangle-
free'” and to connectivity conditions.

We gratefully acknowledge public financial support received through the
U.S. National Science Foundation during certain stages in the preparation of
this paper.

2. Preliminaries.

2.1 Generalities. For any set X, | X| is its cardinal number. For any number 1,
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1* is the least greater odd integer (= ¢ + 1 for ¢ even and ¢ + 2 for 7 odd).

We sometimes use a 3-vector formalism. Let U, V' be any real 3-vectors.
Then: U = (U, Us, U;), where the U, are the coordinates of U; U = V if
and only if U, = V, for each k € {1, 2, 3}; U * V is the inner product

UrVi+ UsVe + UsVs;
O is the vector (0, 0, 0).

2.2 Graphs. Let G be any graph. If nodes x and y adjoin in G, we take the
edge joining them to be {x, ¥}. NG is the set of nodes of G, EG is the set of
edges of G, nG = |NG|, G = |EG|. dxG is the degree (number of incident
edges) of the node x in G. Extending this notation, suppose X any set of nodes
of G. dXG is the number of edges joining nodes of X to nodes of G not in X.
G/X (the ‘“‘restriction’ of G to X, or the “‘section’’ subgraph “‘induced” by X)
is the largest subgraph of G having X as nodes. G — X is G/(NG — X).

A maiching in G is a set of pairwise disjoint edges of G. Matchings having
the maximum possible number mG of edges are maximum matchings.

When the choice of the graph G either is immaterial or is clear from context
we often omit final “‘G”’ from the notation and write N, E, », ¢, dx, dX, m for
NG, EG, etc.

The union H\J K of graphs H, K is the graph G with NG = NH \U NK
and EG = EH U EK.

If X, Y are disjoint sets with union NG, and every edge of G joins a node
of X with a node of Y, G is bipartite with bipartition (X, V). If G has bipartition
(X,Y) and dx = ¢ and dy = j for each x € X and y € V, then G is (¢, j)-
bipartite with (1, j)-bipartition (X, V).

2.3 Types. In terms of any integer k we formulate several connectivity and
degree conditions for a graph G. Each such condition holds strictly if it holds
for k but fails for at least one of & — 1, & + 1.

G is h-node-connected if G — X is a nontrivial connected graph whenever
X is a set of nodes with |X| < k. G is h-edge-connected if dXG = h whenever
X is a nonempty proper subset of G. G is h-odd-connected if both: dXG = h
whenever X is a proper subset of G with |X| odd, and when 2 = 1 G is con-
nected. Note that k-node-connected implies k-edge-connected, and that
h-edge-connected implies #-odd connected.

G is i-lower if dx = 1 for every node of G. G is j-upper if dx < j for every
node of G. A pair (¢, ) of integers with 0 < ¢ < j is a degree. G is of degree
(1, 7) (or is an (¢, j)-graph) if G is i-lower and j-upper. If G is of degree (¢, 7),
G is of degree i or is i-regular.

A triple (&, 1,7) of integers with 0 £ & < ¢ < j is a type. A graph G is of
type (h,1,7) (or is an (%, ¢, j)-graph) if G is h-odd-connected and of degree
(i, j). The class T'(h,%,j) comprises all graphs of type (%,1,j). We write
w(h, 1, 7) in place of u(T'(k, ¢, 7)), and similarly for u*, w.
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3. The problem and some reductions. Our main task in this paper is to
determine u(%, 2, j), u*(h, ¢, 7) and w(k, ¢, j) for all types (h,17,7). In §§7, 8
we show how to calculate y, p*, w for classes S defined by other (perhaps to the
reader more ‘‘natural’’) ‘‘h-connectivity’’ and ‘‘(¢, j)-degree’’ conditions.

Call a type (h, 1, j) trivialif h = Oori < lorj £ 2;orifi = jandi — his
odd. For trivial types, calculation of u, u*, w is either trivial or reduces easily
to calculation for nontrivial types. Thus, it is easily shown that when 7 = j
and ¢ — & is odd we have T'(k, ¢, j) = T'(h + 1,4, 7). Suppose & = 0: u(0, 0, 7)
and u*(0, 0, 7) are 0 and w(0, 0, j) comprises all 0-graphs; for 2 = 1, u(0, 7, §)
and p*(0, 7, j) are both u(1, 7, 7), and w(0, ¢, j) comprises all graphs each of
whose components is in w(1, 7, j). Suppose now that # = 1 and j < 2. Up to
isomorphism 7°(1, 1, 1) contains just a single graph, a complete graph on
2 nodes. 7°(1, 1, 2) comprises all paths and circuits, 7°(2, 2, 2) comprises all
circuits; these two types each satisfy u = 2/3, u* = 1.

