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Abstract

Let G be a finite connected graph of order n, minimum degree δ and diameter d. The degree distance
D′(G) of G is defined as

∑
{u,v}⊆V(G)(deg u + deg v) d(u, v), where deg w is the degree of vertex w and

d(u, v) denotes the distance between u and v. In this paper, we find an asymptotically sharp upper bound
on the degree distance in terms of order, minimum degree and diameter. In particular, we prove that

D′(G) ≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3).

As a corollary, we obtain the bound D′(G) ≤ n4/(9(δ + 1)) + O(n3) for a graph G of order n and minimum
degree δ. This result, apart from improving on a result of Dankelmann et al. [‘On the degree distance of
a graph’, Discrete Appl. Math. 157 (2009), 2773–2777] for graphs of given order and minimum degree,
completely settles a conjecture of Tomescu [‘Some extremal properties of the degree distance of a graph’,
Discrete Appl. Math. 98 (1999), 159–163].
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1. Introduction

Let G be a connected graph with vertex set V and edge set E. The degree distance
D′(G) of G is defined as ∑

{u,v}⊆V

(deg u + deg v) d(u, v),

where deg w is the degree of vertex w and d(u, v) denotes the distance between u and
v in G.

The degree distance, a Schultz-type molecular topological index and a variant
of the well-known and much studied Wiener index, seems to have been considered
first by Dobrynin and Kochetova [5] in 1994 and practically at the same time by
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Gutman [6], who introduced it as a kind of a vertex-valency-weighted sum of the
distances between all pairs of vertices in a graph. Gutman revealed that in the case of
acyclic structures, the index is closely related to the Wiener index and reflects precisely
the same structural features of a molecular graph as the Wiener index does.

Before 1994, the degree distance was encountered in connection with certain
chemical applications [11, 12]. After 1994, the degree distance was investigated by
several authors, for instance, Bucicovschi and Cioabă [1], Dankelmann et al. [3], Ilić
et al. [8], Tomescu [13], and Tomescu [14]. In this paper we are concerned with upper
bounds on the degree distance. Sharp upper and lower bounds on the degree distance
for trees of given order have been completely determined (see, for example the recent
survey in [4]). For general graphs, Dobrynin and Kochetova [5] conjectured that the
largest degree distance of all connected graphs of order n equals n4/32 + O(n3). This
was refuted by Tomescu [13], who showed that graphs consisting of two cliques of
order approximately n/3 joined by a path on approximately n/3 vertices, have degree
distance n4/27 + O(n3). He then made the following attractive conjecture.

C 1.1 [13]. Let G be a connected graph of order n. Then

D′(G) ≤
n4

27
+ O(n3).

Nine years after the announcement of this conjecture, Bucicovschi and Cioabǎ [1]
commented that Tomescu’s conjecture ‘seems difficult at present time’. In the
following year, Dankelmann et al. [3] considered this problem, and though they came
close to proving the conjecture, their proof was unable to deal with the O(n3) error
term. They proved the following bound.

T 1.2 [3]. If G is a connected graph of order n, then

D′(G) ≤
n4

27
+ O(n7/2).

Recently the method developed in [3] was improved by M. J. Morgan,
S. Mukwembi and H. C. Swart (‘On a conjecture by Tomescu’, submitted for
publication), leading to a complete solution of Tomescu’s conjecture.

Since the degree distance can be considered as a weighted version of the Wiener
index, comparisons between the two indices are inevitable. For trees of given order,
these two parameters actually determine each other: Klein et al. [9] and Gutman [6]
showed that, for every tree T of order n, D′(T ) = 4W(T ) − n(n − 1), where W(G) =∑
{u,v}⊆V d(u, v) is the Wiener index of G. Since its introduction in the late 1940s

by the chemist Harold Wiener in an attempt to analyse the chemical properties of
paraffins (alkanes) [15], the mathematical properties of the Wiener index have been
studied by several authors. One of the oldest results on upper bounds of this quantity
is that amongst all connected graphs of given order, the path has the maximum Wiener
index. For graphs of given minimum degree, this result was improved independently
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by several authors, among them Kouider and Winkler [10] and Dankelmann and
Entringer [2], who proved the following bound.

