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A SCHUR-COHN THEOREM FOR MATRIX POLYNOMIALS

by HARRY DYM and NICHOLAS YOUNG

(Received 14th July 1988)

Let N(X) be a square matrix polynomial, and suppose det N is a polynomial of degree d. Subject to a certain
non-singularity condition we construct a d by d Hermitian matrix whose signature determines the numbers of
zeros of N inside and outside the unit circle. The result generalises a well known theorem of Schur and Cohn
for scalar polynomials. The Hermitian "test matrix" is obtained as the inverse of the Gram matrix of a natural
basis in a certain Krein space of rational vector functions associated with N. More complete results in a
somewhat different formulation have been obtained by Lerer and Tismenetsky by other methods.

1980 Mathematics subject classification (1985 Revision): 30C15, 46D05, 93D20.

1. Introduction

A celebrated paper of I. Schur [11] contains, among much else, a criterion for a
polynomial p(X) to have all its zeros in the open unit disc D: one forms a certain
Hermitian matrix H from the coefficients of p, and the assertion is that the zeros of p lie
in D if and only if H is positive definite. The theorem was generalized by A. Cohn [4]: if
the zeros of p are all non-conjugate with respect to the unit circle T then the numbers
of zeros inside and outside the unit circle are equal to the numbers of positive and
negative eigenvalues of H respectively. The corresponding problem for polynomial
matrices holds considerable interest, both for its own sake and for application to
multivariable systems theory: the stability of a linear system with many inputs and
outputs depends on the zeros of an associated matrix polynomial lying in D. Now the
zeros of a square matrix polynomial N(X) (also known as the eigenvalues of N) are
defined to be the zeros of the scalar polynomial det N(X), and so one way of testing N is
to apply Schur's criterion to det N. However, since the calculation of the determinant of
a matrix polynomial is lengthy and numerically somewhat ill behaved, it is natural to
look for a more direct way of associating with N(X) a Hermitian matrix whose signature
indicates the location of the zeros of N with respect to T.

One way to approach this question is through Bezoutian matrices. In the scalar case
the Schur matrix can be regarded as the Bezoutian of two polynomials, and there are
several extensions of the notion of Bezoutian to matrix polynomials. The most
successful one appears to be that due to Anderson and Jury [2], who asked whether
their form of Bezoutian could be used to prove an analogue of the Schur-Cohn
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theorem. Lerer and Tismenetsky in their very interesting paper [9] proved that the
answer was yes. However, their matrix polynomial version of the Schur-Cohn test
differs from the original in two significant respects. The first is that, whereas the Schur
matrix can be written down directly in terms of the coefficients of the polynomial, in the
matrix case one must first construct a certain derived matrix polynomial which is itself
difficult to carry out. The second point of difference relates to the size of the "test
matrices". The Schur matrix corresponding to a scalar polynomial of degree n is n x n,
so that it has the same number of eigenvalues as the polynomial has zeros. In the
generalization in [9] the Schur-type matrix corresponding to an mxm matrix polyno-
mial N(X) is an mk x mk Hermitian matrix for some integer k, whereas the degree of
det N(X) may be smaller than mk.

In this paper we prove a different generalization of the Schur-Cohn theorem.
Although our method is different, we arrive at a result which is similar to that of [9],
and even coincident with it in the case of monic matrix polynomials whose zeros are
non-conjugate with respect to the unit circle. In the non-monic case, if N(X) is column
reduced and detJV(A) has degree d, then the test matrix we derive is dxd, so that
equality between the numbers of zeros of N and eigenvalues of the test matrix is
preserved. The price is that JV must be brought to column reduced form. This can
involve a non-trivial amount of effort (although the property of being column reduced is
generic). We obtain our result through a geometric interpretation of the test matrix: it is
the inverse of the Gram matrix of a natural basis in a certain indefinite inner product
space of rational vector functions associated with JV. This interpretation provides extra
information even in the scalar case. Both approaches have their merits: the treatment in
[9] is based on the spectral theory of matrix polynomials, as presented in [7], and is
strictly finite-dimensional throughout. Ours brings in the infinite-dimensional spaces L2

and H2 of functions on the unit circle, and may be more accessible to those who are
familiar with analysis in these spaces. We also use some elements of the theory of
indefinite inner product spaces with reproducing kernel.

