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Abstract

Let G be a group and o = {07 | i € I} some partition of the set of all primes. A subgroup A of G is o-
subnormal in G if there is a subgroup chain A = Ay < A <--- <A,, = G such that either A;_; < A, or
A;/(Ai=1)a, is a finite o j-group for some j = j(i) for i = 1,...,m, and it is modular in G if (X,ANZ) =
(X, A)NZwhen X <Z<Gand (A, YNZ)=(A,Y)NZ when Y <G and A <Z < G. The group G is
called o-soluble if every chief factor H/K of G is a finite o;-group for some i = i(H/K). In this paper, we
describe finite o-soluble groups in which every o-subnormal subgroup is modular.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, o is some partition of the set of all primes P, that is, o = {0 | i € I}, where
P=Jigoiand o;Noj=0fori# j If Gisa oj-group for some i, we say that G is
o-primary [13]. Following [10, page 54], we call G an M-group if the lattice £(G) of
all subgroups of G is modular.

A subgroup H of G is said to be quasinormal (Ore) or permutable (Stonehewer) in G
if H permutes with every subgroup L of G, that is, HL = LH. Quasinormal subgroups
possess many interesting and useful properties. Every quasinormal subgroup is
subnormal (Ore [7]) and so it is also o-subnormal in the following sense.

DeriniTion 1.1 [13]. A subgroup A of G is o-subnormal in G if there is a subgroup
chainA =Ap <A <--- <A, =Gsuchthateither A;_; < A; or A;/(Ai-1)a, is o-primary
fori=1,...,n.

A subgroup M of G is called modular in G [9] if M is a modular element (in the
sense of Kurosh [10, page 43]) of the lattice £(G), that is,
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i X MnZy=(X,MynZforall X <G,Z < G such that X < Z; and
i) MYnzy=M,YynZtorall Y <G,Z<Gsuchthat M < Z.

It is easy to show that every quasinormal subgroup of G is modular in G. Moreover,
the following very interesting fact is true.

Tueorem 1.2 [10, Theorem 5.1.1, page 43]. The subgroup M of G is quasinormal in G
if and only if M is modular and subnormal in G.

The group G is called a PT-group [1, 2.0.2] if quasinormality is a transitive relation
in G, that is, every subnormal subgroup of G is quasinormal in G. The description of
PT-groups was first obtained by Zacher [15] for the soluble case (see Corollary 1.6
below), and by Robinson [8] for the general case on the basis of the classification of
all nonabelian simple groups.

By Theorem 1.2, G is a PT-group if and only if every subnormal subgroup of G is
modular in G. Bearing in mind this observation and the results in [8, 15], it seems to
be natural to ask: what is the structure of G provided every o-subnormal subgroup of
G is modular in G? We will give a complete answer to this question in the case where
G is o-soluble in the following sense.

DeriniTion 1.3. The group G is o-soluble [13] if every chief factor of G is o-
primary, and o-decomposable (Shemetkov [11]), or o-nilpotent (Guo and Skiba [4]),
if G = G| X -+ X G, for some o-primary groups Gy, ..., G;.

Before continuing, we consider some examples.

Exampie 1.4. (i)  In the classical case, when o = 0 = {{2}, {3}, {5},.. .}, the group G
is 0%-soluble (respectively, o-"-nilpotent) if and only if G is soluble (respectively,
nilpotent). A subgroup A of G is o’-subnormal in G if and only if it is subnormal
in G.

(ii) In the other standard case, when o = ¢ = {r, '}, the group G is o”-soluble
(respectively, o™ -nilpotent) if and only if G is m-separable (respectively, n-
decomposable, that is, G = 0,(G) X O (G)). A subgroup A of a m-separable
group G is o”-subnormal in G if and only if there is a subgroup chain

A=A)<A L <A, =G

such that A;/(A;_1)a, is either a 7-group or a n’-group fori = 1,...,n.