T 1.3 [2, 10]. Let G be a graph of order n and minimum degree δ. Then

W(G) ≤
n3

2(δ + 1)
+ O(n2),

and this bound is best possible.

In light of Theorem 1.3 and the fact that the degree distance can be considered as
a weighted version of the Wiener index, it is natural to look for a best upper bound
on the degree distance of a connected graph of given order and minimum degree.
To date, no work answering this question has been reported. The purpose of this
paper is to contribute towards filling this gap. Our method is an improvement of
the method initiated in [3]. We obtain an asymptotically sharp upper bound on the
degree distance of a graph of given order and minimum degree. Our result, apart from
being a strengthening of Theorem 1.2 and a theorem by Morgan et al. (see above),
confirms and improves on Tomescu’s conjecture (Conjecture 1.1) if minimum degree
is prescribed.

The notation that we use is as follows. For a vertex v of G, we denote by D(v)
the total distance or the status of v. That is, D(v) =

∑
x∈V(G) d(v, x). The quantity

deg vD(v) is denoted by D′(v). We denote the open neighbourhood of v by N(v), that is,
N(v) = {x ∈ V(G) | d(x, v) = 1}. The closed neigbourhood of v in G, that is, N(v) ∪ {v},
is denoted by N[v]. Here and in the following, we assume that the minimum degree δ
is fixed.

The useful equation
D′(G) =

∑
v∈V

D′(v)

was first observed by Tomescu [13].

2. Results

We begin by presenting a very simple but handy observation.

F 2.1. Let G be a connected graph of order n, diameter d and minimum degree δ.
If v ∈ V(G), then d ≤ (3/(δ + 1))(n − deg v) + 6.

P. Assume that v ∈ V(G) and let P = v0, v1, . . . , vd be a diametric path of G. Let

S :=
{
v3i+1

∣∣∣∣∣ i = 0, 1, . . . ,
⌊d − 1

3

⌋}
.

For each x ∈ S , choose any δ neighbours x1, x2, . . . , xδ of x and denote the set
{x, x1, x2, . . . , xδ} by M[x]. Let M =

⋃
x∈S M[x]. Then

|M| = (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
.
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Note that by construction of S , N[v] ∩ M has at most 2δ + 1 vertices. Hence

n ≥ |M| + |N[v]| − |M ∩ N[v]|

≥ (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
+ deg v + 1 − (2δ + 1)

≥ (δ + 1)
d
3

+ deg v − 2δ,

and rearranging the terms completes the proof. �

We will often use the following simple and straightforward result or a variation on
it.

P 2.2. Let G be a connected graph of order n, diameter d and fixed minimum
degree δ. If v ∈ V(G), then

D(v) ≤ d
(
n −

d
6

(δ + 1) − deg v
)

+ O(n).

P. Denote the eccentricity of v by e. For all i = 1, 2, . . . , e, let Ni := {x ∈ V(G) |
d(v, x) = i} and |Ni| = ki. Note that if x ∈ Ni, i = 2, 3, . . . , e − 1, then N[x] ⊆ Ni−1 ∪

Ni ∪ Ni+1 so that
ki−1 + ki + ki+1 ≥ δ + 1.

Clearly,
D(v) = 1k1 + 2k2 + · · · + eke. (2.1)

We look at three cases separately.

Case 1: e ≡ 0 (mod 3). Subject to

k1 = deg v, ki ≥ 1 for i = 2, 3, . . . , e,

and

k2 + k3 + k4 ≥ δ + 1, k5 + k6 + k7 ≥ δ + 1, . . . , ke−4 + ke−3 + ke−2 ≥ δ + 1,

(2.1) is maximised for

k1 = deg v, k2 = 1 = k3, k4 = δ − 1, k5 = 1 = k6,

k7 = δ − 1, . . . , ke−4 = 1 = ke−3, ke−2 = δ − 1, ke−1 = 1

and
ke = n − deg v − 1

3 (e − 3)(δ + 1) − 1 − 1.

