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ABSTRACT

The method proposed is a generalization of the method
described in [(1]. It is represented in terms of the Familton-
ian formalism with all the advantages arising from it. A com-
plete presentation of the method is given in the paper [ 2].

1, FORMULATION OF THE PROBLEM

Consider an autonomous generalized conservative mechani-
cal system with J+1 degree of freedom, depending on K parame-

ters, with the Hamiltonian H(z,p), where z = L[ X 3

X = CRRRRIE 39v) )T are coordinates, y = vy ""ny+1 )T are

impulses and p = (pl,...,pK)T are parameters, 01; :chge system.,
Ve assume that the Hamiltonian function H smoothly (in parti-
cular,analytically) depends upon its variables in the domain
of their change under consideration.

The set of differential equations with such a Hamilton-
ian has an integral H = h, where h is energy constant.

Differential equations themselves have the form:

z = IH, (1.1)

Bere I = '_g g! is a unit simplectic matrix, H, = 3H/3z"
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Let at some fixed values of the parameters, p = P be

known, the initial value 2(0,5) for any periodic solution of
the equations (1.1) having period T(P):

7 = Z(t,P), Z(t,P) = Z(t+T(P),P). 1.2)

In addition, the functions (1.2) themselves may be determined
by numerical integration of the equations (1.1) over the" inte-
rval t ¢ [ 0,T].

One formulates a problem of constructing (and then also
studying the properties) periodic solutions being the analyti-
cal continuations (with respect to parameters) of the solution
(1.2). It means that it is necessary to find such periodic
solutions

z = z(t,p), 2z(t,p) = z(t+T(Dp),p) (1.3)

which satisfy the conditions of belonging to the family of
periodic solutions, generated by the solution (1.2)

lim z(t,p) = 2(t,P), 1lim T(p) = T(p), (1.4)
5-P =3
2, LOCAL COORDINATES

Let us introduce the notations:
T=p-P, T=2-% ' (2.1)

_ We shall consider in (2.1) increments of the parameters
m and the local coordinates I as independent pf gmall quan-~
tities of the same order of smallness and retain in the Taylor
expansions of the right-hand sides of the differential equa-
tions the first order terms only. Then one obtains for I the
linear canonical differential equations with the Hamiltonian
(superscript ¢z in the Familtonian is an index).

_1 -T - =T -

B =5 L H,T +T 8 T, (2.2)
2., 2= 2 - .=

F,, = 3°H/3 ZIO , Hzp = 3°H/3z ap|0 R (2.2a)

where subscript "O" implies that after differentiation a sub-

stitution z = Z, p = P is performed, i.e. it is set that = O,
T = 0.
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The system of differential equations with the Hamilton-
ian (2.2) is a non-autonomous one but it is admitting the
integral obtained from the energy 1ntegra1 by retaining the
first order terms

T— T — _ _
Héc + Hp m = Ah = const. (2.3)
H, = 3B/3z |0, Hb = BHVBpIO . (2.3a)

Denote

v(t) = [Ze)] = Sz (t)Ece) (2.4)

i.e. V is an absolute value of '"the generalized" velocity on
the trajectory in the phase space. Then V(t) # O over whole
interval t ¢ [0,x).

Consequently, for each point of the trajectory there
exists a tangent in the phase space and one may associate
with the solution under consideration Z(t) a mobile (accomp-
anying) coordinate system one axis of which is directed along
the vector of the generalized velocity Z(t) and the others

. are situated_in the hyperpvlane normal to the trajectory in a
given point Z(t) at fixed t.

Let S denote any matrix of transition to a new coordi-
nate system and let its columns be reciprocally orthogonal
vectors composing a canonical (simplectic) basis. Moreover,
let matrix S have the following composition:

S = (R,s, -IR,-Is), R = (Ei'-"’gk)' Sp=(R,-IR),
Co (2.5)
L T. _ T
dim R = 2(J+1)xJ, S S =E, S IS=1I, (2.6)

_ 1 . .
where s = V'Z is a unit vector of the tangent to the trajec-

tory at a given point. It would be_noted that from the equa-
tions of motion (1.1) it follows -Is = 1/V = 1/V grad H.
¥hich implies that the unit vector -Is is orthogonal to the
hypersurface H = h which is integral one.

Denoting by W a vector of local coordinates in the new
system of the coordinates:

_ [ I = (nu s nv dim nu = dim nv =J,
w = _J ’ t ’ ’ . o (2.7)
L v m, m, dim my = dim m, = 1,
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where u = coordinates and v = impulses. From geometrical po-
int of view it implies that m_  is a displacement along the
trajectory, m, is a displacement orthogonal to the hypersur-
face H= h and n_ and n_ are displacements along the normals
with respect to the trajectory on the tangent_ hypersur-
face. Therefore, we shall call the displacements n_ and n
the normal, my, the tangential and m_ the energetic  ones.

v
Connection between the old and new coordinates is given by
formulas:
= Sw = Rnu + sm, = I.Rnv - Isnv (2.8)
The integral (2.3) in the new variables will be written as
follows:
T— =
Vm,, + Hpn Ah (2.9)

By virtue of canonical form of the transformation (2.8),
the differential equations for w are canonical. We reduce the
order of the system at the expense of the integral (2.9) ex-
cluding variable m,. As a result of such reduction we obtain
a canonical system of differential equations with J degrees
of freedom and the Hamiltonian

n
B =18 H7+ah7, ds o (2.10)
n
v
and an additional differential equation

.V T — - '
m, = v—mu + hn n + h2ﬂ y (2.11)
where .
H = S.(H +18), h =S I(IH I +H )s
n SR zzSR SR ' n SR "2z 2z ) S
R R, . _1-=T = T =T
h1 7 han + HZp’ h2 =F s (InzzI+Héz)s'Hp +s IHZp.

