
A TAUBERIAN THEOREM FOR BOREL-TYPE 
METHODS OF SUMMABILITY 

D. BORWEIN 

1. Introduction. Suppose throughout that a > 0, /3 is real, and N is a 
non-negative integer such that aN + fi > 0. A series J^o an of complex terms 
is said to be summable (B, a, 0) to / if, as x —» co, 

—£ V ^ °WX 7 
ae £jr r(â» + 0) ">'' 

where sn = a0 + ax + . . . + an. The Borel-type summability method (B, a, 0) 
is regular, i.e., all convergent series are summable (B, a, /3) to their natural 
sums; and (B, 1, 1) is the standard Borel exponential method B. 

Our aim in this paper is to prove the following Tauberian theorem. 

THEOREM. / / 

(i) p ^ ~ h, an = o(np), and 
(ii) Y,o cin is summable (B, a, 13) to /, 

then the series is summable by the Cesaro method (C, 2p + 1) to I. 

The case a = (3 = 1 of the theorem is know^n (3, Theorem 147), and the 
case a > 1 is a consequence of this case and the following established result 
(1, result (I) ; 2, Lemma 4). 

(I) If a > y > 0 and, for any non-negative integer M > — 8/y, 

£^T(yn + ô) 
is convergent for all x, then hypothesis (ii) implies that £ J ^w is summable 
(B, 7, 5) to I 

The proof in this paper of the theorem, however, makes no appeal to result 
(I) and is valid for all a > 0. 

The theorem remains true if hypothesis (ii) is replaced by 
(ii)' Ho an is summable (B\ a, f3) to /, 

by which it is meant that, as y —» co , 

J *y °° a xan+^~l 

e~x dx X) -vt^rzr^ -*l - ^-! t5-1 = °)-
This is a consequence of the following known result (2, Theorem 2). 

(II) A series is summable (B, a, (3 + 1) to I if and only if it is summable 
(B', a, p) to L 
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2. Preliminary results. 

LEMMA 1. (i) x"T(y — v) 2: T(y) if x è y > v ^ 0, 

(ii) x"T(y - v) ^ T(y) if v ^ 0, 0<x£y — v — 1. 

Proof. Let ^(») = x T ( y — p)- In case (i), we have, by standard results 
(4, §§ 12.3, 12.31): 

Hv) ° g T(y-v) 

-t\dt 

^ logx — I 
«^0 

-(y-f>) « 

= logx — log (y — v) 

so that (̂z>) ^ ^(0), as required. 
Similarly, in case (ii) we have: 

*'(v) t Çœ[e-1
 e-

iv-v~lu~\ 
dt 

J'°° e~l 

o 
— e 

-(V-V-l) t 
dt 

= log x — log(y — v — 1) 

from which the required inequality follows. 

LEMMA 2 (cf. 3, Theorem 137). Let x > 0, let 

un = un(x) = ae x 
,<m+/3-l 

and let 
T(an+p) 

(n = N,N+l,...), 

0 < 6 < 1/a, 7 = i(«ô)2, i < f < | , 0 < * < 2f - 1. 
Then 

oo 

(a) 22 wn —> 1 as x • •oo; 
n=N 

(b) z^ ^ ^w+i ï^eft » :g - •— — — 1, arcd 
a a 

w w + i ^ ^w w&ew w ^ — h ; 
a a 

(c) E «. = oom-
In—x/a\>8x 

(d) Z ,«. = 0(e-'); 
In—x/a\>x> 

(e) «„ = \/(27rx) 
-a2(n-x/a)2/2x {l + 0(x6C~z)} when ^ x f 
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Proof. Part (a). This result is well known (see 1, p. 130). 
Part (b). Since 

un+i xaT(an + P) 
un T(an + p + a)' 

the required results follow from Lemma 1 with v = a, y — an + p -f- a. 
Part (c). Let rt\ and n2 be the integers such that 

n\ > - + àx â ni — 1 and n2 < 8x ̂  ^2 + 1. 

By Stirling's theorem, we have: 

T(an + )8) = (2TT)1/2 ^aw(^)aw+^1/2 | l + o ( j ] J , 

and hence 

_ j e-*^*-1 i _ y mi_ -1//_£.vni+'"1/2Ni 
«„, - 0|_e_o„1(awi)ani+,_1/2j - o ^ * y a n j j 

_ s~\/ oc8x—(x+a8x)\Og(l+a8)\ __ Qtp—Al*\ 

where 

A l = _ a 5 + ( 1 + a5)log(1 + a5) = M ^ _ ^ + ^ _ . . . > | ( a 5 ) 2 . 
Similarly, 

where 

A2 = «5 + (1 - «8) log(l - «8) = ^ + f ^ + . . . > | (aS)2. 