The following lemmas treat the remaining trivial types, viz. types (1, 1, j),
7 = 3, and aid later constructions.

3.1 LEMMA. Every connected j-upper graph G satisfies jm + 1 = n.

Proof. A connected j-upper graph G with fewest edges such that jm + 1 = =
fails must be a tree with a non-end node x which adjoins exactly one non-end
node. Delete x and all adjoining end nodes and all edges incident to x to obtain
a j-upper tree H; since H satisfies jm + 1 = z so does G.

3.2 LEMMA. For each j = 2 there are arbitrarily large j-upper trees satisfying
jm + 1 = n. In fact, whenever 2 < 1 < j and p = 0 we may construct a j-upper
tree G with bipartition (X, Y) in which: dy = jforally € Y, dx = 1 or 1 for all
x€EX,m=1+ @ —1)p,n =jm+ 1.

Proof. We construct G by induction on p. For p = 0 take G a star with
center of degree j. Having constructed H for p we construct G for p + 1 as
follows. Let x be any end node of H and K a graph with no node in common
with H and having ¢ — 1 components, each a star with center of degree j — 1.
Obtain G from H \U K by adding an edge from x to each stellar center of K.

3.3 Remark. Can “‘elementary’’ methods be used to determine u(%, 7, j) for
non-trivial (%, 4, j)? In particular, we know that for appropriate & the edges
of a j-upper graph G can be colored with & ‘““colors” so that distinct inter-
secting edges are never colored alike. Then m = e/k, u = 2¢/kn. If G is
i-lower, 2¢ = in, so p = ¢/k. However, even if we use Vizing's theorem and
take £ = j + 1 (see, e.g., [3, p. 248]) we find only that u = 7/(j + 1), in
general not a sharp result (except when j = 4, ¢ even).

4. Bounds for matchability.

4.1 Concepts. In §§4, 5, 6 (h,4,7) is a fixed non-trivial type. G a fixed
(h, h, j)-graph, and Y a fixed set of nodes of G. G will usually be a graph of
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type (%, 1,7), but we do not assume this now. We now introduce concepts
which depend on some or all of %, 7, 7, G, ¥; this dependence will not appear in
the notation.

Let K be any subgraph of G. K is small if nK =< 1, large if nK > 1, odd if
nK is odd, even if nK is even. A county is a component of G — Y. ¢K is the
number of odd counties included as subgraphs of K. rK = ¢cK — |V M NK].
The quasi-join ¢K of K is the sum for x € NK of max(dxG, 1) — dxK. Note
that ¢K = d(VK)G, with equality if and only if all nodes of K have degree
=i in G; and ¢G = 0 if and only if G is i-lower, i.e., if and only if G is of type
(h, 1, 7). The match vector MK of K is (nK, ¢K, —rK). We sometimes write
M, r for MG, rG, etc.

If, among subsets of NG, the choice of ¥ makes G largest possible, Y is
r-maximum. Y is singular if V is empty and G consists of one large odd county.

4.2 Procedure. Observe that a matching fails to cover at least #G nodes, in
fact at least G odd counties. The key result on matching to be used in this
paper is the generalized result of Tutte (see [1, pp. 179-181]): if Y is r-maxi-
mum, a maximum matching fails to cover exactly rG modes. Thus, to obtain a
lower bound for p it suffices to obtain an upper bound for 7/%. For Y singular,
r/n = 1/n; for G nonsingular we shall establish a linear inequality 4 = M = 0,
where A4 is a vector =0 and dependent only on (k, 7, 7); when G is of type
(h,1,7) (so that ¢G = 0) we then have r/n £ A;/A:.

The following heuristics motivate the procedures and results.

4.3 Heuristics. Which data influence r/#? Consider the match vector of a
county K. The larger each coordinate, the more K ‘‘helps’ the cause of making
r/n small. Indeed this is true of the coordinates nK and —rK. A large ¢K
helps indirectly: when G is i-lower, d(NK)G, = ¢K, is “‘evidence” for addi-
tional nodes of Y, hence for smaller » and larger #.