In (2.10)-(2.12) for uniformity we have additionally in-
troduced the following notations: pK+1 = h, “K+1 = Ah,
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H =-1, H =0 (infact we have introduced the energy
Pga ZPg41

constant into the vector of parameters, having increased its
dimension by 1, and thus obtained a possibility to consider
non-isonergetic displacements).

Thus, we have obtained the equations possessing a re-
markable property: The equations for normal variables (2.10)
are independent of the tangential and energetic variables.

3. PREDICTOR-CORRECTOR METHOD

An algorithm for finding the solution (1.3) is realized
in two stages. First (predictor) we find linear displace-
ments with respect to increments of the parameters of the
ipitial conditions and the period and then, (corrector), for
taking into account the nonlinear character of influence of
the parameter increments, we construct a convergent itera-
tion procedure for finding the isoparametric corrections to
the initial conditions and the period.

Now we present the predictor part of the method.

We introduce displacements  (local coordinmates) accor-
ding to formulas (2.1) and then the normal, tangential and
energetic displacements by formulas from section 2. As a re-
sult we derive equations (2.9)-(2.11). All the coefficients
n. m, and m, in these equations have the period T.

Writing the period T* of the desired solution in the
form

™ =T + T, 3.1)

and assuming Z,T and 7 to be quantities of the same order
of smallness.

Then from corditions of per10d1c1ty of the solution
(1.3) for normal and tangential d1splacements we flnd the
following boundary conditions:

n(0) = A(T) + S (0147 , (3.2)

m_(0) = m (T) + V(0)T + s™1(0)4Z (3.3)

Here AZ = Z(T) - Z(0). This quantity at the predictor stage
is equal to zero, but it will be a non-zero one at the cor-
rector stage.

Making use of independence of the boundary value prob-
lems (2.10), (3.2) and (2.11),(3.3), their linearity as well
as the fact that displacement mu(O) may be set equal to zero
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(since displacement along the orbit does not change it) one
derives

T(0) = - [N(T)-E1"* [n_p(T) + sT(0)471

T = - FUENE0) + m () + §T(0)AZ1.

where guantities in the right-hand sides are evaluated by in-
tegrating the following Cauphy problems:

Z -1H, , Z(0) = Z(0,P),
N = IE N, N(0) = E,

i =¥—F+NThn (o) = O,
n= I(HF, + by T), B(0) =

m, = g—-mp+ thp+ By T, m (0) =

Finally, from (2.9) one finds the initial value m, (0)
for the energetic displacement and by formulas (2.8), (2 1),
(3.1) the initial values of z(0) and the period T*,

The derived solution, however _will be_periodic only ap-
proximately, i.e. the differences zZ(T*) = z(O) will be non-
zero but small quantities of the second order with respect to
increments of the parameters m .Moreover, the derived (due to
predictor's work) initial values are not situated on the giv~
en integral surface H = h¥,

For refining the initial conditions and the period one
uses the corrector part of the procedure. oy )

Let, now (1.2) be a non~periodic solution of the equat-
ions (1. 1) but such that in its close vicinity in the phase
space there exists the periodic solution (1.3) corresponding
to the required values of the varying inner parameters and
the constant of energy h*. The goal is to find the motion
(1.3) by assuming the motion (1.2) as the initial approxima-
tion.

Ve introduce local coordinates by formulas (2.1),(3.1)
(vhere now T = aporoximate value of the period, T* = sought
for value under the same meanings of the parameters) and shall
look for corrections to the initial conditions Z(0) and the
period T at ® = 0, excepting Ah = h* - H(Z(0),p).

By introducing the normal, tangential and energetic cor-
rections by formulas (2.8 ) (where matrix S(t) is constructed
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as '"almost'" periodical, i.e. S(T)-8(0) is a quantity of the
same order as (2.1) one derives the equations (2.9)-(2.11).

PBoundary conditions for these equations are derived from
the requirement of T* periodicity of the solution (1.3) and_
have the form (3.2)-(3.3). In these formulas the quantity AZ
is already a non-zero -one but we consider that it is of the
same order of smallness as T.

The solution of the obtained boundary value problems is
sought in the same way as in predictor.

The relative error of the corrector work is defined by
the quantity

e = |AZ|/ max |Z(t)] (3.4)
tel0,T]

If the obtained quantity € turns out to be smaller than the
initially prescribed quantity €* then we regard the periodic
motion (1.3) to be found. If the error of (3.4) is larger
than the prescribed one then the corrector work should be re-
peated upto attaimment of the inequality € < e*, In addition,
one naturally should, before the beginning of a new step of
corrector's work, put Z(0) = z(0), T = T*,

It would be noted that at each step of the corrector one
computes corrections to the initial conditions and the period
of the next order of smallness as compared to corrections of
the previous step. Therefore,the constructed corrector posse-
ssess a quadratic convergence of the Newtonian type, clearly
on condition that one successfully chooses the initial appro-
ximation generated by the predictor.
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