We recapitulate some standard terminology from [8]. Consider an m x m matrix
polynomial N(X). JV is said to be nonsingular if its determinant is not identically zero.
The degree of the jth column of JV is defined to be the exponent of the highest power of
k occurring in that column with nonzero coefficient. Let the jth column of JV have
degree dy. then the leading column coefficient matrix No of JV is the constant matrix
whose jth column is the coefficient of kd' in the jth column of N(k). JV is said to be
column reduced if JV0 is nonsingular. It is easily seen that an equivalent condition is that
detJV(A) is a polynomial of degree J^j^J- Any nonsingular N(k) can be reduced by
elementary column operations to a column reduced polynomial, without changing its
zeros. If N is column reduced, then det JV(A) has degree

m

d= I dj
j = i

and so N(k) has d zeros (we always count the zeros of JV according to their multiplicity
as zeros of det JV).
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To state the main theorem we need to describe some matrix polynomials associated
with N. For any nonsingular mxm matrix polynomial N with column degrees du...,dm

we can write

where k = max, dj and

Let

An alternative description is

where, for any matrix function A(X),

Superscript star denotes conjugate transpose for matrices and complex conjugation for
scalars. Following engineering custom, we shall say that a rational mxm matrix valued
function F is an allpass function if F is both analytic and unitary on T. Let N be a
nonsingular mxm matrix polynomial. We shall say that an mxm matrix polynomial D
is a reflection of N if (1) £>(0) is invertible, (2) ND~l is an allpass function, and (3) N
and D are right coprime.

We shall see below that a necessary condition (Theorem 4.1) for N to admit a
reflection is that its zeros are off T whereas a sufficient condition (Theorem 2.1) is that
its zeros are non-conjugate with respect to T (i.e., if a, /? are zeros of N, then a/?*#l).
The main conclusion of this paper can be summarized as follows:

Theorem 1.1 Let N be a nonsingular column reduced mxm matrix polynomial with
column degrees dl,...dm which admits a reflection D and let N = AN#, D = AD*, where

Then N, D are matrix polynomials which can be written

= N* + N*k + •
(1.1)
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where k = maXjdj. Let d = Yj=idj and let X, Y be the dxmk matrices which are obtained
from the block Toeplitz matrices

Ng
N?

0

Ng ..

Nt-2 ••

. 0
. 0

• Ng

DX

Of-1

0

D*o ..

Dt-i ••

. 0

. 0

. D

respectively, by the deletion of the c-th row in block row p (O^p^fc— 1, l ^ c ^ m )
whenever p ̂  dc. Then the number of zeros of N inside and outside T are respectively equal
to the number of positive and negative eigenvalues of the invertible Hermitian matrix
XX*-YY*.

The reader may check that if N is a scalar polynomial, say

then

and D = N, so that in this case

at
at-i

a*

0 ..

at ..

at ••

. 0

. 0
, Y =

a0 0 ..

<*k-l ak-2 ••

. 0

. 0

• a.

X =

and we recover the Schur-Cohn theorem. Unfortunately, if N is a matrix polynomial
there is no such simple recipe for the entries of Y in terms of the coefficients of N. The
rational interpolation theory of [3] gives a way of constructing D (using state space
methods) in terms of the solution of a linear matrix equation of the Stein type.
However, if one has to solve such equations in order to invoke the theory developed
here, then the total effort becomes impractical and presumably one could do as well by
resorting to an appropriate inertia theorem.

We prove Theorem 1.1 in Section 4 below. The proof uses some elements of the
theory of indefinite inner product spaces of functions with a reproducing kernel: these
are described in Section 3. The functions in question belong to L\, the space of square
integrable Cm-valued functions on T, with inner product

1 2n
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A SCHUR-COHN THEOREM FOR MATRIX POLYNOMIALS 341

The basic idea is to introduce a subspace Jf(0) of L2
m based on the allpass function

O = ND~1, where D is a reflection of N. Jf(0), endowed with an appropriately defined
indefinite inner product [ , ~]x, is then a finite dimensional reproducing kernel Krein
space which splits into the direct sum of two subspaces, one positive and one negative
with respect to [ , ].*-. The dimension of the positive space is equal to the number of
zeros of N inside T whereas the dimension of the negative space is equal to the number
of zeros of N outside T. The final recipe is obtained by identifying the Gram matrix of a
natural basis of Jf(0) with respect to [ , ] ^ as {XX*- YY*)~K

Since the detailed analysis for matrix polynomials is somewhat lengthy, it seems
worthwhile to sketch the method on the simple scalar example

For this choice of N it is readily checked that

is a reflection and that correspondingly

where

are Blaschke products which are associated with the zeros of JV outside and inside D,
respectively. For each such product xVj=NJ/Dj there is an associated backwards shift
invariant subspace

) = H2 9 "VjH2 = \j-: degree p < degree D, i

of the Hardy space H2.
We now set

JT(0) = | g : degree p< 31

and observe that 4 * ^ ( 0 ) is the direct sum of the two-dimensional space
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and the one dimensional space

Thus every / [resp.g] in J f (0 ) admits a unique decomposition

with fi [resp.g,] in Jfj. Correspondingly we define

Then, for any basis elte2,e3 of JT(0), the Gram matrix [[e,,e,]^] is a 3 x 3 Hermitian
matrix with one positive and two negative eigenvalues. Moreover, the space JT(0), with
this indefinite inner product is a reproducing kernel Krein space with exactly one
reproducing kernel which can be expressed both as

1-0(2)0(0))*
A t o ! / ) — : TT

1— co* A

and as

%

for any basis e , , ^ , ^ of JT(0). The Gram matrix corresponding to the particular basis

is the inverse of the Schur matrix XX* -YY* with X and Y specified in terms of the
coefficients ao,...,a3 of N(A) as indicated in the discussion of the scalar polynomial
following the statement of Theorem 1.1. This emerges by matching the two stated
expressions for the reproducing kernel with the special basis ej(A) = XJ~l/D(A) in the
latter and leads ultimately to the conclusion that (in this example) the Schur matrix has
one positive and two negative eigenvalues.

