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ON GAUSSIAN ELIMINATION AND DETERMINANT FORMULAS
FOR MATRICES WITH CHORDAL INVERSES

MlHALY BAKONYI

In this paper a formula is obtained for the entries of the diagonal factor in the
UDL factorisation of an invertible operator matrix in the case when its inverse
has a chordal graph. As a consequence, in the finite dimensional case a determinant
formula is obtained in terms of some key principal minors. After a cancellation
process this formula leads to a determinant formula from an earlier paper by W.W.
Barrett and C.R. Johnson, deriving in this way a different and shorter proof of their
result. Finally, an algorithmic method of constructing minimal vertex separators
of chordal graphs is presented.

1. INTRODUCTION AND PRELIMINARIES

Let us introduce first some notations and recall some results. For terminology and
results concerning graph theory we follow the book [4]. Let G — (V,E) be an undirected

graph, where the vertex set V is { 1 , . . . ,n} and the edge set E is a symmetric irreflexive
binary relation on V. The adjacency set of a vertex v is denoted by Adj(v), that is,
w £ Adj(y) if (v,w) G E. Given a subset ACV, define the subgraph induced by A by
GA = (A,EA), where EA = {(x,y) G E\x G A and y G A}. The complete graph is the
graph with the property that every pair of distinct vertices is adjacent. A subset ACV

is a clique if the induced graph on A is complete. A path [vi,..., v^] is a sequence of
vertices such that (VJ,VJ+I) G E for j = l,...,k — 1. A cycle of length k > 2 is a
path [vi,... ,Vk,vi] where v\,..., vj. are distinct. A graph G is called chordal if every
cycle of length stictly greater than 3 possesses a chord, that is, an edge joining two
nonconsecutive vertices of the cycle.

An ordering a — [i>i,..., vn] of the vertices of a graph is called perfect vertex

elimination scheme (or perfect scheme) if each set:

(1.1) X{ = {Vj e Adj(Vi) : j > i}

is a clique. If a vertex v of G is said to be simplicial when Adj(v) is a clique, then a

is a perfect scheme if each Vi is simplicial in the induced graph G{Vii...,„„} •
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A subset S C V is called a u — v vertex separator for the nonadjacent vertices u
and v if the removal of S from the graph separates u and v into distinct connected
components. If no proper subset of S contains a u — v separator, then S is a minimal
u — v separator. A characterisation given by Fulkerson and Gross [4, Theorem 4.1]
asserts: "A graph G is chordal if and only if G has a perfect scheme, if and only if
every minimal vertex separator of G is a clique".

The intersection graph of a family F of nonempty sets is obtained by representing
each set in F by a vertex and connecting two vertices by an edge if their corresponding
sets intersect. A connected graph with no cycles is called tree. The following represents
a second characterisation of chordality in [4, Theorem 4.8]: "A graph G = (V, E) is
chordal if and only if there exists a tree T — (if, E) whose vertex set is the set of the
maximal cliques of G such that each of the induced subgraphs TKV (V £ V) is connected
(and hence a subtree), where Kv consists of those maximal cliques that contain v". A
tree with this latter property is called a tree for the graph G. In general the tree is not
uniquely determined by G.

If M = I ) is a 2 x 2 operator matrix with A invertible, the operator
\C D)

D — CA-1B is called the Schur complement of A in M. Let 0 denote the algebra
of matrices R = (Rij)™ = 1 where Rij is a (bounded) linear operator acting between
the Hilbert spaces Hj and Hi. When G = (V,E) is an undirected graph, denote
nG = {R e n,Rij = o for (i,j) $ E}.

For an index set a C { 1 , . . . , n} and R £ Q denote by R(a) the principal submatrix
of R corresponding to the index set a.

2. THE RESULTS

The next lemma is a simple generalisation of its scalar matrix version in [7]. Since
the proof in that paper involves determinants, we present here a modified operator
version of it.

LEMMA 2 . 1 . Let G be a chorda! graph and a = [vi,..., vn] a perfect scheme

for G. If R G fi is invertible with R'1 £ ila and t ie matrices R(Xk) and

R({vk}U Xk) are invertible for k — l , . . . , n , wiere Xk are given by (1.1), then the

matrices R({vk,... ,vn}) are also invertible and R({vk, • • • jWn})1 G CIQ, for
k = 2,...,n.

