A TAUBERIAN THEOREM FOR BOREL-TYPE
METHODS OF SUMMABILITY

D. BORWEIN

1. Introduction. Suppose throughout that a > 0, 8 is real, and N is a
non-negative integer such that a/V 4 8 > 0. A series 3¢ a, of complex terms
is said to be summable (B, «, 8) to /if, as x — 0,

R
ae " —— ],
n=N F(an + B)
where s, = ¢o + a1 + ... + @, The Borel-type summability method (B, «, 8)
is regular, i.e., all convergent series are summable (B, a, 8) to their natural
sums; and (B, 1, 1) is the standard Borel exponential method B.
Our aim in this paper is to prove the following Tauberian theorem.

THEOREM. If
(i) p= —3, a, = o(n?), and

(i1) >0 a, ts summable (B, a, B) to I,
then the series is summable by the Cesaro method (C, 2p + 1) to L.

The case o = 8 = 1 of the theorem is known (3, Theorem 147), and the
case @ > 1 is a consequence of this case and the following established result
(1, result (I); 2, Lemma 4).

(I) If @ > v > 0 and, for any non-negative integer M > — §/7,

_ax”
a=ie T(ym + 8)
is convergent for all x, then hypothesis (ii) implies that Y5 a, is summable
(B, v, 6) to L.

The proof in this paper of the theorem, however, makes no appeal to result
(I) and is valid for all & > 0.

The theorem remains true if hypothesis (ii) is replaced by

(i1)" >°0 an is summable (B, a, B) to I,
by which it is meant that, as y — o,

v . © anxan+ﬁ—1
J; e “dx Z mhﬁj—él — Sy-1 (s_1 = 0).

n=N

This is a consequence of the following known result (2, Theorem 2).
(IT1) A series is summable (B, a, B8 + 1) to ! if and only if it is summable
(B, a, B) to L.
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2. Preliminary results.
LeMMa l. (i) ' T(y —v) 2 T(y)fx2y>v =0,
(i) x’T(y —9) S T(y)f220,0<x=y—9v—1

Proof. Let ¢(v) = x’T'(y — v). In case (i), we have, by standard results
4, §§ 12.3, 12.31):

¥ (@) 'y —v)
Y _ 2 \v=7
vo) - BT T T o)
© e—z e—(y—v)t]
—logx—J; [_t —1 = dt
‘o —t __ —(y—-0)t
= logx — J e
0 ¢
= logx — log(y — )
20,

so that ¢ () = ¢(0), as required.
Similarly, in case (ii) we have:

V@) _ I [_ e—w—"-z]
v S ler = ) LT T o
o —~t —(y—v—=1) ¢
=< logx — f ¢ £ dit
0 4

=logx — log(y —v — 1)
=0,
from which the required inequality follows.
Lemma 2 (cf. 3, Theorem 137). Let x > 0, let

an+tf—1

Up = Uy (x) = ae_sz (n=N,N+1,...),

and let
0<6<1/a; ’y=%(a6)2, %<§<%»0<ﬂ<2§_1
Then

@) > uy—1 asx—o0;

n=.

|
o e

IA

QIR R IR

N
(b)) U, S Upp1 Whenn and

+
I'—‘QIT.b

Upp1 = U, When n =

(C ) E U, = 0 (e—'yz );

R

In—z/a|>éz
(@) 2 U= 0@,
In—x/nl>zr
(&) iy = —o— e L O} when |n — o<t
vV (2mx) a
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Proof. Part (a). This result is well known (see 1, p. 130).
Part (b). Since

Unt1 _ x°T'(an + B)
t, T(an+B+a)’
the required results follow from Lemma 1 witho =,y = an 4+ 8 + «.
Part (c). Let n, and 7, be the integers such that

n1>§+8x2n1-1 and n2<fx—“—ax§n2+1.