This gives

D(v) ≤ deg v + 2 + 3 + 4(δ − 1) + 5 + 6 + 7(δ − 1)

+ · · · + (e − 4) + (e − 3) + (e − 2)(δ − 1) + (e − 1)

+ e
(
n − deg v −

1
3

(e − 3)(δ + 1) − 2
)

= e
(
n −

e
6

(δ + 1) − deg v
)

+ O(n).
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If e = d − c, where c ∈ {0, 1, . . . , 5}, then

D(v) ≤ (d − c)
(
n −

d − c
6

(δ + 1) − deg v
)

+ O(n)

= d
(
n −

d
6

(δ + 1) − deg v
)

+ O(n),

as desired. So assume that e ≤ d − 6. The function

f (e) = e
(
n −

e
6

(δ + 1) − deg v
)

is increasing in e for all e ≤ (3/(δ + 1))(n − deg v). Note from Fact 2.1 that d − 6 ≤
(3/(δ + 1))(n − deg v). Hence

D(v) ≤ f (d − 6) = d
(
n −

d
6

(δ + 1) − deg v
)

+ O(n),

and the proposition is proved for this case. This completes Case 1.
The other cases, e ≡ 1 (mod 3) and e ≡ 2 (mod 3), are treated similarly. �

T 2.3. Let G be a connected graph of order n, diameter d and fixed minimum
degree δ. Then

D′(G) ≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3).

Moreover, this inequality is asymptotically tight.

P. Let P : v0, v1, . . . , vd be a diametric path of G and let S ⊂ V(P) be the set

S :=
{
v3i+1 : i = 0, 1, 2, . . . ,

⌊d − 1
3

⌋}
.

For each v ∈ S , choose any δ neighbours u1, u2, . . . , uδ of v and denote the set
{v, u1, u2, . . . , uδ} by M[v]. Let M =

⋃
v∈S M[v]. Then

|M| = (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
.

C 1. ∑
u∈M

D′(u) ≤ O(n3).

P  C 1. Let S 1 ⊂ S be the set S 1 = {v j ∈ S : j ≡ 1 (mod 6)}. Let S 2 =

S − S 1. Then for each u, v ∈ S 1, u , v, we have M[u] ∩ M[v] = ∅ and the
neighbourhoods of M[u] and M[v] are also disjoint. Write the elements of S 1 as
S 1 = {w1, w2, . . . , w|S 1 |}. For each w j ∈ S 1, let M[w j] = {w j, u j

1, u j
2, . . . , u j

δ}, where
u j

1, u j
2, . . . , u j

δ are neighbours of w j. Then

n ≥ (deg w1 + 1) + (deg w2 + 1) + · · · + (deg w|S 1 | + 1)
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and, for t = 1, 2, . . . , δ,

n ≥ (deg u1
t + 1) + (deg u2

t + 1) + · · · + (deg u|S 1 |
t + 1).

Summing yields
(δ + 1)n ≥

∑
x∈M[S 1]

deg x + (δ + 1)|S 1|,

where M[S 1] =
∑

u∈S 1
M[u].

Similarly,
(δ + 1)n ≥

∑
x∈M[S 2]

deg x + (δ + 1)|S 2|.

Thus

2(δ + 1)n ≥
∑

x∈M[S 1]

deg x +
∑

x∈M[S 2]

deg x + (δ + 1)|S |

=
∑

x∈M[S 1]

deg x +
∑

x∈M[S 2]

deg x + (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
.

Hence ∑
x∈M[S 1]

deg x +
∑

x∈M[S 2]

deg x ≤ 2(δ + 1)n − (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
= (δ + 1)

(
2n −

⌊d − 1
3

⌋
− 1

)
.

Now for u ∈ V(G), D(u) ≤ (n − 1)d ≤ (n − 1)2. It follows that∑
v∈M

D′(v) =
∑
v∈M

deg vD(v)

=
∑

v∈M[S 1]

deg vD(v) +
∑

v∈M[S 2]

deg vD(v)

≤ (n − 1)2
( ∑

v∈M[S 1]

deg v +
∑

v∈M[S 2]

deg v
)

≤ (n − 1)2(δ + 1)
(
2n −

⌊d − 1
3

⌋
− 1

)
= O(n3),

as required and so Claim 1 is proved.