(iii) In the theory of m-soluble groups (7 = {p, ..., ps}), we deal with the partition
oc=0"={{p1},....{p.}, 7’} of P. Note that G is o"-soluble (respectively,
o -nilpotent) if and only if G is m-soluble (respectively, m-nilpotent, that is,
G =0,(G) XX 0,(G) X Or(G)). A subgroup A of G is o%"-subnormal in
G if and only if there is a subgroup chain

A=Ap<A;<---<A,=G

such that either A;_; < A; or A;/(Ai-1)a, is an’-group for i = 1, ..., n. Therefore,
A is 0% -subnormal in G if and only if it is F-subnormal in G in the sense of
Kegel [6], where § is the class of all 7’-groups.
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(iv) Let p,q,r,t be distinct primes, where ¢ divides p — 1 and ¢ divides r — 1. Let Q
be a simple F,C,-module which is faithful for C), let C, =< C; be a nonabelian
group of order r¢, and let A = C,. Finally, let G = (Q < C,) X (C, = C;) and let
B be a subgroup of order g in Q. Then B < Q since p > g. It is not difficult to
show that A is modular in G (see [10, Lemma 5.1.8]). On the other hand, A is
o-subnormal in G, where o = {{q, 1, t},{q, r,t}'}, and so A is o-quasinormal in G.
It is clear also that A is not subnormal in G, so A is not quasinormal in G. Finally,
note that B is subnormal but it is not modular in G by Lemma 2.2(i) below.

Now we can give an answer to the question posed above.

TueoreMm 1.5. Let D be the o-nilpotent residual of G, that is, the intersection of all
normal subgroups N of G with o-nilpotent quotient G/N. If G is o-soluble and every
o-subnormal subgroup is modular in G, then:

(i) G =Dx=L, where D is an abelian Hall subgroup of G of odd order and L is a
o-nilpotent M-group;

(i) every element of G induces a power automorphism in D; and

(iii)) O, (D) has a normal complement in a Hall o;-subgroup of G for all i.

Conversely, if (i), (ii) and (iii) hold for some subgroups D and L of G, then every
o-subnormal subgroup is modular in G.

In view of [10, 2.3.2, 2.4.4], if G is a nilpotent M-group, then G is an Iwasawa
group [1, 1.4.2], that is, every subgroup of G is quasinormal in G. Therefore in the
case o = 0 (see Example 1.4(i)), Theorem 1.5 gives the following well-known result.

CoroLLARY 1.6 (Zacher [15]). A group G is a soluble PT-group if and only if the
following conditions hold:

(i)  the nilpotent residual D = G of G is an abelian Hall subgroup of odd order;

(i1) every element of G induces a power automorphism in D; and
(iii) G/D is an Iwasawa group.

In the case o = 0" (Example 1.4(ii)), Theorem 1.5 gives the following corollary.

CoroLLARY 1.7. Suppose that G is n-separable and let D be the m-decomposable
residual of G, that is, the intersection of all normal subgroups N of G with n-
decomposable quotient G/N. Then every o”™-subnormal subgroup of G is modular
in G if and only if the following conditions hold:

(i) G =D=M, where D is an abelian Hall subgroup of G of odd order and
M = O,(M) X O (M) and every element of G induces a power automorphism
inD;

(i1) O(D) has a normal complement in a Hall n-subgroup of G;

(iii) Oy (D) has a normal complement in a Hall n’-subgroup of G.

In the case o = 0% (Example 1.4(iii)), Theorem 1.5 gives the following corollary.
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CoroLLARY 1.8. Suppose that G is m-soluble and let D be the m-nilpotent residual of G,
that is, the intersection of all normal subgroups N of G with n-nilpotent quotient G|N.
Then every o -subnormal subgroup of G is modular in G if and only if the following
conditions hold:

(i) G =D=M, where D is an abelian Hall subgroup of G of odd order and
M=0,M)X---x0p, (M)X Op(M) and every element of G induces a power
automorphism in D;

(1)  Ox (D) has a normal complement in a Hall i’ -subgroup of G.