PROOF: It is sufficient to prove the result for k = 2 since after this a simple
induction argument proves the result for general k. Let R — (A,-,-)? = 1 be the block
decomposition of R corresponding to the partition {i>i} U Xi U {{v2, • • • ,vn} — -X'I}
of the index set V. Let further R~* — («i>)* = 1 be the correspondently decomposed
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inverse of R. Since 031 = 0, the relation:

implies that a n is the (1,1) entry of the inverse of I ) = fi({«i}Uli).
\A21 A22 /

Since A22 = R{Xi) is also invertible, it follows that a n is invertible and consequently

( A" A™ \ = R(V - {Vl}) is invertible.
\ A23 -̂ 33 /

Denote now iZ"1 = ( I with respect to the partion {t>i}U{i;2, . . . , vn} of the

index set. Then, by the well known Schur complement argument, R(V — {vi})~ =

D - CA~XB. Let i,j 7̂  Vi be such that (i,j) £ E. Since R~l € Ua , we have

(R(V - { T I } ) " 1 ) . . = -CiVlA^vlBVlj. Then vx simplicial together with (i,j) £ E

implies that (i,Vi) ^ E or (j,vi) ^ ^ and so CiVl = 0 or Bvxj = 0. This finishes the

proof. D

PROPOSITION 2 . 2 . Let G be chordal and a = [uij.-.jVn] a perfect scheme
for G. Assume that R e SI is invertible, R'1 e &G and R(Xk) and R{{vk} UXk) are
invertible for fc = 1 , . . . , n , where Xk are given by (1.1). Denote by D ~ (^*°5(-D*))jb=i
t i e diagonal matrix obtained by reducing R by Gaussian elimination with choosing
succesively the (yi,vi),... i ^ n ^ n ) diagonal entries to act as pivots. Then DVk equals
the Schur complement of R(Xk) in R({vk} U Xk) for k = l , . . . , n . If the spaces
Hi,..., Hn are finite dimensional and R satisSes the above conditions then (by the
convention det /?(0) = 1 )

fy detM{{vk}\JXk)

PROOF: Let M = ( A i j ) ^ = 1 be an invertible operator matrix with the submatrices

I I , I I, A22 invertible. Then a straightforward computation
\A2i A22) \A%2 Aa3J

shows that the Schur complement of I I in M equals
\As2 A33J

(2.2)

An - A12A22A21 - (AXS - A12A22 A2s) (A33 - A32A22A23) (A3i - A32A22 A21)

In the case when ( M ~ 1 ) u = 0 then A13 = A12A22A23 and when ( ^ ~ 1 ) S 1 = 0

then A31 — As2A2~2
1A2i. Each of this equalities imply that (2.2) reduces to An —

A12A22A21, namely the Schur complement of A22 in ( X 12 ) .
\A2i A22J
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Apply the above observation to the operator matrix R({vk,- • • ,vn}) written as
(Aij){ . = 1 with respect to the partition {v/,}\JXkU{{vk+i,... ,»„}-Xk} of the index set
{vk,- •• ,vn}. Since, by Lemma 2.1, the submatrix R({vk+i,• • • ,vn}) is invertible and
the (1,3) and (3,1) entries in the inverse of M — (Aij)i . = 1 are 0, then by the previous
remark the Schur complement of R({vk+i,... ,»n}) in R({vk, • • • ,vn}) equals the Schur
complement of R(Xk) in R({vk} U Xk) for k = 1 , . . . ,n — 1. By the classical Jacobi
result, since R({vk,... ,»n}) are invertible, it is possible to reduce the matrix R by
Gaussian elimination to the diagonal matrix D = {diagDk)^=1, by choosing succesively
the (vi,vi),... ,(vn,vn) diagonal entries of R to act as pivots. Also, DVk equals the
Schur complement of R({vk+i,... ,vn}) in R({vk,.. .,»„}) and so the first part of
the proposition follows. Since in the finite dimensional case the Schur complement
of R(Xk) in R({vk}LlXk) equals (detR({vk}U Xk)/(detR(Xk))), formula (2.1) is a
consequence of det R = det D. D

We remark that without loss of generality in the previous proposition it can be
assumed that a = [1 , . . . , n] since otherwise we reorder the rows and columns of R by
the ordering of a, and under this assumption D is the diagonal factor in the UDL
factorisation of R.

The rest of the paper deals with determinant formulas and thus all the spaces are
assumed to be finite dimensional. In the paper [2], it is proved that if G is chordal,
T = (V(G),E(G)) is a tree for G, R G Q, is invertible with R'1 e QG, then

(2.3)

provided that the terms of the denominator are nonzero.
Next we present how the formula (2.3) can be obtained from (2.1).

PROPOSITION 2 . 3 . For any perfect scheme <T — [«!,...,»„] and tree T =
(V(T),E(T)) for G the formula (2.3) can be obtained from (2.1) by cancellation.

PROOF: The proposition is proven by induction on n, the number of vertices of
G. For n = 1 it is obvious. Suppose now that T = {V(T'), E(T')) is a tree for the
graph G{v2,...,vn}- Assume that

^ detM{{vk}UXk) _ Uw^v(T')

it = 2 det M(Xk) U(w,W)eEm ^ t M(W n

There are two possibilities:
A. The clique Xx is not maximal in G{rji... i rn}. Then a tree T = (V(T), E(T))

can be obtained by adding to V(T') a new vertex corresponding to {t>i} U Xi and a
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new edge joining this vertex with the vertex of V(T') corresponding to the maximal
clique of G{VJ Vny containing Xi.