Next, for r ^ 0, x ^ 2(1 — P)/OLÔ, we have, by Lemma 1 (ii) with i? = ar, 
y = a^i + P + or: 

«m+r Xarr(a^i + P) . n . 1 s.-ar 

— = F(^1 + ^ + .,) = ( 1 + ^ ) • 

since 0 < x(l + |a5) ^ a»i + 0 — 1. I t follows that 

£ « . = £ «Bl+r g «», £ (1 + |«5)- r = 0(e~^x) = O ( e ^ ) . 
n—x/a>8x r=0 r=0 

Finally, by part (b), we have: 

n—x/a<—8x n<x/a—8x 

This completes the proof of part (c). We shall prove part (e) before part (d). 
Part (e). Let h — n — x/a, so that \h\ ^ xf. 
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By Stirling's theorem, we have: 

log T(an + fi) = J log 2TT — an + (an + /3 — J) log an + o( ~J 

= \ log 27T — x — ah 

+ (ah + x + 0 - i ) log(a& + *) + o ( j j 

= ^ log 27T — x •— ah + (aw + /3 — J) log x 

+ w + , + ,_ i ){^_f + o(f)} + o(i) 
2 7 2 

a fi 
= % log 2TT — x — ah + (an + fi — J) log x + a/z + -5— 

ZiX 

+4)+<*)+<$) 
\ log 2TT - x + (aft + x + fi - J) log* + ^ " + 0(tf8r~2) 

since J < f < f and \h\ g xf. 
Consequently, 

log ^n = log a — x + (an + /3 — 1) log x — log T(aw + @) 
2 27 2 

2 l 0 g 27rx 2x +U(X h 

and therefore 

as required. 
Part (d). Since e~yX = 0 ^ " ^ ) , it suffices, in view of Part (c), to prove that 

£ ^ = 0(e-*v). 
8x7>\n—x/a\>x* 

By Parts (b) and (e), the largest term in this sum is 0(e~a2a;2f~~1/2), and the 
required estimate is an immediate consequence. 

3. Cesàro sums. In this section we prove some lemmas about the Cesàro 
sums s* of a given series J2o an- These are defined by the formula: 

x _ V (v + A 
TTo \ v I 

so that Sn1 = On, s„ = sn = ao + ai + . . . + any and generally, 

\+8 
7=0 \ v / 
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LEMMA 3 (cf. 3, Theorem 146). If k > 0, 

n=o i- {pen -jr k) n\ 

J^n=N (anf
n/Y(an + (f)) is convergent for all positive /, and an = 0 for n < N, 

then, for x > 0, 

co <m+/3+fc— 1 

(2) «*Z^7v£ 

777 I (X ~ tY^faix - t) dt^2 sn' 
, a n + / 9 - l 

r(*) Jo ^ " ™v~ ¥J ™ ^N °n T(an + p) ' 

Proof. The convergence of ]£"«# (ant
an/T(an + &)) for all positive t is 

equivalent to the convergence of Yln=N (snt
an / V (an + ft)) for all positive t 

(2, Lemma 4). The right-hand side of (2) is thus equal to 

'a"4*-1 ^ T(m + k) (x-t)am 

T(k)Jo t^N T(an + 0) ~0 T(am + k) ml 

T(k) tN T(an + fi) £ 0 V(am + k)m\ J 0
 l K l) ^ 

r(ife) J ^ 5w ~ o m!r(a» + am + 0 + k) 

t=N m=N \ m — n / T (an am + 13 + k) 

oo am+0+k— 1 
fc V ^ _ _ _ ^ fc 

" J ^ T{am + 0 + k) S' m i 

as required. 

LEMMA 4. If k ^ 0 a?zd 2̂ 0° #w w summable (B, a, /3) to Z, then 

oo a n + / 3 - l 

(3) r(i + i)ak+1e~x £ 4 T r i V ^ r i T - ' as x -> °° • 
Proof. The case h — 0 is immediate. Suppose that & > 0. If £o° aw is 

summable (C, &) to /, i.e. if 

Sn~T(k+l) a s"->°°> 
then 

a*s*nY(k + 1) l_ 
T(an + (8 + *) ~ T(aM + j8) a s M ̂  ° ° ' 

and (3) follows by the regularity of the (5 , a, /3) method. 
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There is, therefore, no loss in generality in assuming that 

an = 0 for n < N. 