2. Preliminaries

If G = A < (t) is nonabelian, where A is an elementary abelian p-group and ¢ is an
element of prime order g # p which induces a nontrivial power automorphism on A,
then we say that G is a P-group of type (p, q) (see [10, page 49]).

Lemma 2.1 [10, Lemma 2.2.2(d)]. If G = A =< {(t) is a P-group of type (p,q), then
% =G.

The next two lemmas collect the properties of modular subgroups which we use in
our proofs.

LevmMma 2.2 [10, Theorems 5.1.14 and 5.2.5]. Let M be a modular subgroup of G. Then:

(i)  M/Myq is nilpotent and every chief factor of G between M® and Mg is cyclic.
(1) IfMg=1thenG=S8;X---XS, XK, whereO<reZandforalli,je{l,...,r},

(a)  S;is anonabelian P-group,

®)  ASil 15D = 1= (Sl IKD) for i # j,

) M=0;X%X---x0Q,x(MnNK)and Q; is a nonnormal Sylow subgroup of S,
(d) M nKisquasinormal in G.

LemMma 2.3 [10, page 201]. Let A, B and N be subgroups of G, where A is modular in
G and N is normal in G.

(i)  If Bis modular in G, then (A, B) is modular in G.

(i1)) AN/N is modular in G/N.

(iii)) If N < B and B/N is modular in G/N, then B is modular in G.
(iv) IfA < B, then A is modular in B.

Lemma 2.4 [13, Lemma 2.6]. Let A, K and N be subgroups of G. Suppose that A is

o-subnormal in G and N is normal in G.

(i) IfN <KandK|N is o-subnormal in G/N, then K is o-subnormal in G.

(i) AN K is o-subnormal in K.

(iii) If A is a o-Hall subgroup of G, then A is normal in G.

(iv) IfH # 1is a Hall o;-subgroup of G and A is not a o-group, then AN H # 1 and
AN H is a Hall o;-subgroup of A.
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(v) AN/N is o-subnormal in G/N.
(vi) If K is a o-subnormal subgroup of A, then K is o-subnormal in G.
(vii) IfA is a o-group, then A < O, (G).

Lemma 2.5 [5, Proposition 3.4]. Every subgroup of a o-nilpotent group is o-
subnormal.

Lemma 2.6 [13, Corollary 2.4 and Lemma 2.5]. The class of all o-nilpotent groups
N, is closed under taking products of normal subgroups, homomorphic images and
subgroups. Moreover, if E is a normal subgroup of G and E[E N ®(G) is o-nilpotent,
then E is o-nilpotent.

We will use G to denote the o-nilpotent residual of G. In view of Lemma 2.6, the
following lemma is a consequence of [2, Proposition 2.2.8].

LemmMa 2.7. If N is a normal subgroup of G, then (G/N)* = G**N/N.
LeEmmA 2.8.

(i) Every M-group is soluble.

(1) IfG = A X B, where A is a Hall subgroup of G and A and B are M-groups, then
G is an M-group.

(ii1) Every subgroup and every quotient of an M-group is an M-group.

Proor. Statements (i) and (ii) are corollaries of Iwasawa’s theorem on the structure of
M-groups [10, 2.4.4].

As in the Introduction, we use L(G) to denote the lattice of all subgroups of G.
Suppose that R is a subgroup of an M-group G. Then L(R) C L£(G), so R is an M-
group. Finally, suppose that R is normal in G. Then £(G/R) is isomorphic to the
interval [G/R] in the modular lattice £(G). Hence G/N is an M-group. O

LemMma 2.9 [12, Theorem A]. If G is o-soluble, then G possesses a Hall o;-subgroup
forall i.

A subgroup H of a o-soluble group G is said to be o-permutable in G [13] if H
permutes with every Hall o;-subgroup of G for all i.