Let C be a maximum set of disjoint pairs of vertices from V − M which lie at a
distance at least 3, that is, if {a, b} ∈ C, then d(a, b) ≥ 3. If {a, b} ∈ C we say a and b
are partners. Finally, let K be the remaining vertices of G, that is, K = V − M − {x :
x ∈ {a, b} ∈ C}. Let |K| = k, and |C| = c. Then

n = (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
+ 2c + k. (2.2)
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F 2.4. Let {a, b} ∈ C. Then deg a + deg b ≤ n − (d/3)(δ + 1) + O(1).

P  F 2.4. Note that N[a] ∩ N[b] = ∅, since d(a, b) ≥ 3. Also, each of the two
vertices can be adjacent to at most 2δ + 1 vertices on M. Thus,

n ≥ deg a + 1 + deg b + 1 + |M| − 2(2δ + 1)

= deg a + deg b + (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
− 4δ,

and rearranging the terms completes the proof of Fact 2.4.

Now consider two cases.

Case 1: k ≤ 1. For x ∈ K, D(x) ≤ (n − 1)2, so D′(x) ≤ (n − 1)3. Thus
∑

x∈K D′(x) =

O(n3).

C 2. If {a, b} ∈ C, then

D′(a) + D′(b) ≤
1
2

dn
(
n −

d
3

(δ + 1)
)

+ O(n2).

P  C 2. By Proposition 2.2,

D(a) ≤ d
(
n −

d
6

(δ + 1) − deg a
)

+ O(n).

It follows that

D′(a) ≤ deg a
(
d
(
n −

d
6

(δ + 1) − deg a
))

+ O(n2).

Similarly,

D′(b) ≤ deg b
(
d
(
n −

d
6

(δ + 1) − deg b
))

+ O(n2).

Thus,

D′(a) + D′(b) ≤ deg a
(
d
(
n −

d
6

(δ + 1) − deg a
))

+ deg b
(
d
(
n −

d
6

(δ + 1) − deg b
))

+ O(n2)

= d
(
(deg a + deg b)

(
n −

d
6

(δ + 1)
)
− ((deg a)2 + (deg b)2)

)
+ O(n2)

≤ d
(
(deg a + deg b)

(
n −

d
6

(δ + 1)
)
−

1
2

(deg a + deg b)2
)

+ O(n2).

Denote deg a + deg b by x and let

f (x) = d
(
x
(
n −

d
6

(δ + 1)
)
−

1
2

x2
)
.
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Then by Fact 2.4, x ≤ n − (d/3)(δ + 1) + O(1). A simple differentiation shows that
f is increasing for all x ≤ n − (d/6)(δ + 1). Hence f attains its maximum for x =

n − (d/3)(δ + 1) + O(1), to give

D′(a) + D′(b) ≤ f
(
n −

d
3

(δ + 1) + O(1)
)

=
1
2

dn
(
n −

d
3

(δ + 1)
)

+ O(n2),

and Claim 2 is proved.
From (2.2),

c =
1
2

(
n − (δ + 1)

(⌊d − 1
3

⌋
+ 1

)
− k

)
.

Hence, since k ≤ 1,

c =
1
2

(
n −

d
3

(δ + 1)
)

+ O(1).

This, in conjunction with Claim 2, yields∑
{a,b}∈C

(D′(a) + D′(b)) ≤ c
(1
2

dn
(
n −

d
3

(δ + 1)
)

+ O(n2)
)

=

(1
2

(
n −

d
3

(δ + 1)
)

+ O(1)
)(1

2
dn

(
n −

d
3

(δ + 1)
)

+ O(n2)
)

=
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3).

Hence

D′(G) =
∑
{a,b}∈C

(D′(a) + D′(b)) +
∑
x∈K

D′(x) +
∑
v∈M

D′(v)

≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3) + O(n3) + O(n3),

and so the theorem is proved for Case 1.

Case 2: k ≥ 2. Now the pairs of vertices in C will be partitioned further. Fix a vertex
x ∈ K. For each pair {a, b} ∈ C, choose the vertex closer to x; if d(a, x) = d(b, x)
arbitrarily choose one of the vertices. Let A be the set of all these vertices closer to
x, and B be the set of partners of these vertices in A, so |A| = |B| = c. Furthermore, let
A1(B1) be the set of vertices w ∈ A(B) whose partner is at a distance at most 9 from w.
Let c1 = |A1| = |B1|.