The argument generalizes to matrix polynomials, but with technical complications. In
particular it is no longer so simple to find a reflection D such that ND'1 is allpass, nor,
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as we have already remarked, is there a simple recipe for the entries in the block matrix
Y in terms of the coefficients of N.

We are grateful to I. Gohberg and L. Lerer for useful comments on an earlier version
of this paper.

2. Reflections of matrix polynomials

In this section we shall present a number of elementary properties of reflections of
N(A), when they exist. We shall also establish the existence of reflections of N(k) under
the assumption that N(X) has no conjugate roots. This condition is not necessary as the
example

clearly indicates. Nevertheless we shall deal first with this case because it is the most
transparent.

We shall make use of the elementary m x m allpass functions

- [ •
ba(X) 0

wherein

l-co*A

is the more or less standard Blaschke factor although here we allow co to be any point
in C with the understanding that blo(k)= — co if |co| = 1.

Lemma 2.1. Let N be an mxm matrix polynomial with

det/V(A) = a(A-a1)...(A-an), n^O, aeC\{0}.

Then there exists an mxm matrix polynomial D such that

... Vn_, Bn(k)Vn,

where V0,...,Vn are constant mxm unitary matrices, and BJ=B(ZJ, j=l,...,n. In
particular, the rational matrix function 0(A) is an allpass function and
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det D(l) = b( 1 - a?X)... (1 - otfA),

where b is a constant with \b\ — \a\.

Here an empty product (the case n = 0) is to be interpreted as 1.

Proof. If n = 0, then D = N does the trick.

Suppose next that n ^ l . Let Z denote the set of constant mxm diagonal matrices
with a zero in the top left entry. Then, since detN(ot1) = O, there exists a pair of constant
mxm unitary matrices Ut and Vl such that

Thus N1(l) = [/1B1(A)"1C/fN(2) is a matrix polynomial with

Next, since detNi(a2) = 0, there exists a pair of constant mxm unitary matrices U2 and
V2 such that

and hence

is a matrix polynomial with

Upon continuing this way for (n — 2) more steps it is readily seen that

is a matrix polynomial with

detiVn

Moreover,

where
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A SCHUR-COHN THEOREM FOR MATRIX POLYNOMIALS 345

is clearly an allpass function. The rest is straightforward upon setting

Nn(A). D

Theorem 2.1. Let N be a nonsingular mxm matrix polynomial whose zeros are non-
conjugate with respect to J. Then N admits a reflection D.

Proof. By Lemma 2.1 there exists an mxm matrix polynomial D such that (1) Z)(0)
is invertible and (2) ND~l is an allpass function. The extra assumption that N has no
conjugate roots guarantees that N and D are right (and left) coprime. •

A point a e C is said to be a pole of a rational mxm matrix valued function F if one
of more entries in F has a pole at a (or equivalently if F admits a matrix Laurent
expansion F(A) = ̂ j°=_vFJ(A—a)J with matrix coefficients Fj where v ^ l and F_v is
nonzero). A point a e C is said to be a zero of a nonsingular rational mxm matrix
valued function F(A) if there exists a n n t x l vector valued polynomial / such that (1)
Ff is analytic at a, (2) (F/)(a)=0 and (3) /(<x)#0. If F is already analytic at a, then it
suffices to choose / = /(a) constant. Thus this definition is consistent with the definition
introduced earlier for matrix polynomials. Moreover, it is readily checked that a point
aeC is a zero of a nonsingular rational mxm matrix function F if and only if it is a
pole for F"1 .

The need for extra care in the definition of a zero of a rational matrix valued function
arises because even an allpass function can have both a zero and a pole at the same
point a e C (neither of which appear in the determinant) as is illustrated by the example

Lemma 2.2. Let 0 be a rational mxm allpass function with constant determinant and
suppose that no point a e C is both a zero and a pole of 0 . Then 0 is a constant matrix.

Proof. If a is a zero of 0 , then a is not a pole of 0 and hence 0 is analytic at a and
det0(a) = O. But this is impossible for an allpass function with constant determinant.
Thus 0 has no zeros in C. The same argument applied to 0 " 1 guarantees that 0 has
no poles in C either, i.e., the entries of 0 are entire rational functions. Moreover, Q(A) is
invertible at every point A e C. Thus the relation

0#(A) = 0(A)-\ AeT,

which is valid for allpass functions on T extends by analytic continuation to all of C.
Therefore

lim 0(A)=lim0*(A)-1

X-* oo X-*co

= lim {©(I/A*)*}"1

A-00
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Hence, the entries in 0 are bounded entire functions and so, by Liouville's theorem, are
all constant. •

The example which was presented in the first few lines of this section shows that the
condition of nonoverlapping zeros and poles is needed in both the last and the next
lemmas.