Then, by Lemma 3, it suffices to prove that 

(4) kx~k I (x - t)k~l4>k(x - t)e~(x~l)a(t) dt-^l as x -+ oo, 

where 

a(t) = ae l ^ sn-
f.om+0-1 

£N
 nT(an + (3) ' 

By hypothesis, we have: 

(5) a(t) —>/ as /—>oo. 

Further, since 
a Y (n + k) a__ 
T(an + k)nl~ T(an+ 1) a S n ~^ °° ' 

we have by (1) and the regularity of the (B, a, 1) method, that 

(6) e~x<j)k{x) —» 1 as x —» oo. 

A straightforward application of a standard result (3, Theorem 6) yields (4) 
as a consequence of (5) and (6). 

LEMMA 5. If ^^ an is summable (B, a, fi) to 0 and 

(7) s*-M = o(»x) (* è 0, 0 < M ^ 1, X > - 1 , X + M > 0), 

then 

(8) si = oOfc) +0(y+* / 2). 

Proof. It follows from (7), by a known result (3, Theorem 144), that 

(9) 4 = 0(»x+"), 

and that, if 0 < if < 1/a and |« — x/a| < Hx, then 

(10) 4 - 4 /a] = *{ (I» - x/a\» + l)xx} 

uniformly as x —> oo. Let J < f < §, and write 

œ an+P-1 

e~{ £ .+ z ,+ z rl 
L-iV^w<z/a—a:> a:/a—x> ^w^z/a+o:» w>z/a+a;> J 
-N^n<x/a—x> x/a—x*^ntzx/a+x* n>x/a-\-x^ 

— S\ + £2 + 6*3. 
Then 

oo ^a rc+ /3 - l 

A + st + 58 + <̂ V*/«]fcZ i^r+TT*) 
oo an+0—1 

= ae~x X 4 7T7 T T T T T = °(1) as x -^ oo 
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by Lemma 4, and hence we have: 

(11) S1 + S2 + Ss + x-ksk
[x/a](l + o(l)) =o(l) as x-^œ. 

Next, by (9) and Lemma 2(d), 

r «»+0-i I 

L N^/a-xt T(an+ p + k)J 
f «n+i9-l "1 

T ^ ^ an+p+k-l H 

L N^rf<£/«-xS T(an + fi + k) J 

<m+jS+fc-X-/i-l *"] 
* V ^ ^ 

n>fji+x! T(an + 0 + * - X - M)J 
X+/x—& —z + 0| xA+"-V 

= o^'-v*") (o < T, < 2r -1) 
= o(l) as x —>oo. 

Further, by (10) and Lemma 2(e), 

(is) * - {/-v- IK_E^(|, - g|-+1) r(af;;; j 

={^ ,& «+1}vfe^H ^ -w - */-> 
= o(/-*-1/2 £ (\t\"+ l)e-aUil2x dt) 

= o(xx-*+"/2) + o(*x~*) 

= o(/-*+" / 2) as * - * o o . 

It follows from (11), (12), and (13) that 

4/«i (1 + o(l)) = ©(*») + o(xx+*/2) as « -* oo, 

and the required conclusion (8) is an immediate consequence. 

4. Proof of the theorem. Suppose, without loss of generality, that 7 = 0. 
By hypothesis (i), we have that (7) holds with k = 0, ju = 1, and X = p. 
Hence, by Lemma 5, we have: 

(14) sn = s°n = o(nP+^2), 

since p + \ â 0. 
Suppose that m/j, = 2p + 1, where m is an integer and 0 < /z g 1. We shall 

prove that 

(15) sit = o(nP+1/2+r»<*) 
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for Y = 0, 1, . . . , m. By (14), we see that (15) holds for r = 0. Assume that 
it holds for a given r < m, so that (7) holds with 

k = (r + l)/x, X = p + | + irp. 
Since 

!(r + 1)A* ^ è^M = P + ï, 

it follows, by Lemma 5, that 

4 r + 1)/* = ^ ( ^ ( r + 1 ) / i ) + 0(WP+l/2+(»"+l)/«/2) = ^(^P+l/2+(r+ l)/i/2^ 

which is (15) with r + 1 replacing r. 
Hence, (15) holds for r = 0, 1, . . . , m\ in particular, the case r = m yields: 

s2
n
p+1 = o(n*^), 

i.e. Xo ûw is summable (C, 2p + 1) to 0. 
This completes the proof of the theorem. 
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