C 3. For all u, v ∈ A ∪ K, d(u, v) ≤ 8.

P  C 3. Since C is a maximum set of pairs of vertices of distance at least 3,
any two vertices of K must be at a distance of at most 2. We show that d(a, x) ≤ 4 for
all a ∈ A. Suppose, to the contrary, that there exists a vertex a ∈ A for which d(a, x) ≥ 5.
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Let b be the partner of a. By definition of A, d(x, b) ≥ 5. Now consider another vertex
x′ ∈ K, x , x′. Since d(x, x′) ≤ 2,

5 ≤ d(b, x) ≤ d(b, x′) + d(x, x′) ≤ d(b, x′) + 2,

which implies that d(b, x′) ≥ 3. This contradicts the maximality of C since {a, b}
will be replaced by {a, x} and {b, x′}. Hence d(a, x) ≤ 4, for each a ∈ A. Thus for
u, v ∈ A, d(u, v) ≤ d(u, x) + d(x, v) ≤ 8.

C 4. For all x ∈ K,

D′(x) ≤ d
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ O(n2).

P  C 4. By Claim 3, all c + k vertices in A ∪ K lie within a distance of 8
from each vertex x ∈ K. This implies that all the c1 vertices in B1 lie within a distance
of 9 + 8 from x. Thus, as in Proposition 2.2,

D(x) ≤ 8(c + k) + 17c1 + 18 + 19 + 20(δ − 1) + 21 + 22 + 23(δ − 1)

+ · · · + d
(
n − c − k − c1 −

d
3

(δ + 1)
)

= d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n).

In order to find a bound on the degree of x we use a counting argument. Note that
x can have at most 2δ + 1 neighbours in M. By definition of A and B, x cannot be
adjacent to two vertices, w and z, where w ∈ A is a partner of z ∈ B, since d(w, z) ≥ 3.
Thus, x is adjacent to at most c vertices in A ∪ B. It follows that

n ≥ deg x + |M| − (2δ + 1) + |A ∪ B| − c

= deg x + (δ + 1)
(⌊d − 1

3

⌋
+ 1

)
− (2δ + 1) + c

= deg x +
d
3

(δ + 1) + c + O(1).

Hence deg x ≤ n − (d/3)(δ + 1) − c + O(1). Therefore,

D′(x) = deg xD(x)

≤ d
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ O(n2),

and this proves Claim 4.

We now turn to finding an upper bound on the contribution of the pairs in C to the
degree distance. We abuse notation and write {a, b} ∈ A1 ∪ B1 if a and b are partners,
that is, {a, b} ∈ C, with a ∈ A1 and b ∈ B1. Note that∑
{a,b}∈C

(D′(a) + D′(b)) =
∑

{a,b}∈A1∪B1

(D′(a) + D′(b)) +
∑

{a,b}∈(A−A1)∪(B−B1)

(D′(a) + D′(b)).

We first consider the set A1 ∪ B1.
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C 5. Let {a, b} ∈ C. If d(a, b) ≤ 9, that is, if {a, b} ∈ A1 ∪ B1, then

D′(a) + D′(b) ≤ d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ O(n2).

P  C 5. We first show that any two vertices in A ∪ K ∪ B1 lie within a
distance of 26 from each other. By Claim 3, any two vertices in A ∪ K lie within
a distance of 8 from each other. Now assume that b, v ∈ B1, and let a and u be the
partners of b and v in A1, respectively. Then d(b, v) ≤ d(b, a) + d(a, u) + d(u, v) ≤
9 + 8 + 9 = 26. Thus any two vertices in B1 are within a distance of 26 from each
other. Now let a ∈ A ∪ K and b ∈ B1, and let u be the partner of b in A1 ⊆ A. Then
d(a, b) ≤ d(a, u) + d(u, b) ≤ 8 + 9 < 26. Hence any two vertices in A ∪ K ∪ B1 lie
within a distance of 26 from each other.

Now let w ∈ A1 ∪ B1. Since w is in A ∪ K ∪ B1, all the c + k + c1 − 1 vertices in
A ∪ K ∪ B1 lie within a distance of 26 from w. It follows, as in Proposition 2.2, that

D(w) ≤ 26(c + k + c1 − 1) + 27 + 28 + 29(δ − 1) + 30 + 31 + 32(δ − 1) + · · ·

+ d
(
n − c − c1 − k −

d
3

(δ + 1)
)

= d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n).