Lemma 2.3. Let & be a rational mxm allpassfunction with

where aeT, n ^ l and a,-a?#l for i,j=l,...,n and suppose further that no point aeC is
both a zero and a pole of 0 . Then the points a1;...,an are the zeros of 0 repeated
according to multiplicity and there exist constant unitary matrices V0,...,Vn such that

i (2.1)

for every point AeC\{l/af: 1 g / ^ n and a,

Proof. The first step is to check that <x1,...,un are not poles of 0 . Suppose to the
contrary that a, is a pole. Then, by assumption, a, is not a zero of 0, and hence is a
zero of 0 " 1 and not a pole of©""1. But this in turn implies that d e t Q ' ^ l d e t © } " 1 is
analytic and equal to zero at a, which contradicts the presumed form of det 0. Thus 0
is analytic at the points aj,...,an (some of which may overlap). In fact, the assumption
that no point aeC is both a zero and a pole of 0 guarantees that the zeros of 0
correspond to the zeros of det 0 and hence, in the present setting, that the zeros of 0,
repeated according to multiplicity, are precisely the points ai,...,aB.

Next, just as in the proof of Lemma 2.1, we can find a unitary matrix Vo such that the
first row of KJ©^) is equal to zero. Thus the new allpass function

is analytic at <Xj with

det©1(A) = fl1fcM(A)...ftJA), a ,6T.

Continuing this way for n— 1 more steps we see that

©.(A) = BJA) - * V:_,... fl.,(A)"l Ko*0(A)

is analytic at alt...,<xn and that its determinant is constant and nonzero. In particular

det 0.(^)940, j=l,...,n,
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and hence, since 0 n is clearly allpass, it further follows by letting X-*<Xj in the relation

that 0 n is analytic with nonzero determinant at every point 1/orj", j=\,...,n, with a;

It follows readily that 0 n has no zeros in C and hence, by Lemma 2.2,

a constant unitary matrix. This is, however, clearly equivalent to the asserted
formula. •

Let S;(P), i=l,...,m, denote the ith column degree of an mxm matrix polynomial
P(X), i.e., (5,(P) is the highest power of X which appears in the ith column of P.

Lemma 2.4. Let N and D be mxm matrix polynomials such that N = @D, where 0 is
a rational mxm allpass function which is analytic at zero. Then

Proof. Let e,, i = l , . . . , m , denote the ith standard basis vector of Cm and suppose
that Si(N) = k for some fixed choice of i. Then

.. N(X)
x= lim — ~ e .

is a nonzero vector in Cm and

.. D(X) ,. 0(1/A*)*JV(A)hm -jre^ urn ' ^
A-oo * •

= 0(O)*x.

Thus

5i(D) = k = di(N) if 0(O)*x/O,

whereas

di(N) if 0(O)*x = O.
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Lemma 2.5. / / N is a nonsingular mxm matrix polynomial with reflection D and if
Q = ND~\ then

(1) N = AN* and D = AD* are both matrix polynomials, and

(2) N1D = Q 1

If also N is column reduced, then

(3) N and D are left coprime.

Proof. It is readily checked that N is a matrix polynomial. Since <5;(D) ^ St(N), for
i=l,...,m, by Lemma 2.4, the same holds true for D.

Next, since & = ND~l is allpass,

This proves (2).
Finally, if N and D are not left coprime, then there exists a point a e C and a nonzero

vector x e Cm such that

x*N(<x) = 0 and x*D(a) = 0.

The point a^O because iV(0) is invertible when N is column reduced. Thus

{x* JV(a)}* = N(l/a*)A(a)*x = 0

and

{x*D(tx)} * = D( l/a*)A(«)*x = 0,

which contradicts the assumption that N and D are right coprime since

fora^O. D

Lemma 2.6. Let N be a nonsingular mxm matrix polynomial whose zeros are non-
conjugate with respect to T and let @ = ND~1, where D is a reflection of N. Suppose
further that
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A) = a(A-a i). . .(A-an), ae<C\{0}.

Then the following hold:

(1) 0 is analytic at every point A e C such that 1— a f A / O /o r i = l , . . . , n and hence in
particular at the points « [ , . . . , an;

(2) f/ie polynomials det N(A) and det D(X) have no common zeros;

(3) detD(A) = fc(l-afA)...(l-an*A) (2.2)

for some choice of be C\{0} and c e T, respectively;

(4) no point a e C is both a zero and a pole of 0 ;

(5) the polynomials detN(A) and detD(A) have no common zeros.