We shall define a vector U° which will be the ‘““least helpful”” match vector
of an even county; U, U?, U? will be defined similarly for a small odd county,
a large odd county (for nonsingular Y) and a node of Y, respectively.

Suppose that G is worst-matched, of type (%, 4, 7). We find that each county
K will have a very special structure, with no even counties, and with MK = U!
(for K small) or = U? (for K large). Further, when a small county is less help
than a large county (or vice versa), G has only small counties (or only large
counties). Roughly speaking, when the connectivity % is “big” (A > ho, h
defined in 4.4), all counties are rather well-joined to ¥ and only their size
has influence, so that only small counties occur; G is then a bipartite graph
(with (4, j)-bipartition (N — Y, ¥)). When the connectivity % is ‘‘small”
(h < ho), the fact that G is i-lower forces small counties to be well-joined to ¥
but not the large counties, and thus only large counties occur (and they have
smallest possible size, *). When & = ko, both large and small counties can
occur.
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4.4 Definition of A. In order to define 4 so that 4 + M = 0, we first observe
that M(G — V) = > (MK : K a county). Hence it suffices to define 4 so
that: 4 * MK = 0 for each county K, and 4 * (M — M(G — ¥)) = 0.

We next observe the following facts. Define U° = (2,0, 0), U = (1,14, —1),
U? = (¢*, h, —1), U = (1, —j, 1). Then:

(0) If K is an even county, MK = U°.

(1) If K is a small odd county, MK = U

(2) If K is a large odd county and Y is nonsingular, MK = U2

B) M—MG-Y) =|Y|U:

Indeed, in the first and third vector coordinate these assertions are trivial, and
in the second coordinate (0) is trivial. For (1), ¢K is the sum of #K terms,
each at least 1 — (nK — 1), where 1 < #nK = 7; hence ¢K = i. For (2),
NK # NG, so¢K = d(NK)G = h. For (3), we must verify that ¢(G — V) —
gG £ j|Y|.Now q(G — V) — ¢G £ sumforx € N — Yof dxG — dx(G — Y);
this sum is dYG, =j|Y].

Hence it suffices to define 4 so that 4 = U* = 0 for each & € {0, 1, 2, 3}.
We first define vectors A = 0, A2 Z Osuch that A1« U = A1« U3 =0 =
A%« U? = A% + U3 For this it suffices to take A' = (j — 4,2,7 + ), and
A% = (j — b, @* + 1, % + k). Finally, if we put ho = 3(j -+ 4 — *(j —1)),
we have A % U? = 2(h — ho) = —A? % U, so it suffices to take 4 = 4! for
h = hoand 4 = A% for h < hy.

4.5 THEOREM. Suppose Y nonsingular. Then A » M = 0.

4.6 CoroLLARY (Tutte). Suppose h = 1 = j. Thenr =< 1. Further, if 1 is odd,
uG =1, and if 1 is even uG = 1/(1 + 1).

Proof. When Y is singular, G = 1. When Y is nonsingular, 4.5 yields
—2ir 2 0, whence r = 0. When 7 is odd, # (the number of nodes of odd degree)
must be even, whence r must be even, hence <0, so p = 1. When 7 is even,
the complete graph on 7 + 1 nodes is the unique example of a worst-matched
singular G.

Henceforth in §§ 4-6 we assume that h # j. Hence each Ay > 0.

4.7 Remarks. When Y is singular, we have # odd and =<*, »r = 1, and
Ax M = Ain — As. Thus, by 4.5 the inequality 4 x M = 0 fails, if at all,
only for ¥ singular and G one of a few graphs satisfying i* < n(odd) < A4;/A4;.
These conditions are impossible for j = ¢ -+ 2 or for j = 7(odd); but possible
(in fact with # = ¢*) when j = ¢ + 1 or when j = 7 (even).

When G is ¢-lower, we have: ¢G = 0, A x M = An — Agyr; further, when
Visr-maximum, 4 * M =2 Oif andonly if u = 1 — (4:1/453).

These remarks yield the following main result.

4.8 THEOREM. Suppose G of type (h, 1, 7). Then:
(1) Forjzi+2,p22/@+7).
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(2) Forj =1 (odd), p 2 1 — (4:1/45).
(3) Forj=14 1,0r for j =1 (even), p = 1 — (1/7*).