Thus, if {a, b} is a pair in A1 ∪ B1, then

D′(a) + D′(b) ≤ deg a
(
d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n)
)

+ deg b
(
d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n)
)

= (deg a + deg b)
(
d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n)
)
.

By Fact 2.4, deg a + deg b ≤ n − (d/3)(δ + 1) + O(1). Therefore,

D′(a) + D′(b) ≤
(
n −

d
3

(δ + 1) + O(1)
)(

d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n)
)

= d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ O(n2),

and Claim 5 is proved.

Now consider pairs {a, b} of vertices in C which are not in A1 ∪ B1.

C 6. Let {a, b} ∈ C. If d(a, b) ≥ 10, that is, if {a, b} ∈ (A − A1) ∪ (B − B1), then

D′(a) + D′(b) ≤ d(c + k)
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ cd
(
n −

d
6

(δ + 1) − c
)

+ O(n2).
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P  C 6. We consider vertices from A − A1 and from B − B1 separately. Let
a ∈ A − A1. Then as in Claim 5, all the c + k − 1 vertices in A ∪ K lie at a distance of
8 from a and all the c1 vertices in B1 lie within a distance of 9 + 8 = 17 from a. Thus,
as in Proposition 2.2,

D(a) ≤ 8(c + k − 1) + 17c1 + 18 + 19 + 20(δ − 1) + 21 + 22 + 23(δ − 1)

+ · · · + d
(
n − c − c1 − k −

d
3

(δ + 1)
)

= d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n).

We now find a bound on the degree of a. By definition of C, a cannot be adjacent to
both w and u, where w ∈ A is a partner of u ∈ B, since d(w, u) ≥ 3. Hence a is adjacent
to at most c − 1 vertices in A ∪ B. Further, a is adjacent to at most 2δ + 1 vertices in
M and has at most k neighbours in K. Thus,

deg a ≤ c − 1 + 2δ + 1 + k = c + 2δ + k.

It follows that

D′(a) = deg aD(a)

≤ (c + k + 2δ)
(
d
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n2)
)

= d(c + k)
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ O(n2).

(2.3)

Now let b ∈ B − B1. By Proposition 2.2,

D(b) ≤ d
(
n −

d
6

(δ + 1) − deg b
)

+ O(n),

and so

D′(b) ≤ deg b
(
d
(
n −

d
6

(δ + 1) − deg b
))

+ O(n2). (2.4)

We first maximise

deg b
(
d
(
n −

d
6

(δ + 1) − deg b
))

with respect to deg b. Let

f (x) := x
(
d
(
n −

d
6

(δ + 1) − x
))
,

where x = deg b. A simple differentiation shows that f is increasing for x ≤
1
2 (n − (d/6)(δ + 1)). We find an upper bound on x, that is, on deg b. Note that as above,
b can be adjacent to at most c − 1 vertices in A ∪ B, and has at most 2δ + 1 neighbours
in M. We show that b cannot be adjacent to any vertex in K. Suppose to the contrary
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that y ∈ K and d(b, y) = 1. Recall that a is the partner of b and d(a, b) ≥ 10. By Claim 3,
d(a, y) ≤ 8. Hence 10 ≤ d(a, b) ≤ d(b, y) + d(y, a) ≤ 1 + 8, a contradiction. Thus, b
cannot be adjacent to any vertex in K. We conclude that

deg b ≤ c − 1 + 2δ + 1 = c + 2δ.

We look at two cases separately. First assume that deg b = c + j, where j ∈
{1, 2, . . . , 2δ}. Then

f (deg b) = f (c + j)

= (c + j)
(
d
(
n −

d
6

(δ + 1) − (c + j)
))

= cd
(
n −

d
6

(δ + 1) − c
)

+ O(n2).

(2.5)

Second, assume that deg b ≤ c. From (2.2), and since k ≥ 2 and b(d − 1)/3c + 1 ≥ d/3,

c =
1
2

(
n − (δ + 1)

(⌊d − 1
3

⌋
+ 1

)
− k

)
≤

1
2

(
n −

d
3

(δ + 1) − 2
)
.