Proof. We may suppose without loss of generality that N is column reduced. Then,
by Lemma 2.5,

N = AN* and D = AD*

are matrix polynomials and

Thus 0 is analytic except possibly at the zeros of N. But, since N is column reduced,

n = d= £ d,
1 = 1

and thus it is readily checked that

det N(X) = a* f\ (1 - knf). (2.3)
j=i

Therefore, by the non-conjugacy assumption,

i = l , . . . , n,

which serves to establish (1).
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Next, since N and D are right coprime, there exist a pair of m x m polynomial
matrices A and B such that

for every point AeC (see e.g., [10]). But this in turn implies that

at every point XeC in the domain of analyticity of 0 and hence in particular at the
points <x;,...,an, by (1). Therefore D(a,) is invertible. Thus the zeros of detD(l) do not
overlap with the zeros of det N(A), as asserted in (2).

Assertion (3) is immediate if D is a constant matrix. Otherwise, since D(0) is
non-singular,

det D{X) = b( 1 - 0*A)... (1 - ftX)

for some choice of b and f}1,...,fik in C\{0}. Now, as ND~Y is allpass, it is readily seen
that

\b\2(l — fifty . . . ( 1 — i

and hence that

n — k = the number of terms a,, j=\,...,n,: a, = (

= 0

and therefore, in view of (2), that

for some choice of deC\{0}. But this in turn implies that

from which (3) is now self evident for nonconstant D also.
The formulas

i and @-1

clearly imply that

{the poles of 0}c{the zeros of D}c{\/<xf: j= !,...,« and a,-#0},
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whereas

{the poles of © " ' j c j t h e zeros of N} <={<*!,...,an}.

Therefore, since the two indicated point sets are disjoint by assumption, there is no
point a e C which is simultaneously a pole of both 0 and 0 " 1 . But this is equivalent to
(4).

Finally (2.3) and the formula

fc*(A-ai)...(A-aJ, (2.4)

which follows from (2.2) in much the same way, serve to establish (5). •

Theorem 2.2. Let N be a nonsingular mxm matrix polynomial such that

where M^O and al,...,an are non-conjugate with respect to T and let D be a reflection of
N. Then there exist unitary matrices Vo,..., Vn such that

2... BJA) Vn (2.5)

for all AeC\{l/a?: 1 g i g n , a,#0}.

Proof. Let ® = ND~l. By Lemma 2.6 no point of C is both a zero and a pole of 0 ,
and

i = i i — a,- /•

(the product is defined to be 1 if « = 0). Hence Lemma 2.3 applies to give the stated
conclusion. •

3. The reproducing kernel Krein space Jf(0)

In the preceding section we associated a rational mxm matrix function &(A) which is
both analytic and unitary on T with every suitably restricted matrix polynomial N(A).
Now, for each such 0 we introduce a finite dimensional Krein space Jf(0) whose
geometry is linked to the locations of the eigenvalues of N(X). The elements of Jf(0) are
m x 1 rational vector valued functions which are analytic in Cl, the domain of analyticity
of 0 in D. Moreover, JT(0) is a reproducing kernel space: that is to say, there exists an
mxm matrix valued function KJ^l) defined on fi x Q such that, for every choice of coeQ,
veCm and /

(1) Kave JfT(Q) (as a function of k) and
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(2) [ / . K ^ l r = »•/(<«),

wherein [ , ~]# denotes the indefinite inner product for JT. The fact that the
reproducing kernel for such a space is unique and can be written in a number of
different ways (which must therefore match) will be used to advantage in the sequel. The
main result of this section: Theorem 3.1, is adapted from the more general Theorem 6.6
of [1]. For the convenience of the reader we shall present an independent proof. We
shall also formulate the theorem itself directly in terms of 0 itself and not in terms of its
factorization

0 = 4TllF2 (3.1)

as the "ratio" of a pair of left inner coprime finite Blaschke-Potapov products, ^ and

The notation

will prove useful.

Theorem 3.1. Let & be a rational mxm allpassfunction and let il denote its domain of
analyticity in D. Then:

(1) The space

= (H2
m + QH2J 0 (H2

m n @H2J

is a finite dimensional subspace of LJj,(T) consisting of mxl vector valued rational
functions which are analytic in il.

(2) The intersection X~x n JT2 °ftne subspaces

and

is equal to zero.

(3) The space Jf = J f (0) is the direct sum of Jft and Jf2:

(4) The space CtiC = JT(0) endowed with the indefinite inner product
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where the / , and gf are the components of f and g respectively relative to the
direct sum decomposition of (3), is a finite dimensional reproducing kernel Krein
space with reproducing kernel

3 2 )

(5) The MacMillan degree of® is equal to the dimension o / jT(0) .

It is convenient to first establish three preliminary lemmas. The notation

for m x m matrix inner functions 4*, will be useful in the sequel.

Lemma 3.1. Let *P be an mxm matrix valued Blaschke-Potapov product of length n:
that is,

V(X) = V0Bx(X)VxB2{k)V2... Bn(l)Vn,

where each F, is a constant mxm unitary matrix and Bj = diag{bXj, 1,.. . , 1} with | a / |< l .
Then J^^V) is a space of dimension n consisting of rational vector functions.