Thus

Uwev(T) detM(w) _detM{{v1}UX1) Ilwev(T') d e t M(W)
det M(X1) n{w,w>)eE(T>) d e t M{W n W)

and the equahty is proved for G without any new cancellation.
B. The clique Xx is maximal in G{VJ Vny. A tree T - {V(T), E(T)) for G can

be obtained from T' by renaming the vertex corresponding to X\ by {?i} U Xi.
Thus, in the product

detM({vk}UXk)
detM(Xi) A A detM(Xk)

k 2
—2

the term detM(Xi) will be cancelled.The right member of (2.4) after multiplica-
tion with (detM({ui}UX1))/(detM(Xi)) and cancellation of detM(Xi) becomes

( i W v ( T ) d e t M(W)) I (lI(vr,w')6E(T) d e t M(W n W')) • T h e denominator of this
latter expression coincides with the denominator of (2.3) since V\ is contained in a
unique maximal clique of V. This finishes the proof. D

In [3, Theorem 3.5] it is proved that for any tree T for G, the set of cliques
appearing in the denominator of (2.3) is the set of minimal vertex separators of the
graph G. From Proposition 2.3, it follows that for any perfect scheme a = [vi,... , vn]
of G, in the denominator of (2.3) appear the cliques of the form Xi which are not
maximal in G{ri+lj...)Vnj . The following result can be obtained as a consequence of [3,
Proposition 2.3 and Theorem 3.5] but it can be proved also directly. It represents an
algorithmic method of constructing the minimal vertex separators of a chordal graph.

PROPOSITION 2 . 4 . Let G = (V,E) be a ciordaigrapA and a = [wi,...,i;n] a
perfect scheme for G. A subset S C V is a minimal vertex separator of G if and only
if S equals some Xi (t < n) that is not a maximal clique in GiVi v \ .

PROOF: The proposition is proven by induction on the cardinality of V. For n ^ 3
it is immediate. Assume that it holds for G' — G{VJt..nVny.

Since v\ is simplicial any minima.! uj — vm separator is the same in G' and G for
any k,m J? 2. If Xi is not maximal in G' then there exists a vertex vm,m ^ 2, with
Xi C Adj(»m), so Xi is a minimal vi —vm separator. Conversely, if Xi is a minimal
vertex separator in G, by [4, Exercise 12, p.102] Xi is not maximal in G'. After
removing any vi — uj. separator from G, different from X\, the connected component
of V\ must contain a vertex vr, r ^ 2. Since v\ is simplicial, our minimal V\ — Vk
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separator must coincide with a minimal vr — Vk separator and by the assumption made
for G' it is of the desired form. So the statement is completely proved. D

If R is a partial positive definite matrix (see [5] for definitions) then in [5] it was
proved that there is a unique positive definite completion Q of R with the property
that {Q~1)i- = 0 for the entries (ij) for which Rij is unknown. Also Q represents the
unique maximum determinant positive definite completion of R. Then, if in'addition
the graph G of R is chorda], det Q can be obtained by the formula (2.3). This was
proved in [6]. In [3], another formula for detQ was given. In [1] a formula for the
determinant of an arbitrary positive definite completion of R was given.

REFERENCES

[l] M. Bakonyi and T. Constantinescu, 'Inheritance principles for chordal graphs', Linear

Algebra Appl. 148 (1991), 125-143.
[2] W.W. Barrett and C.R. Johnson, 'Determinantal formulae for matrices with sparse in-

verses', Linear Algebra Appl 56 (1984), 73-88.
[3] W.W. Barrett, C.R. Johnson and M. Lundquist, 'Determinantal formulae for matrix

completions associated with chordal graphs', Linear Algebra Appl 121 (1989), 265-289.
[4] M.C. Golumbic, Algorithmic graph theory and the perfect graph (Academic Press, New

York, 1980).
[5] R. Grone, C.R. Johnson, £ . Sa and H. Wolkowitz, 'Positive definite completions of partial

Hermitian matrices', Linear Algebra Appl 58 (1984), 102-124.

[6] C.R. Johnson and W.W. Barrett, 'Spanning tree extensions of the Hadamard-Fischer

inequalities', Linear Algebra Appl 66 (1985), 177-194.

[7] C.R. Johnson, D.D. Olesky and P. van der Driesche, 'Inherited matrix entries : LU
factorization', SIAM J. Matrix Anal. Appl. 10 (1989), 94-104.

Present address: Department of Mathematics
Department of Mathematics The College of William and Mary
Georgia State University Williamsburg VA 23187-8795
Atlanta, GA 30303 United States of America
United States of America

https://doi.org/10.1017/S0004972700012090 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012090