Notice that
1
2

(
n −

d
3

(δ + 1) − 2
)
≤

1
2

(
n −

d
6

(δ + 1)
)
,

and so f is increasing in [1, c]. Therefore,

f (deg b) ≤ f (c) = cd
(
n −

d
6

(δ + 1) − c
)
,

for this case. Comparing this with (2.5), we get that

f (deg b) ≤ cd
(
n −

d
6

(δ + 1) − c
)

+ O(n2).

Thus, from (2.4),

D′(b) ≤ cd
(
n −

d
6

(δ + 1) − c
)

+ O(n2).

Combining this with (2.3),

D′(a) + D′(b) ≤ d(c + k)
(
n − c − c1 − k −

d
6

(δ + 1)
)

+ cd
(
n −

d
6

(δ + 1) − c
)

+ O(n2),

and Claim 6 is proved.
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Using Claims 1 and 4–6 we bound D′(G) as follows. Note that

D′(G) =
∑
u∈M

D′(u) +
∑
x∈K

D′(x) +
∑
{a,b}∈C

(D′(a) + D′(b))

≤ dk
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ c1

(
d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
))

+ (c − c1)
(
d(c + k)

(
n − c − c1 − k −

d
6

(δ + 1)
)

+ cd
(
n −

d
6

(δ + 1) − c
))

+ O(n3)

= dk
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ c1

(
d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
))

+ d(c − c1)
(
(c + k)

(
n − c − k −

d
6

(δ + 1)
)

− c1(c + k) + c
(
n −

d
6

(δ + 1) − c
))

+ O(n3).

For easy calculation in maximising this term, we note that c − c1 ≥ 0, and that by (2.2),
n − c − k − (d/6)(δ + 1) ≥ 0. Hence the last term in the previous inequalities,

d(c − c1)
(
(c + k)

(
n − c − k −

d
6

(δ + 1)
)
− c1(c + k) + c

(
n −

d
6

(δ + 1) − c
))
,

is at most

d(c − c1)
(
(c + k + 1)

(
n − c − k −

d
6

(δ + 1)
)
− c1(c + k) + c

(
n −

d
6

(δ + 1) − c
))
.

It follows that

D′(G) ≤ dk
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ c1

(
d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
))

+ d(c − c1)
(
(c + k + 1)

(
n − c − k −

d
6

(δ + 1)
)
− c1(c + k)

+ c
(
n −

d
6

(δ + 1) − c
))

+ O(n3).
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Let g(n, d, c, c1) be the function

g(n, d, c, c1) := dk
(
n −

d
3

(δ + 1) − c
)(

n − c − c1 − k −
d
6

(δ + 1)
)

+ c1

(
d
(
n −

d
3

(δ + 1)
)(

n − c − c1 − k −
d
6

(δ + 1)
))

+ d(c − c1)
(
(c + k + 1)

(
n − c − k −

d
6

(δ + 1)
)
− c1(c + k)

+ c
(
n −

d
6

(δ + 1) − c
))
.

We first maximise g subject to c1, keeping the other variables fixed. It is easy to verify,
using (2.2), that the derivative

dg
dc1

= −dk
(
n −

d
3

(δ + 1)
)
− dc

(
n −

d
3

(δ + 1) − 2c + c1

)
− d

(
c +

d
6

(δ + 1)
)

is negative. Therefore, g is decreasing in c1. Thus, in conjunction with (2.2),

g(n, d, c, c1) ≤ g(n, d, c, 0)

= dk
(
n −

d
3

(δ + 1) − c
)(

n − c − k −
d
6

(δ + 1)
)

+ dc
(
(c + k + 1)

(
n − c − k −

d
6

(δ + 1)
)

+ c
(
n −

d
6

(δ + 1) − c
))

= d
(
n −

d
3

(δ + 1) − 2c
)(

n −
d
3

(δ + 1) − c
)

×

(
n − c −

(
n −

d
3

(δ + 1) − 2c
)
−

d
6

(δ + 1)
)

+ dc
((

c +

(
n −

d
3

(δ + 1) − 2c
)

+ 1
)