Proof. Let *¥j=Vj-lBj. Then it is readily checked that Jf(¥j) is a reproducing
kernel Hilbert space wth respect to the standard inner product with kernel

)* {Im-BM)Bj(co)*}
j~l PM

where Cj is a constant mxm matrix of rank 1. Thus Jf^J) is a one-dimensional space.
The final conclusion drops out from the decomposition

Lemma 3.2. / / 0 = T^1*P2> where ^ and *P2 are finite Blaschke-Potapov products
which are both analytic in O and left inner coprime, then the following holds true:

(1)

(2)
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(3) V^Hl = H l
(4) Hi, + QHl is a closed subspace of Lj

(5) ^ ^ ^
(6)
(7)

Proof. (1) is an easy consequence of the general fact that if Jt\ and Jt2 are
subspaces (closed or not) of a Hilbert space JC, then

(3.3)

with ^ , = ^f?(4/
I), i= 1,2. In this instance

since both of the indicated spaces are finite dimensional.
(2) is an immediate consequence of (1) and the general fact that, for any choice of

subspaces A=>B, C and D in L^,

lB) (3.4)

and

T,-1(Cnfl) = (4'1-
1C)n(4'1-

1D). (3.5)

The first of these two identities exploits the fact that T, is inner, the second does not.
Next, the fact that 4^ and *P2

 a r e left inner coprime guarantees the existence of a pair
of matrix valued functions X and Y in H%x m such that

V1X + V2Y = Im (3.6)

a.e. on T; see e.g. Fuhrmann [6] or Dewilde [5]. (In fact the identity extends to the full
disc by either Cauchy's formula or the Poisson formula.) Therefore

This guarantees the validity of (3) since the opposite inclusion is self evident.
(4) is an easy consequence of (3), since *Pj is inner.
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(5) and (6) are immediate from (3) and (3.4).
Finally, it follows from (3.3) that

n

However, since 4^ and y¥2 are left inner coprime, it follows further from (3.6) that

and hence that (7) holds.

We remark that (7) is really a consequence of the more general identity

which is valid for any pair ofmxm inner functions T3 and *P4 with greatest common
left inner divisor 4*5; see e.g. [5].

Lemma 3.3. / / A, B and C = A + B are closed subspaces of a Hilbert space Jf, then

(2) (C Q A) n(C Q B) = 0.

Proof. Take J^ = C. Then (1) is immediate from (3.3), while (2) is in any case
elementary. •

Proof of Theorem 3.1. Let A = H2
m and B = ©//*. Then A and B are both closed

subspaces of Ll, as is C = A + B, thanks to (4) of Lemma 3.2. Therefore, by Lemma 3.3,

l 2 and X 1 n J f 2 = 0 .

But, by Lemma 3.1 and (5) and (6) of Lemma 3.2, jf, and Jf2 are finite dimensional and
so (2) and (3) hold. The same identification also serves to establish (1).

Now, to obtain (4), observe first that

v ®jX)®(<o)*v

clearly belongs to H^ + QHl, for every choice of coeQ and veCm. Moreover, if
ge Hi n®Hi then

for some he Hi and therefore, by Cauchy's formula for Hi,
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Pa,/ \ Pa

= v*g(w)-(h, v ;

Pa,

= v*g{co) — v*@{a>)h(a>)

= 0 .

This proves that KmveJT(<s>).
Now, by the factorization (3.1),

where

is the reproducing kernel for Jf(Vj), ; = 1,2. Therefore, since

it follows that

and

are the components of Kav with respect to the direct sum decomposition

Consequently, if fx and f2 are the corresponding components of / 6 Jf, then
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This completes the proof of (4).
(5) is established in [1]. •

We remark that, with the help of Lemma 3.1, it is readily seen that

and

which is the description which emerges naturally from Theorem 6.6 of [1] when it is
specialized to the present setting.

4. Gram matrices and the distribution of zeros

In this section we develop another description of the reproducing kernel Krein space
Jf(0) for Q = ND~i, when D is a reflection of N. We then use two different
representations of the reproducing kernel to obtain a formula for the Grammian with
respect to an expedient basis for Jf(0) in terms of a matrix based on the coefficients of
the polynomials N and D.

We begin with two preliminary lemmas.

Lemma 4.1. //Px and P2 are left coprime mxm matrix polynomials, then

Hi + P;1P2H
2

m = P;1H2
m.

Proof. For any choice of / and g in H2,,

Thus the space on the left hand side of the asserted equality sits inside the space on the
right. But, since Px and P2 are left coprime there exist a pair of mxm matrix
polynomials A and B such that

see e.g. [10]. Therefore, for any f eH2,,

which establishes the opposite inclusion.

Lemma 4.2. / / P 3 and P4 are right coprime mxm matrix polynomials, then
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Proof. Suppose first that / belongs to the space on the left hand side of the asserted
equality. Then f eH2

m and there exists a geH%, such that

But now as P3 and P4 are right coprime, there exist a pair of mxm matrix polynomials
F and G such that

Thus,

3GgeP3H
2
m.

