GROWTH SEQUENCES OF FINITE GROUPS V

D. MEIER and JAMES WIEGOLD

(Received 3 November 1980)
Communicated by D. E. Taylor

Abstract

A short and easy proof that the minimum number of generators of the nth direct power of a non-trivial finite group of order s having automorphism group of order a is more than $\log _{s} n+$ $\log _{s} a, n>1$. On the other hand, for non-abelian simple G and large $n, d\left(G^{n}\right)$ is within $1+e$ of $\log _{s} n+\log _{s} a$. 1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 60.

In 4.4. of Wiegold (1974) there appears the following corollary of results of P . Hall (1936), which was later applied in Wiegold (1980) to the growth sequences of finite groups for which all simple images are two-generator. Let G be a non-abelian simple group of order s with automorphism group of order a. Then for sufficiently large n (whose meaning is made precise in Wiegold (1974) but is not important for us here),

$$
\begin{equation*}
\log _{s} n+\log _{s} a-1+\theta(n) \leqslant d\left(G^{n}\right) \leqslant \log _{s} n+\log _{s} a+1+\psi(n) \tag{1}
\end{equation*}
$$

where θ, ψ are sequences tending to 0 as $n \rightarrow \infty$. Thus for large $n, d\left(G^{n}\right)$ must take one of at most three values near $\log _{s} n+\log _{s} a$.

The object of this note is to give a very trivial proof of a strengthened version of the lower estimate for $d\left(G^{n}\right)$, valid for all finite G. Precisely, we show that

$$
\begin{equation*}
\log _{s} n+\log _{s} a<d\left(G^{n}\right) \tag{2}
\end{equation*}
$$

for every finite G and all $n \geqslant 1$, where $s=|G|$ and $a=\mid$ Aut $G \mid$ as before. It is then clear that, for non-abelian simple $G, d\left(G^{n}\right)$ is within $1+\varepsilon$ of $\log _{s} n+\log _{s} a$ for large n. In other words, it is $\log _{s} n+\log _{s} a+1$ in the unlikely event that this is an integer, or it is one of the two smallest integers greater than $\log _{s} n+\log _{s} a$ if not. A glance at powers of A_{5} shows that both of these latter contingencies

[^0]©Copyright Australian Mathematical Society 1981
actually arise. Unlike in Wiegold (1980), we are not assuming anything here about $d(G)$; this article should be compared with that one.

Now for the proof of (2). Suppose that $s^{r} \leqslant a n$ for positive integers r, n. What we want to prove is that $d\left(G^{n}\right)>r$ in this case, and to that end we look at any r elements

$$
\begin{aligned}
& x_{1}=\left(g_{11}, g_{12}, \ldots, g_{1 n}\right) \\
& x_{2}=\left(g_{21}, g_{22}, \ldots, g_{2 n}\right) \\
& \vdots \\
& x_{r}=\left(g_{r 1}, g_{r 2}, \ldots, g_{r n}\right)
\end{aligned}
$$

of G^{n}, written as strings of length n in the usual way. For $x_{1}, x_{2}, \ldots, x_{r}$ to have a chance of generating G^{n}, we must have $\left\langle g_{1 i}, g_{2 i}, \ldots, g_{n i}\right\rangle=G$ for each $i=1,2, \ldots, n$. Suppose that this is so. Say that two generating r-vectors ($u_{1}, u_{2}, \ldots, u_{r}$) and ($v_{1}, v_{2}, \ldots, v_{r}$) are in the same Aut G-class if there is an automorphism α of G such that $u_{i}^{\alpha}=v_{i}, i=1,2, \ldots, r$. (This idea originated with P. Hall (1936).) How many Aut G-classes of generating r-vectors are there? Certainly less than s^{r} / a, since Aut G permutes the generating r-vectors regularly, there are exactly $s^{r} r$-vectors altogether, and at least one is not generating, namely the trivial r-vector. Of course, many other r-vectors are not generating either if G is not of prime order; but this is of no importance here.

Since $s^{r} \leqslant a n$, there must exist $i, j, i \neq j$, such that ($g_{1 i}, g_{2 i}, \ldots, g_{r i}$) and $\left(g_{1 j}, g_{2 j}, \ldots, g_{r j}\right)$ are in the same Aut G-class. Then for a word w, $w\left(g_{1 i}, \ldots, g_{r i}\right)=1$ if and only if $w\left(g_{1 j}, \ldots, g_{r j}\right)=1$. It is now clear that x_{1}, x_{2}, \ldots, x_{r} do not generate G^{n}, since they cannot produce an element which is 1 in the 1 -th place and not 1 in the j-th place.
P. Hall (1936) gives a lovely exact formula for the number of generating r-vectors, and it is this which gives rise to the upper bound in (1). What is amusing here is that so easily-won a lower bound should actually be practically the correct answer for simple groups.

References

P. Hall (1936), 'The Eulerian functions of a group,' Quart. J. Math. Oxford Ser. 7, 134-151.

James Wiegold (1974), 'Growth sequences of finite groups,' J. Austral. Math. Soc. 17, 133-141.
James Wiegold (1980), 'Growth sequences of finite groups IV,' J. Austral. Math. Soc. Ser. A 29, 14-16.

Mathematics Institute
University College
University of Warwick
Cardiff
Coventry
Wales
England

[^0]: The first author is supported by the Swiss National Science Foundation.