By Stirling’s theorem, we have:

T(an + ) = @) ™ (an>“"+ﬂ—m{1 + 0(%» '

and hence
[ e»zxanﬁﬂ—l ] <cm1_I _1/2< x >an1+ﬁ—1/2>
Upy, = O & (o) =0\e" % po
— O(gaéz(ﬁ_)anl) — O(eabz—anl loz(am/z))
any
— O(ea5z—(2+a51) log(1+a5)) — O(e—Alz)y
where

8)* 8)° 8)* 1
Ay = —ad + (1 + ab) log(1 + ad) g"‘)2 - (2"‘; + g".l — >3 )"
Similarly,

If

un2 =0 (e_A 22) )

where

- I %) N GO 1, o
Ay =ad+ (1 —ad) log(l — ad) = 1.9 +2.3 +...>2(a5).
Next, for r =2 0, x = 2(1 — B8)/ad, we have, by Lemma 1 (ii) with v = ar,
y = any + B + ar:
Unpy+r xarr(anl + B) —ar
it < 1
Un, T(ans + B+ ar) = (L + 3ad)

since 0 < x(1 + 3ad) < an; + B — 1. It follows that

2, U= 2ty St 2 (L4 Jad) = 0@ = 0(™).
Finally, by part (b), we have:

Uy = Z Uy =

< Xity, = O(xe™*) = 0(e7™).
n—z/al——odz n<z/a—dzx

This completes the proof of part (c). We shall prove part (e) before part (d).
Part (e). Let h = n — x/a, so that |h] < «t.
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By Stirling’s theorem, we have:

logT(an + B) = tlog27 —an + (an + 8 — 1) logan-l—O(%)
= Llog2r —x — ah
+ (@b +x+ 8 — %)10g(ah+x)+0<}c>
=4log2r —x —ah+ (an+ B8 — 1) logx
-] o)
+(ah+x+»3"‘%){x—“2x2+o"£§‘ +O;

2,2
a’h

=%log27r—x—ah+(an+ﬁ~%)Iogx—*—ah—{——é-x—

ol o) o)

272
= }log2r —x + (ak+x+5_%)1ogx+0%+0(xs:_2)

since £ < ¢ < % and |h| = «%.

Consequently,
logu, =loga —x 4+ (an 4+ B — 1) logx — log T'(an + B)
= 1] i‘z_ — ‘l?z + 0(%?)
T 2089y T o ’

and therefore

_ @ —a2h?/2g 3t—2
Uy = \/(27rx) € {1 + O(x )}’

as required.
Part (d). Since e = O(e~"), it suffices, in view of Part (c), to prove that

Uy = 0(").
s> In—z/al>zt
By Parts (b) and (e), the largest term in this sum is O(e==***~'%2), and the
required estimate is an immediate consequence.

3. Cesaro sums. In this section we prove some lemmas about the Cesaro
sums s} of a given series .o a,. These are defined by the formula:

. (v + A
5n"§)( v )a'n—v,

so that sg! = @, Sp = Sy = @0 + a1 + ... + a,, and generally,
n
M-8 > v+08—1Y),
S,,+ B o< 14 >Sn‘v :
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LeEmMMA 3 (cf. 3, Theorem 146). If £ > 0,

(1) ¢k(x) = akﬂ_o F(an + k) n!’

Svn (@™ /T (an + B)) is convergent for all positive t, and a, = 0 for n < N,
then, for x > 0,

o _x
® &%t h TP .
z et tan —1
-5 ) e v aS s

Proof. The convergence of > ;_n (a,t"/T(an + 8)) for all positive ¢ is
equivalent to the convergence of 3 .-y (s.4*/T(an + B)) for all positive ¢
(2, Lemma 4). The right-hand side of (2) is thus equal to

o [ - (N T+ k) (x — )™
F(?)fo(x 2 dt;vr(n+3)r;or(am+k) ml

F(m + k) ’ an+pf—1 am+k—1
P(k) 'LZ—:N T(a" e B) mz_:o T(am + kym! J, ! (x — 1) dt

ak Zco: =) I‘(m + k)xan+am+ﬂ+k—l
TRy "Zom!T(on +am + B + k)

e © m__n_'_k__l)__xﬁ'l'ﬂ+k—
; ;( m—n l‘(am+/3+k)
’ oA “ <m —n+k— 1)8

o

= —_—

m=NI‘(an+B+k)n=N m—n
TR S i
“Tem+B8+k°™
as required.
LemmA 4. If k& = 0 and X_5 a, is summable (B, «, B) to I, then
X xan+ﬁ—
3) I'(k 4+ 1)t e"”z ] asx— 0.

i " T(an + B+ k)

Proof. The case & = 0 is immediate. Suppose that &> 0. If 3¢ a, is
summable (C, k) to ], i.e. if

oL o
" T+ 1) " ’
then
ST (R 4 1) I

as 7 — 00,

Tn+ B+k) " T+ p)
and (3) follows by the regularity of the (B, «, 8) method.
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There is, therefore, no loss in generality in assuming that
a, =0 for n <N.

