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AUTOMORPHISM GROUPS OF ORTHOMODULAR LATTICES

GuDRUN KALMBACH

Every group is the automorphism group of an orthomodular lattice.

In this note we prove that every group is the automorphism group of
some orthomodular lattice. The proof makes use of the following results:
Birkhoff's construction of a lattice with a given group as its automorphism
group [4]; the embedding of a lattice L in an orthomodular lattice
generated by the chains in L [6]; the existence of Boolean algebras with
trivial automorphism groups [7] and the pasting of orthomodular lattices at
atoms [5]. The case of finite groups was solved in [11], it is an easy
application of results in [10]. PFor basic facts about orthomodular

lattices the reader is referred to [5].

Let G be a group provided with a ordinal-type well ordering < such
that the unit e € G is the smallest element. The lattice L consists of
the elements of the following disjoint sets: {0}, {1}, G, G x G and the
set U of two-element subsets {x, y} of G . The order structure < on
L has 0 as the smallest, 1 as the largest element and G as its set

of atoms. Furthermore we define

(1) =,y <{x,yl €U for =,y €G,

(ii) (=, y) = (u, v) if =z
(x, y), (u, v) €G6xG ,

u and Yy = v for

(iii) = < (y, 3) if x.ly <z for z €G, (y,z) €GxG,
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and

(iv) {x, y} < (x, 2) for {zx, y} €U, (x, 3) €¢ G x G if

y < (x, 2)

The maximal chains in L are of the form

0<x<(x,e)<... <(x,a) <...<1
or
0 <z < {z, y} < (=, bo) < ... <(x,a) <...<1
or
0<z<{x,y}<(y,co)<...<(y,d)<...<l

where b0 respectively co are the smallest elements in G with

1

y_ x = bO respectively m-ly <ec Observe that the only non-trivial

0 -
joins and meets in L are x Vy= {x, y} = (z, bo) Ay, co) .
The automorphisms g of L are given by
g(o) =0, g1y =1, g(z) =bx ,
(bx, y) , g({x, y}) = {bx, by}

glz, y)

for a fixed element b € G ([4], pp. LL-4T7). Therefore G is isomorphic
to the automorphism group of L .

The lattice L generates an orthomodular lattice M as follows (for

details see [61): let (Ci)iGI by the set of finite chains in L

containing O, 1 and define D..=C.n (., .
1d 7 J

Boolean algebra Bi . In the wmion M= U Bi the elements of Bi and
1€l

Every Ci generates a

Bj which are generated by the common subchain Dij are identified. M is
an orthomodular lattice with the ' and =< structure induced by the Bi
The atoms of M are the elements of G , of H = {{x, y} Az’ | z, y €6},
of P = {(x, bo) Az, y}' | {=x, y} €U, b, minimal with y_lx f_bo} and of
Q= {(x, ¢) Az, a)' | x € G, ¢ covers a} .

An automorphism of M maps atoms onto atoms. Therefore we now extend

M to an orthomodular lattice N with the same set of atoms by pasting
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suitable automorphism-free Boolean algebras at the atoms of M - L in such

a manner that N has the (uniquely) extended automorphisms of L as its
automorphisms. Let BT be a Boolean algebra of power 2xT (T an
ordinal) with Aut(BT] =1 [7]). Then BT has at most one atom. We can
assume that it has exactly one atom since if it has no atom then 2 X BT
has one atom and Aut(2 x BT) =1.

LEMMA. If a € C 1is an atom of the orthomodular lattice C and D
is obtained from the disjoint wnion of € and B, by identifying the two

zero elements, the two unit elements, the atom a € C with the atom
b ¢ BT and the element a' € C with b' € B,t then D with the ' and

< structure induced by ¢ and B i8 an orthomodular lattice.

This is a special case of Greechie's paste job ([5], pp. L2-LL). We
assume now that |G| is infinite. Then all blocks (maximal Boolean

subalgebras) of M have the same cardinality m . Choose the ordinal

number n such that 2Xn >m . To every atom in H respectively P we

paste one copy of Bﬂ respectively Bn+ Enumerate the elements of the

1
well-ordered chain G by

At every atom (x, ao) A (x, ao_l)' €@ (if it exists for o ) we paste
one copy of Bc . The lemma assures that the pasting N of M with all
these Boolean algebras is an orthomodular lattice.

If an atom p of N is mapped by an automorphism of N to an atom
q € N then the blocks containing p are mapped onto the blocks containing

q - For different 0y o B0 is not isomorphic to B0 and Bo is,

1 2 1
> n , also not isomorphic to some block in M by cardinality

2 E]

for 01

reasons. Hence an automorphism of N can only map atoms of [ onto atoms
of L , atoms of H respectively P onto atoms of H respectively P

and in @ only the atoms of the form [x, ao) A (x, a and

o-1)’

(y, ao) A (y, ao_l)' can be mapped onto one another. Every automorphism
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of L therefore extends uniquely to an automorphism of N and N has no

other automorphisms which shows that Aut(¥N) is isomorphic to G .
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