4.9 Remarks. (1) The bound in 4.8 (3) is clearly exact. In § 5 we verify that
the bounds of 4.8 (1) and (2) are exact. (2) Taking ¢ = 2, 4.8 (1) specialises
to the main result 3.5 of [4]. (3) When j = 7 + 2 we see that a singular graph
G of type (h, i, j) satisfies p < 2¢/(¢ + j) just when j = 7 4+ 2 (7 even) and G
is complete on ¢ + 1 nodes. (4) For j = 4 (even), 43/4;: is at most its value
for h =1 — 2, viz. 3(it* +17 — 2). Forj =1+ 1, 43/4, is at most 2¢ + 1.
(5) Suppose an (h, k, j)-graph satisfies 4 * M < 0. We must have Y singular,
and ¢G < h (else M = U? and then A4 * M = 0). Suppose i = 1. Then
gG = 0 and G is i-lower. From 4.7 and the triviality of (1,1, 7) (i even), we
must have j = 7 + 1. We must have n = *: else M — U? = (2, —1,0), and
since both 4 * U? 2 0 and 4 * (2, —1,0) = 0 we would have 4 « M = 0.
When ¢ is even, G must be complete on ¢ 4 1 nodes. Specializing to type
(1,2, 3): every connected graph of degree (2,3) other than a triangle satisfies
w = 4/5. [4, 3.6], conjectured that every such graph satisfies u > 2/3.

5. Examples. We have what seem to be good bounds for u(k, 7, j) but for
most types we do not know yet that the bound is in fact exact, nor do we know
w¥(h,1,7). We know that among (%, 1, j)-graphs with singular 7-maximum
only finitely many satisfy p £ 1 — (41/4;). If we seek many examples of
equality, we must consider nonsingular Y. In § 5 we assume G of type (h, 1, j).

5.1 Definition. Y is exact if and only if 4 * M = 0. G is exact if some subset
of NG is exact.

5.2 Remark. 1f YV is exact and n > A;3/A1, then YV is r-maximum and uG =
1 — (4./A43). This assertion has an easy proof but a notable effect: to con-
struct examples of graphs with p = 1 — (4:/4;) we need only construct
(large enough) G with a set of nodes Y satisfying certain readily verified
structural criteria. Namely, consulting the argument in 4.4 we see that non-
empty Y is exact if and only if all the following conditions hold: if %z > &,
there are no large counties; if 2 < h, there are no small counties; every small
county K satisfies nK = 1, d(NK)G = i; every large county K satisfies
nK = i*, d(NK)G = h; every node of ¥ has degree j and adjoins no other
node of Y.

5.3 Definition. A nontrivial type (k,1,J) is special if h = 1 and j < i + 1,
provided that (7, j) # (2, 3) and (3, 4).

5.4 Preview. We shall show that, for every nontrivial type (4, ,j) with
h#j; (1) An exact graph exists. (2) Infinitely many monisomorphic exact
graphs exist if (h, 1,7) is not special. (3) If (h,1,7) is special, all exact graphs
are of order Az = 1*j 4 1 and satisfy |Y| = 1. Indeed, for j = ¢ (odd), all
exact graphs are isomorphic.
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By 5.4 (1) we see that in cases (1) and (2) of 4.8 wehaveuy = 1 — (4./43),
and the worst-matched (%, 7, j)-graphs are the exact graphs. By 5.4 (2), for
nonspecial (%, 1,7), u*(h,7,7) =1 — (41/43). 5.4 (3) follows from 5.2. In
§ 6 we compute p*(k, 2, j) for (k, 1, j) special.

We now verify 5.4 (1) and (2) by construction of (%, ¢, j) graphs G with
exact set V.

5.5 Construction for b = hy. We take G an i-node-connected bipartite graph
with (¢, j)-bipartition (N — Y, Y). For ¢« = 1 there is only one possible such
graph: a star with central node y of degree j, with ¥ = {y}. For ¢ 2 2 and
any positive integer p we may take NG the set of numbers (nonnegative
integers) < (¢ 4+ j7)p and Y the even numbers <2ip; to describe the edges,
write 4+’ for addition (mod 2ip) (so thats +’ ¢is the unique s with 0 < z < 2ip
such that 2ip divides (s + ¢) — 2). G has edges of the following two kinds:

W) {y,y+' 1+"2k},y€ Vand 0 sk <7

(2) {x,y} wherex = 2ip,y € YV and y = x (mod p).