×

(
n − c −

(
n −

d
3

(δ + 1) − 2c
)
−

d
6

(δ + 1)
))

+ dc
(
c
(
n −

d
6

(δ + 1) − c
))

+ O(n3)

= d
(
n −

d
3

(δ + 1) − 2c
)(

n −
d
3

(δ + 1) − c
)(

c +
d
6

(δ + 1)
)

+ dc
((

n −
d
3

(δ + 1) − c + 1
)(

c +
d
6

(δ + 1)
))

+ dc
(
c
(
n −

d
6

(δ + 1) − c
))

+ O(n3)

= d
((

n −
d
3

(δ + 1) − c
)2(

c +
d
6

(δ + 1)
)

+ c2
(
n −

d
6

(δ + 1) − c
))

+ O(n3).
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A simple differentiation with respect to c shows that the function(
n −

d
3

(δ + 1) − c
)2(

c +
d
6

(δ + 1)
)

+ c2
(
n −

d
6

(δ + 1) − c
)

attains its maximum for c = 1
2 (n − (d/3)(δ + 1)) to give(

n −
d
3

(δ + 1) − c
)2(

c +
d
6

(δ + 1)
)

+ c2
(
n −

d
6

(δ + 1) − c
)
≤

n
4

(
n −

d
3

(δ + 1)
)2

.

Hence

g(n, d, c, c1) ≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3),

and so

D′(G) ≤ g(n, d, c, c1) + O(n3) ≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3),

and Case 2 of Theorem 2.3 is proved.
To see that the bound is asymptotically sharp, consider the graph Gn,d,δ, d ≡ 1

(mod 3), constructed as follows. First, let H be the graph with diameter d − 2 obtained
as follows: V(H) = V0 ∪ V1 ∪ · · · ∪ Vd−2, where

|Vi| =

{
1 if i ≡ 0 or 2 (mod 3),
δ − 1 otherwise

and two distinct vertices v ∈ Vi, v′ ∈ V j are joined by an edge if and only if | j − i| ≤ 1.
Let the only vertex in V0 be v0 and the only vertex in Vd−2 be vd−2. Now let H1 be
the complete graph on d 1

2 (n − 1
3 (d − 1)(δ + 1))e vertices and H2 the complete graph

on b 1
2 (n − 1

3 (d − 1)(δ + 1))c vertices. The graph Gn,d,δ is obtained by joining the
vertex v0 in H to every vertex in H1 and joining the vertex vd−2 in H to every vertex
in H2. Then Gn,d,δ has diameter d, minimum degree δ and degree distance at least
(1/4)dn(n − (d/3)(δ + 1))2, as desired. �

Finally, the result below gives a strengthening of the bound in [3] and completely
settles a conjecture of Tomescu [13].

C 2.5. Let G be a connected graph of order n and minimum degree δ. Then

D′(G) ≤
n4

9(δ + 1)
+ O(n3).

Moreover for a fixed δ, this inequality is asymptotically tight.

P. Let d be the diameter of G. By the theorem above,

D′(G) ≤
1
4

dn
(
n −

d
3

(δ + 1)
)2

+ O(n3).
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The term 1
4 dn(n − (d/3)(δ + 1))2 is maximised, with respect to d, for d = n/(δ + 1), to

give
1
4

dn
(
n −

d
3

(δ + 1)
)2

≤
n4

9(δ + 1)
.

Hence D′(G) ≤ n4/(9(δ + 1)) + O(n3), as desired.
To see that the bound is asymptotically best possible, consider the graph Gn,d,δ

constructed above. Note that

D′(Gn,n/(δ+1),δ) >
n4

9(δ + 1)
,

as claimed. �

3. Open problems

Since the extremal graph in Corollary 2.5 has cut vertices, it would be interesting
to determine a best upper bound on the degree distance in terms of order and vertex
connectivity. As reported in [4], the determination of the maximum degree distance
among graphs of given order n and size m seems a difficult problem. At present the
problem has only been solved for two special cases, unicyclic graphs (see Hou and
Chang [7]) and bicyclic graphs (see Ilič et al. [8]). Lastly, it would be interesting to
find a proof that is not so lengthy, elaborate, and delicate as the one presented in this
paper.
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