Then, by Lemma 3, it suffices to prove that

4) kx_kf (x — )" (x — )" % (1) dt > 1 asx— o0,
0
where
— tan+ﬁ—
o) = o™ X 5 Ty
By hypothesis, we have:
(5) a(t) > as t— 0,

Further, since
akF(n + &) - o
T(an + k)n!  T(an + 1)

we have by (1) and the regularity of the (B, «, 1) method, that

(6) e¢(x) -1 as x— 0.

as n — 0,

A straightforward application of a standard result (3, Theorem 6) yields (4)
as a consequence of (5) and (6).

LemMmaA 5. If 3¢ ay is summable (B, o, B) to 0 and

(7 s = o(n?) kBzZ0,0<u=1L,A>—1\+u>0),
then
(8) &£ = o(n) + o(mrsrr).

Proof. It follows from (7), by a known result (3, Theorem 144), that
9) sn = o(nMe),
and that, if 0 < H < 1/a and |n — x/a] < Hx, then
(10) sn = Stera = ol (In — x/al* + 1)x"

uniformly as x — 0. Let 3 < { < %, and write

xarH—ﬁ— 1

@ & (0 = sta) T 5 1)

= e ” ]
N, §n<x/a—z§' n:/a—zr §n§z/a+:r§' n>z/a+z(

=514+ S+ S
Then
an+f~1

X
S1+ Se+ S5+ ae S[I/a]m;v T (an + 8- 8+ k)
. o an+—1

_aevzrgvsn T(an + ﬂ+k)

=0(l) asx— o0
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by Lemma 4, and hence we have:
(11) S1+ Ss 4+ Sz + w7 st m(1 + 0(1)) = 0(1) as x— o0,
Next, by (9) and Lemma 2(d),

an+p—1
. —Z A-u X
12) Si+ S = O[e voe  TEn T B k)]

+ 0[(3—’c > wt e ]

n>zjatzd P(Om + ﬁ + k)

_ Olix)\ﬂ—ke—f Z - xan+ﬁ+k—-1 :l
Nzn<zja—zb P(an + 8+ k)

[ Mu—k —z xa""w‘*'k—)\—#—l :I
+0.’X2 en>x/a+zi’r(an+‘8+k_>\_”)

=0 %) (0<p<2—1)
= 0(1) asx— 0.
Further, by (10) and Lemma 2(e),

B N _ f m xam,+ﬁ+k—l ]
13) S = o[x ¢ |n_;a|§,§ (ln @ + 1) T(an + B+ k)

= o[x*"‘ 2oy (Il + D 7“ e‘“z”“”’] (e = n — x/a)

e (2mx)

= o(x)‘—k_llz f (It 4 1)e=* @ dt>

= 0@ ) + o)

=0 (x)\—k+ll/2

) asx-—00.
It follows from (11), (12), and (13) that
Stera (1 + 0(1)) = o(x*) + o(x™#/2) asx— oo,

and the required conclusion (8) is an immediate consequence.

4. Proof of the theorem. Suppose, without loss of generality, that = 0.
By hypothesis (i), we have that (7) holds with 2 =0, u = 1, and \ = p.
Hence, by Lemma 5, we have:

(14) Sn = Sy = o(nrt112),

since p + 1 = 0.

Suppose that mu = 2p 4 1, where m is an integer and 0 < u < 1. We shall
prove that

(15) s;” = o(np+llz+rn/2)
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forr =0,1,...,m By (14), we see that (15) holds for » = 0. Assume that
it holds for a given r < m, so that (7) holds with

E=@4+Du, N=p+ 3+ jru
Since
3(r+ Dup = 3mu=p+ 3

it follows, by Lemma 5, that

SUTDE = o (nlr+DK) b o(nptl/2H(+DRIZ) = o (pet1/2H(r+DR/Z)

which is (15) with » + 1 replacing 7.
Hence, (15) holds for» = 0, 1, ..., m; in particular, the case r = m yields:

st = o(n2t1),

i.e. >0 a,is summable (C, 2p + 1) to 0.
This completes the proof of the theorem.
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