5.6 Construction for h < hqo. Let H be a bipartite graph with (%, j)-bipartition
(NH — Y, 7Y), as constructed in 5.5 for type (&, %,j). We obtain G by
“replacing’’ each node x of NH — V¥ by a copy K, of a certain graph K of
order ¥,

K hasnodes {1, 2, ...,4*}. Let T be the set {1, 2, . .., &}. K will be a graph
with 7 — 1 = deK =<j—1for 2€ 7T and 1 £ dsK £j for z € NK — T
We construct the complement L of K. When 2 = 1 and 7 is odd, L has (all but
one) components of order 2 and a star component of order 3 with center node 1.
In all other cases, L. = (L/T)\J (. — T), where:

(1) For h even: L/T"is a 1-graph, L — T is a 0-graph.

(2) For k odd, 7 even: L is a 0-graph.

(3) For h odd and =3, 7z odd: L/T is a circuit, L — T is a 1-graph.

For each x € NH — V, let K, be an isomorph of K such that K, has no
node in common with H or with any K, ¥’ # x. Obtain G from the union
H/Y and of the K, (x € NH — Y) by adding for each x a set E, of & edges
obtained as follows. Let y1,, . . ., ¥, be the distinct nodes which adjoin x in H
and let E, comprise all edges {k,, v;,} (1 <k £ k), where &, is the node &
in the copy K, of K.

The construction makes G k-node-connected, because H is h-node-connected
and so is the graph K* obtained by adding to K a new node z and joining 2 to
each node of 7.

6. Special types. We have now determined u, p*, w for all nontrivial types
except p* for special types (cf. 5.3, 5.4). Now assume (%, 7, j) special. Only
finitely many nonisomorphic exact graphs exist. To deal with this difhculty,
we modify the procedure of § 4 for the vector A. We shall define a vector B
and a constant B, such that By > 0 for k € {0, 1, 2,3} and such that the
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inequality B « M = —B, holds, with equality for infinitely many (1,1, j)-
graphs. We then will have p*(h, 4,j) = 1 — (B1/B3).

6.1 Definitions. The B, are defined so that:
Bx(U*—=UY)=0=B% U+ (j—1)UY); Bo = —B % U.

These conditions imply that B « U? = —B,, B * U? = (j — 1)B,.
It suffices to define:

By=2(Mhe—1);Bi=(G—2)¢—1);By= (G —2)@* — 1);
By =14 *@{j — 1 — j).
6.2 THEOREM. Suppose Y nonsingular. Then B x M = — By.

Proof. By the statements (0)—(3) of 4.4 and the conditions of 6.1, B « M =
Bo((7 — 1)|Y| — ¢). Obtain H from G by contracting counties to single nodes
H is connected, so nH =< eH + 1 (with equality if and only if H is a tree).
Now nH = ¢G + |Y|,eH < > (dyG : y € Y) =< j|Y|. Hence

soB x M = —B,.

6.3 Remarks. (1) In particular, taking 2 = j = 3: all connected 3-upper
graphs satisfy 9m + 1 = 2¢ + #; all connected 3-graphs satisfy 9m + 1 = 4,
and p*(1, 3, 3) = 8/9.

(2) As noted in 4.9 (5) (for 4 in place of B) every connected j-upper graph
G with B * M < —By is i-lower of order ¢* (so that for ¢ even, G is complete
on 7 4+ 1 nodes).

6.4 Definition. Suppose G of type (1,1¢,7). Y is B-exact if B *x M = —B,.
G is B-exact if some subset of NG is B-exact.

6.5 Remark. Analogously with 5.2 ef seq., if YV is B-exact, and #G > (B; —
By)/B1 then Y is nonsingular and r-maximum and then pG = 1 — ((B1 +
(Bo/nG))/Bs). Further, nonempty Y is B-exact if and only if all the following
conditions hold: every small county K satisfies K = 1, d(NK)G = 7; every
large county K satisfies nK = *, d(NK)G = 1; every node of ¥ has degree j
and adjoins no other node of Y; and each node y € Y is a cut node of G (or,
equivalently, the result H of contracting counties to single nodes is a tree).

We now wish to construct infinitely many B-exact graphs.

6.6 Construction. Let H be a tree (with ¥ C NH) as constructed in 3.2 for
(2, 7). Obtain G by ‘“‘replacing’’ each end node x with a copy of the graph K,
with K and ‘“replacement’ defined as in 5.6.