LemMa 2.10 [14, Theorem A]. Suppose that G is o-soluble and let D = G™. If D is
nilpotent and every o-subnormal subgroup of G is o-permutable in G, then:

(1) G = DL, where D is an abelian Hall subgroup of G of odd order and L is a
o-nilpotent group;

(i1) every element of G induces a power automorphism in D; and

(iii)) O, (D) has a normal complement in a Hall o;-subgroup of G for all i.

ProposiTioN 2.11. Suppose that the subgroup H of G is modular and o-subnormal
in G. If G possesses a Hall o;-subgroup, then H permutes with every Hall o;-subgroup
of G.
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Proor. Suppose the statement is false and let G be a counterexample of minimal order.
Then HV # VH for some Hall o;-subgroup V of G.

It is clear that V is a Hall o;-subgroup of (H,V). On the other hand, H is
modular and o-subnormal in (H, V) by Lemmas 2.3(iv) and 2.4(ii). In the case where
(H,V) < G, the choice of G implies HV = VH. Therefore (H,V) = G.

Since H is o-subnormal in G, there is a subgroup chain H=Hy < H| <---<H, =
G such that either H;_; < H; or H;/(H;_1)y, is o-primary fori=1,...,n.

We can assume without loss of generality that M = H,_; < G. Then H permutes
with every Hall o;-subgroup U of M for every i. Moreover, the modularity of H in G
implies that

M=MnHVy=(H MNV).

On the other hand, by Lemma 2.4(iv), M NV is a Hall o;-subgroup of M. Hence
M=HMnOV)=(MNV)H.IfV< Mg, then HMNV)=HV =VHandso V £ M.
Now note that VM = MV. Indeed, if M is normal in G, it is clear. Otherwise, G/Mg
is o-primary and so G = MV = VM since V £ Mg and V is a Hall o;-subgroup of G.
Therefore
VH=VIMNV)H=VM=MV=HMNV)V=HV.

This contradiction completes the proof of the lemma. O

3. Proof of Theorem 1.5

Proor oF NEcEssITY. First suppose that G is a o-soluble group such that every o-
subnormal subgroup of G is modular in G. We show that conditions (i), (ii) and (iii)
hold for G. Assume that this is false and let G be a counterexample of minimal order.
Then D = G™ # 1, that is, G is not o-nilpotent.

Claim (a). The hypothesis holds for every quotient G/N of G.
Let H/N be a o-subnormal subgroup of G/N. Then H is a o-subnormal subgroup

of G by Lemma 2.4(i), so H is modular in G by hypothesis. Hence H/N is modular in
G /N by Lemma 2.3(ii) and this proves (a).

Claim (b). G/D is an M-group and therefore D # 1.

In view of Lemmas 2.5 and 2.6, every subgroup of G/D is o-subnormal in G/D.
Therefore G/D is an M-group by claim (a), so D # 1 by the choice of G.

Claim (c). D is nilpotent.

Assume this is false and let R be a minimal normal subgroup of G. First note
that RD/R = (G/R)"~ is abelian by Lemma 2.7 and claim (a). Therefore R < D and
R is the unique minimal normal subgroup of G. For otherwise, if N is any other
minimal normal subgroup of G, then D =~ D/1 = D/R N N, so that D is abelian. Finally,
R £ ®(G) by Lemma 2.6. Therefore Cg(R) < R by [3, A, 15.2]. Now let V be a
maximal subgroup of R. Suppose that V # 1. Then Vi =1 and R < V°. Since G is
o-soluble, R is o-primary and so V is o-subnormal in G by Lemma 2.4(vi). Therefore
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V is modular in G by hypothesis, so |R| = p for some prime p by Lemma 2.2(i). Hence
Cs(R) = R and so G/R = Cg(R) is cyclic, which implies that G is supersoluble. But
then D = G¥ < G’ < F(G) and so D is nilpotent, a contradiction. This proves (c).
Final contradiction for the necessity.