Now suppose conversely that / e P3//£.Then feH%, and also

Theorem 4.1. Let N be a nonsingular mxm matrix polynomial with

column degrees db i=l,...,m, and reflection D and suppose that N and D are left coprime.
Then:

(1) N,N,D and D are all invertible on J.
(2) j f (0) = N-'(HieAH2J ( = {feL2

m.NfeH2
meAH2

m}).
(3) N is a column reduced, i.e., n = Y,jdj = d.

Proof. Suppose first (contrary to (1)) that

for some point oceT and some unit vector £eCm. Then, since ND~l is unitary on T,

D(a)*D(a)£ = N(a)*N(a)£ = 0.

But this implies that

which is not consistent with the existence of polynomial matrices A and B such that
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Therefore N is invertible on T, as is D by the very same argument. The rest of (1) is
now an easy consequence of the definitions of N and D.

Next, to obtain (2), observe that by assumption

where the matrix polynomials N and D are right coprime and the matrix polynomials N
and D are left coprime. Thus, by Lemma 4.1,

whereas, by Lemma 4.2,

Therefore

and hence / e Jf(0) if and only if NfeH2
m and / is orthogonal to NH2

m. But the latter
is the same as to say that

for every geH^,. Thus f e JST(0) if and only if

Nfe(H2
mQAH2J,

which is equivalent to the asserted description of JT(0) in (2).
Finally, it follows from (2) that Jf (0) is a d dimensional space and hence by Theorem

3.1, that 0 has MacMillan degree d = Y,dj. Thus

n = deg{detN(A)}

^ the number of elementary factors in 0

This proves that equality prevails in the preceding string of inequalities and hence that
N is column reduced. •

Theorem 4.2. Let N be a nonsingular column reduced mxm matrix polynomial with
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column degrees dl,...,dm and reflection D. Let <t>h i=l,...,d, be a basis for the d
dimensional vector space H^ Q A / / £ , d = Yj=i dh let

and let G denote the Gram matrix of the basis fx,... ,fd, i.e., the dxd matrix with ij entry

Then

. £
for every choice of k and u> in C.

Proof. By Lemma 2.5, N and D are left coprime. Therefore Theorem 4.1 applies and
serves to identify the vector functions fu-..,fd as a basis for the reproducing kernel
Krein space Jf(0). Thus the matrix G is invertible (though not positive definite unless
0 is analytic and hence contractive in D) and it is readily checked by direct calculation
that

(4.2)

is a reproducing kernel for Jf(Q). Therefore, since a reproducing kernel Krein space
admits only one reproducing kernel, the right hand sides of the two formulas (3.2) and
(4.2) for KJk) must agree:

Im-G(k)e(aj)*

i.j=l
hjfj(o>r,

for every choice of k and a> in O, the domain of analyticity of 0 in D. Formula (4.1)
now drops out upon multiplying through by N(k) on the left and N(co)* on the right
and invoking (2) of Lemma 2.5. •

To apply Theorem 4.2 we must specify a basis for //jj, © AH j,. In a self-explanatory
notation,

H2 0 kd'H2

Thus Hi

H2 Q kd"H2

l, consists of those m x 1 vector polynomials whose jth component is a

https://doi.org/10.1017/S0013091500004806 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004806


A SCHUR-COHN THEOREM FOR MATRIX POLYNOMIALS 361

polynomial of degree less than dj. There is an obvious basis for this space. Define
ec®?f, l g c ^ m , p =0,1 ,2 , . . . , to be the m x l vector polynomial with k" in the cth
component and zeros in the remaining ones. A basis for Hi, Q Hj, is clearly {ec ® Ap:
l ^ c ^ m , 0^p<dc}. We take this to be the basis <f>u..., 4>d, with the ordering as a
subset of

We shall refer to the corresponding basis of Jf(&):

as the expedient basis of

Theorem 4.3. Let N be a nonsingular column reduced mxm matrix polynomial with
column degrees di,...,dm and reflection D. Then the Gram matrix G of the expedient basis
of J f (0) is given by

G = (XX*-YY*)~l

where X, Y are the submatrices of the block Toeplitz matrices described in Theorem 1.1.

Proof. This is essentially a restatement of Theorem 4.2 for the expedient basis: the
difficulty of extracting the Gram matrix form is primarily notational. We have to regard
G'1 as a block matrix. The 0/s naturally fall into /c( = maxJdJ) blocks, numbered 0 to
k—l, the elements of block p (say $,„,</>,•„+i,...,</>ip+1-i) being those of the vector
functions ec ® Xp, 1 Sj c ̂  m, for which dc > p. Let us say that an index c is live in the pth
block if dc>p and dead otherwise. Let Ep be the matrix obtained from the identity
matrix lm by deleting all rows whose indices are dead in the pth block. Ep is of type
mp x m, where mp is the number of live indices in the pth block. G ~l can be regarded (in
accordance with this division of the basis) as a k x k block matrix, its pq-block (gpq, say)
being of type mpx mq. Let us also write G"1 =[y, j ] , i,j=l,...,d.