6.7 Alternative construction. Call a connected j-upper graph G closed if G is
i-lower, and open otherwise. Define M'G = (nG, ¢G, 2mG — nG) (so that
MG = M'G if Y is r-maximum). Two graphs with the same value for 4 x M’
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(or B *+ M') are A-equivalent (or B-equivalent). We know that for nonspecial
type infinitely many graphs of that type can be A-equivalent (with
A x M’ = 0), and that for a special type infinitely many can be B-equivalent
(with B « M' = —B,).

ProrosiTION. (Within the type (1,1,j)) every open graph is B-equivalent
with infinitely many open graphs and with infinitely many closed graphs.

Proof. Consider two ‘‘graph extension relations’’:

(1) H ope-extends G if G is a subgraph of H and NH — NG comprises
exactly j distinct nodes xy, . . ., x;; and for some node x, of G with dxoG < ¢
we have EH — EG comprising all pairs {x1, x;} with 0 < k < j, kB # 1.

(2) H clo-extends G if H results from G by ‘“‘replacing’”’ some node x with
dxG =1 by a copy of K, as in 5.6.

Note that if H ope-extends G then H is open and H and G are B-equivalent
(since M'H — M'G = (j — 1)U* + U3); and if H clo-extends G then H and
G are B-equivalent (since M'H — M'G = U? — U') and H is ‘“‘more closed”
than G: fewer nodes have degree <7 in H than do in G. To obtain an open
graph H; and a closed graph H, each B-equivalent with G, take H, any
iterated ope-extension of G, take H;' an iterated ope-extension of H; in which
all nodes of degree <7 have degree 1, and take Hs an appropriate closed iterated
clo-extension of Hi. The closed graphs so obtained from the trivial graph are
precisely the B-exact graphs.

7. Triangle-free graphs. How are u, u*, w affected if in §2 we add to the
definition of 7'(%, 4, j) the requirement that the member graphs be triangle-
free? The answer is easily determined when (%, ¢, j) is trivial or j = 7 4+ 2 or
h = j. Indeed (except when j = 2) the values of u, u* are not altered at all,
and when j = 7 4+ 2, wis altered only in that, for z even and j = ¢ + 2, w now
excludes complete graphs on ¢ 4 1 nodes.

For remaining types, i.e. nontrivial types with j = ¢+ 1 and % # j, one
may carry out the procedures of §§ 4-6 with the definitions of 4.1 and 4.4
slightly modified as follows: “small’’ now means #n < 21, ‘‘large’” means n > 21,

U= 2+ 1,h, —1), ho=1i@+1—3j),

A= (G —h, 2042, (20 + 1)j + h).
The other statements of 4.1 remain in force. Theorem 4.5 remains true. Its
proof (in 4.4) has to be modified to show that an odd county (triangle-free) K
with ¢ < #K < 2¢ satisfies ¢K = ¢. To show this, write s for (nK — 1)/2
and note that K would include a triangle if more than s nodes x satisfied

dxK > s. Hence, at least s 4+ 1 nodes x of K satisfy max(dxG, i) — dxK =
1 — s; whence gK = (s + 1) (z — s). Since 7 < nK < 21, ¢K = 1.

When j =741, 4 = A and we have 4 * M = 0 even for ¥ singular
(with strict inequality with ¥ singular and #» > 27 + 1). Hence, forj = ¢ + 1,
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p = 2¢/(2¢ + 1); and w consists of graphs which are (7, j)-bipartite or of order
2t 4+ 1. When j =1, A =A42= (1 — h,20 4+ 2,224+ 1+ k). As in 5.6 we
obtain graphs which make exact the bound pu = 1 — (4:/43), except that
now: H is chosen of even order (so that ‘“‘replacement’” preserves h-odd-
connectedness), K is chosen of order 2¢, NK = {1, 2, ..., 2} and G is obtained
by adding sets E, to the disjoint union of H and of all the K,. To describe E,
and EK, write s for (z — k)/2: s is a positive integer. E, comprises all {x, &},
where 1 £k <sori+ 1=k =17+ s. EK comprises all {x, x,;}, where:
k =7and! > 7and not both 2 = sand ! = ¢ + k. G is in general not h-edge-
connected but is #-odd-connected: the proof uses the fact that H, K are both
h-odd-connected and of even order. For u* when j = 7 and (k, 7, j) is special,
ie., is (1,4,17) with 7 odd and =3—we carry out the procedure of § 6 with

B=(((t—-1)0G—2),2i@t — 2),2(2* — 31 — 1))
and

By =2(ho—1) =201 —1).