Since G is o-soluble by hypothesis, from Lemma 2.9 and Proposition 2.11 it
follows that every o-subnormal subgroup of G is o-permutable in G. Therefore, in
view of Lemma 2.10 and claim (c), G = D = L, where L ~ G/D is an M-group and
conditions (1), (ii) and (iii) hold for G. O

Proor or surriciENcYy. Now we show that if conditions (i), (ii) and (iii) hold for some
subgroups D and L, then every o-subnormal subgroup H of G is modular in G.
Suppose that this is false, that is, some o-subnormal subgroup H of G is not modular
in G. Let G be a counterexample with |G| + |H| minimal. Then D # 1. Moreover, G is
soluble by Lemma 2.8, and the following statement holds.

Claim (1). Either for some subgroups X < G,Z < G, where X < Z,
X,HNZ)#(X,H)yNZ, ()
or for some subgroups X < G,Z < G, where H < Z,
H,XNZ)+{H,X)NZ. (%)

Claim (2). The hypothesis holds on every quotient G/N of G.

First note that G/N = (DN/N) =< (LN/N), where DN/N ~ D/D N N is an abelian
Hall subgroup of G/N of odd order and LN/N =~ L/L N N is a o-nilpotent M-group by
Lemma 2.8(iii) and so condition (i) holds for G/N. Moreover, if V/N is any subgroup
of DN/N, then V = N(D N V) and so, in fact, V/N is normal in G/N since D NV is
normal in G by condition (ii). Hence condition (ii) holds for G/N.

Condition (iii) implies that O, (D) has a normal complement S in a Hall o;-
subgroup E of G for every i. Then EN/N is a Hall o;-subgroup of G/N and S N/N is
normal in EN/N. Since D is nilpotent, O,,(D)N/N = O,,(DN/N). Hence

(SN/N)(Oy(DN/N)) = (SN/N)(O,,(D)N/N) = EN/N
and
(SN/N)N Ox,(DN/N)=(SN/N) N (O, (D)N/N) = N(S N Oy, (D)N)/N
=N(S N Oy (D))(S NN)/N =N/N.

Hence condition (iii) also holds on G/N.
Claim (3). Hg = 1.

Assume Hg # 1. The hypothesis holds for G/Hg by claim (2). On the other hand,
H/Hg is o-subnormal in G/Hg by Lemma 2.4(v) and so H/Hg is modular in G/Hg

by the choice of G. But then H is modular in G by Lemma 2.3(iii), a contradiction,
and this proves claim (3).
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Claim (4). H is a o;-group for some i and H < L* for all x € G.

Claim (3) implies that HN D=1, so H=~ HD/D < G/D is o-nilpotent by
Lemma 2.6 and hence H = A X - -- X A, for some o-primary groups Ay, ...,A,. Then
H = A, is a o-group for some i since otherwise H is modular in G by Lemma 2.3(i)
and the choice of (G, H).

Let M; be the Hall o;-subgroup of L and E be a Hall o;-subgroup of G containing
M;. Lemma 2.4(iv) implies that H < E* for all x € G. Therefore, if EN D = 1, then
M,; is a Hall o;-subgroup of G and so H < L* for all x € G.

Now suppose that EN D # 1. Then H < E* = O,,(D) X M by condition (iii) since
D is a nilpotent Hall subgroup of G, so H < M} < L*.

Claim (5). The Hall o j-subgroups of G are M-groups for all j.

Let A be a Hall oj-subgroup of G. If AND =1, then A ~ AD/D < G/D, where
G/D is an M-group. Hence A is an M-group by Lemma 2.8(iii). Now let AN D # 1.
Then A = (AN D) X S by condition (iii), where S is a Hall subgroup of A. Then A is
an M-group by Lemma 2.8(ii) because AN D and S ~ DS /D < G/D are M-groups.