The right hand side of (4.1) is an mxm matrix polynomial in X and a>*. Let Apq

denote the sum of those terms corresponding to values of i and j such that </>,- and (j>j
belong to the pth and qth blocks of the basis respectively:

p q

= I Z
s = ip t = iq

(4.3)

Therefore, since
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it follows from (4.1) and (4.3) that gpq can be obtained by taking the coefficient of Xpco*q

in the left hand side of (4.1), premultiplying by Ep and postmultiplying by E*. Now from
(1.1) we have

and so the coefficient of kpu>*q {0^p,q^k—\) is

A similar calculation applies to D(2)D(aj)*/pM(^), and so the coefficient of Xpco*q in (4.1)
is

Thus

= EJN*

Nq

V
9

0,-1

Hence

where

X =
0 £ ,

0 0

0

0

JV*

N*

0

0

with a similar expression for 7 in terms of the Dj. This agrees with the description of X
and Y in Theorem 1.1 and so proves Theorem 4.3. •

Proof of Theorem 1.1. Suppose first that the zeros of N(X) are non-conjugate with
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respect to T and that N(X) has p zeros inside T and q zeros outside, so that
p + q = d=YJJdi, and let D be a reflection of N. Then, by (4) and (3) of Lemma 2.6,
Lemma 2.3 is applicable; it guarantees that ND~l = 0 is of the form (2.1) with n = d. We
shall suppose that the zeros of N are ordered so that <xu...,<xq are outside T and
a,+[, . . . ,ad inside. Let

1 \ = {V0Bl V,... BqVq)~
l = V*B~»... V^B-, l V*Q

and

where Bj is short for BXj. Then 4% and *F2
 a r e (inner) Blaschke-Potapov products of

length q and p respectively which are left inner coprime since the space J f (0) based on
0 = lF1~llF2 is d dimensional. We may therefore apply Theorem 3.1 to construct the
indefinite inner product space

where Jf} is linearly isomorphic to Jtif^j). By Lemma 3.1, JTt and X 2 have dimensions
q and p respectively.

It follows that the Gram matrix of any basis of JT(0) with respect to [ , ] . * • has p
positive and q negative eigenvalues. (For, since the Gram matrices of any pair of bases
are congruent, it suffices to prove the assertion for a single basis. Choose orthonormal
bases Xi,...,xq and xq+u...,xd in %\,yC2 respectively with respect to <.,.>. Then
x!,...,xd is a basis of JT(0) and its Gram matrix with respect to [ , ] ^ has the form

C* - /

for some p x q matrix C, and so does have p positive and q negative eigenvalues.)
Finally, we apply the foregoing assertion to the expedient basis of J f (0). By Theorem

4.3 its Gram matrix is (XX* — Y Y * ) " ! , and so this matrix has p positive and q negative
eigenvalues. This completes the proof of Theorem 1.1 when the zeros of N are non-
conjugate. To obtain the general case, observe first that (4.1) can be re-expressed in
the form (11.1) of [12]:

where Y = \_(f)l... </>d] is the mx.d matrix with columns 0,,...,</>d, F = G
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Let d+(P) [resp. 5 _(/*)] denote the number of zeros of the matrix polynomial P inside
D [resp. outside D] and let n+{A) [resp. /i_(/4)] denote the number of correspondingly
positioned eigenvalues of the matrix A. Then, since N and D are invertible on T, it
follows from Lemma 11.1 of [12] that

where p denotes the orthogonal projection of L£ onto H2
m. Let gy,...,gv be a basis for

the kernel of the indicated operator. Then, just as in the proof of Theorem 11.1 of [12],
there is an associated system of vectors uu...,uv in Cd such that

s = l I (<=1
L bs8s (4.4)

for every choice of the complex constants bu...,bv, other than all zero. But now as N
and D are left coprime, there exist a pair of matrix polynomials A and B such that

for every l e C . Therefore

which in turn implies that pN*g and pD*g cannot both vanish for a nonzero
Thus the right hand side of (4.4) is strictly positive for every nonzero choice of the
constants bu...,bv. This proves that the vectors uL,...,uv span a v dimensional space in
C* which is negative with respect to the inner product induced by G"1. Thus

G-1) (4.5)

and similarly

5+(D)^n+(G-l). (4.6)

The next step is to deduce the formula

from (4.1) by replacing X by I/A, u> by 1/co, multiplying through by A(l) on the left and
A(co)* on the right and then setting N°{X) = N(X*)* and D°(l) = D(l*)*. Much of the
same sort of analysis as was used before then leads to the supplementary pair of
inequalities

https://doi.org/10.1017/S0013091500004806 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004806


A SCHUR-COHN THEOREM FOR MATRIX POLYNOMIALS 365

° 1 ) (4.7)

1). (4.8)

But now as

8+(N°) = 8+(N) and

it follows that

Therefore equality must prevail in (4.5) and (4.8) as needed. •

We remark that since D has d zeros and 8 +(D°) = <5 +(D) = S _(/)), equality must
prevail in (4.6) and (4.7) also and hence we also have

8±(D) = n±(G~l).
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