8. Variations.

8.1 Density. Let (k, 1, j) be a type. A class S of graphs is dense (for (h, 1, 7))
it SCT,1,7) and p*S = p*(h,1,7). We contend that almost any non-
empty “‘interesting”’ class S which one is likely to define by ‘‘k-connectivity’
and “ (1, j)-degree”’ conditions can in fact be verified to be dense (or sometimes
dense for (& + 1,14, 7)). Now, for any class S known to be dense we not only
know w*S but also can determine wS (and then wS). The reason for this is
that we now know (or can readily deduce) that for certain (known) numbers
b = 0 and n, > 0 every (%, 2, j)-graph of order =n, satisfies u = u*(h,7,j) —
(b/n); and the set of (%, 7, j)-graphs of order =#, for which equality holds is
dense and comprises graphs of known structure. Hence, to find xS we need
only try to find graphs of S for which u < p*(#, ¢, 7). When b = 0 (which is
the case for all nontrivial nonspecial types with # £ j) we need examine only
the finitely many graphs of S of order <#,. Even when b > 0 it suffices to
find but one graph Gy in S with pG: < p*(k, 7, j) and thereafter to examine
only the finitely many other graphs of S of order < max(no, 71), where
ny = b/(“*(hr 1!]) - “Gl)'

To verify density of S it suffices to check that S € T'(k, <, j) and to con-
struct arbitrarily large graphs G in S with uG “close” to u*(k, 1, 7). We give
one example of such construction.

8.2 Construction. Suppose (h,1,j) a type with 1 < j and f, g integers with
2 =f =g < h. Wemay construct an (h,1,j)-graph G as large as desired and
with uG as close as desired to u*(h,1,j), and with G strictly f-node-connected,
strictly g-edge-connected, strictly h-odd-connected. Indeed, G can be constructed
“almost biregular’’: each node but at most four will have degree 7 or j.
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Further, if type T'(k, ¢, j) is defined to comprise only triangle-free graphs,
G can be constructed triangle-free.

From 5.5 or 5.6, there is a large h-node-connected (%, ¢, j)-graph H, of even
order with uH, ‘“‘close”’ to p*(h, <, 7). Let T be a ‘“‘large enough’ set of nodes
of degree 7 in Hy, no pair of which adjoin each other or a common third node.
Obtain from H, a graph H; by adding a new node x and joining x to 7 nodes
of T". Define ¢ to be 0 if f is even and 1 if f is odd. For any integer k& and set X
and graph H write X* for Xx{k} and H* for the isomorph of H under the map

[x— (x, k) : x € NH].

Let G, be the union of the graphs Hy', H 2, H.%, H:%

We obtain G from G; by joining: H,' to H,* with an “f-node-cut”’; H? to
H,? with a “g-edge-cut’’; and H;® to H:* with an “‘h-edge-cut”’. More precisely,
let X be a set of f new nodes not in G;. Obtain G by adding to G; the nodes X
and new edges as follows: join each x € X to[j/2] nodes of 7" and toj — [j/2]
nodes of 72, and join 72 to 73 with g edges and 773 to T* with % edges, with at
most one new edge incident with any node in any of the 7%.

When T is large enough, G can be taken ‘““almost biregular’” by adding edges
joining nodes within each 7*. This can be done so that: at most one node in
each 7% does not have degree ¢ or degree 7, global connectivities are not altered,
and triangles are not introduced.

8.3 Full localization. One might object to our definition of 7'(%, i, j) for
k> 1 on the grounds that A-odd-connectivity is not a ‘‘local’”’ property, i.e.
a property of connected graphs which depends only on the connected sub-
graphs of diameter less than some fixed bound D. However, given (k, 7, j)
with 1 < £ < j we can find D such that all arguments and proofs of §§ 4-7
(and values of u, u*, w) are valid with 7°(k, ¢, j) replaced with the larger class
of all connected graphs G having the following local property: G is of degree
(¢, j) and every connected proper odd-order subgraph K of diameter <D
satisfies d(NK)G = h. It suffices to take D so that 4 = (D, 1, —1) > 4 % U?,
ie.,sothat D > U2 4+ (b — 1)A4:/A1. If we are willing to take D somewhat
larger, we can ‘“‘localize’’ all connectivities in the above Construction 8.2. In
that construction we can replace each of the H* for & % 1 by fixed graphs of
not too large order, independent of H,!.
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