Claim (6). The subgroup H is modular in every proper subgroup E of G containing H.
It is enough to show that the hypothesis holds for E. First note that DN E is
a normal abelian Hall m-subgroup of E of odd order, where n = n(D), and if V is
a Hall n’-subgroup of E, then V < L* for some x € G since G is soluble and L is
a Hall n’-subgroup of G. Therefore £ = (D N E) <V, where V is an M-group by
Lemma 2.8(iii). Hence condition (i) holds for (E,D N E, V). It is clear also that
condition (ii) holds for D N E. Finally, let E; < H;, where E; is a Hall o;-subgroup of
E and H; is a Hall o-subgroup of G. Then, by condition (iii), H; = O,,(D) X S and so
E;=E;N(Os(D)xS)=(E;N Oy (D)) x(E;NS), where E; N Oy,(D) = Oy(D N E).
Hence condition (iii) also holds for (E, D N E, V). This proves (6).
Claim (7). (X,H) =0G.
Suppose that £ = (X, H) < G and let Zy =Z N E. Then H is modular in E by
claim (6). In the case where X < Z,
XH)NZ=Zy=ZyN (X, H) =X, ZyNH)=(X,(ZN{H, X)) NH)=(X,HN Z),
contrary to (+). On the other hand, in the case where H < Z, similarly
(X,HYNZ=Zy=ZyN(H,X)=(H,ZoNX)=(H,XNZ),
which is impossible by (xx). Hence (H, X) = G.

Claim (8). D <X.

It is clear that X = (D N X) = X}, where X; < L* for some x € G. Claim (4) implies
that H < L*. Hence (X;, H) < L* and, from claim (7),

G=(X,Hy=((DNX)~X,H)y=(DNX)XX;,Hy=Dx=L".
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Thus,
D=DNn(DnNXXX,Hy=(DNX)(DN{(X,H)=DnNnX

andso D < X.

Claim (9). ZN D =1 and therefore Z < L* for some x € G.

Suppose that Zg =Z N D # 1. Claim (8) implies that Zp < X. In view of
Lemma 2.4(v), HZy/Z; is o-subnormal in G/Z,. Therefore from claim (2) and the
choice of G it follows that HZ,/Z, is modular in G/Z,. Hence in the case X < Z,

(X/Zo,(HZy|Zo) N (Z]Z0)) = (X[Zo, HZy|Zo) N (Z]Zp),
which implies that
(X,(HNZ)) =(XZo,HNZ) =X, Zo0(HN Z)) =X, HZy N Z) =X, HZp) N Z,

and so

X,(HNZ)=X,H)NnZ
since evidently

X, HNZ)<{(X,H)NnZ
In the case H < Z, similarly,

(HXNZ)y=(H,Zo(XNZ))y=(HZy,XNZ)=(HZy,X)NZ=(H,X)NZ.
But this situation is impossible by claim (1). This contradiction shows that ZN D = 1.
Hence Z < L* for some x € G since G is soluble and L is a Hall n’-subgroup of G
where m = (D).
Claim (10). X £ Z.
Otherwise, we have D < Z, which is impossible by claim (9) since D # 1.

Claim (11). L* =(H,L* N X).

Let 1 < Zy < D. Claim (2) and the choice of G imply that HZy/Z, is modular in
G/Zy. Moreover, claims (1) and (10) imply that H < Z. Also, in view of claim (4),
H < L*. Therefore from claim (7),

L*Z4/Z0 = (L*Zo/Z0) N (HZy/Zo, X/ Zo)
=(HZy/Zy,(L*Zo/Z0) N (X/Zy)) = (HZy|Zy, Zo(L" N X)/Zp),
and so
Zo = L* = Zy = (H,(L" N X)),
where L* and (H, (L* N X)) are Hall n’-subgroups of Zy = L* and n = n(D). This
proves (11).
Final contradiction for the sufficiency.
Claim (9) implies that Z < L* for some x € G. Then
Z=(H,ZN(L*NX))=(H,ZN X)
by claim (11) since L* ~ G/D is an M-group. But this is impossible by claims (1)
and (10). O
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