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Harmonic Coordinates on Fractals with
Finitely Ramified Cell Structure

Alexander Teplyaev

Abstract. 'We define sets with finitely ramified cell structure, which are generalizations of post-critically
finite self-similar sets introduced by Kigami and of fractafolds introduced by Strichartz. In general, we
do not assume even local self-similarity, and allow countably many cells connected at each junction
point. In particular, we consider post-critically infinite fractals. We prove that if Kigami’s resistance
form satisfies certain assumptions, then there exists a weak Riemannian metric such that the energy
can be expressed as the integral of the norm squared of a weak gradient with respect to an energy
measure. Furthermore, we prove that if such a set can be homeomorphically represented in harmonic
coordinates, then for smooth functions the weak gradient can be replaced by the usual gradient. We
also prove a simple formula for the energy measure Laplacian in harmonic coordinates.

Introduction

There is a well-developed theory of Dirichlet (energy, resistance) forms, and corre-
sponding random processes, on the class of post-critically finite (pcf for short) self-
similar sets, which are finitely ramified [2, 19, 22, 36, 39]. Also, many piecewise and
stochastically self-similar fractals have been considered [7, 11, 12,37]. The general
non self-similar energy forms on the Sierpinski gasket were studied in [35]. In all the
mentioned works the fractals considered have finitely ramified cell structure. In this
paper we will extend some aspects of this theory to a class of spaces which may have
no self-similarity in any sense and may have infinitely many cells connected at every
junction point. Throughout this paper we extensively and substantially use the gen-
eral theory of resistance forms [23]. The existence of such forms is a delicate question
even in the self-similar pcf case [13,23,33]. To prove our results we use some methods
introduced in [41]. In the present paper we give the basic background information,
and the reader may find all the details in [23,41].

In Section 1 we give the definition of a resistance form in the sense of Kigami [23].
In Section 2 we define sets with finitely ramified cell structures. Examples of such
fractals are pcf self-similar sets introduced by Kigami [19,22], fractafolds introduced
by Strichartz [38], random fractals [7,11,12], and non self-similar Sierpinski gaskets
[35,42]. The key topological assumption is that there is a cell structure such that
every cell has finite boundary, but we do not assume any self-similarity.

The terminology we use can be explained as follows. The term post-critically infi-
nite in this context means that every junction point can be an intersection of count-
ably infinite number of cells with pairwise disjoint interior, that is, every cell can be
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linked to countably many other cells. The term finitely ramified means that every
cell is joined with its complement in a finite number of points. A good example of
an infinitely ramified fractal is the Sierpinski carpet. There exists a self-similar dif-
fusion and corresponding Dirichlet form on the Sierpinski carpet [3-5,31], but its
uniqueness has not been proved.

In Section 3 we prove that Kigami’s resistance form is a local regular Dirichlet
form under appropriate conditions. In Section 4 we prove that if the resistance form
satisfies certain non degeneracy assumptions, then there exists a weak Riemannian
metric, defined almost everywhere, such that the energy can be expressed as the in-
tegral of the norm of a weak gradient with respect to an energy measure. This gener-
alizes earlier results by Kusuoka [30] and the author [41]. Furthermore, in Section 5
we prove that if the finitely ramified fractal can be homeomorphically represented
in harmonic coordinates, then the weak gradient can be replaced by the usual gradi-
ent for smooth functions, which generalizes an earlier result by Kigami in [20]. In
Section 6 we prove a simple formula for the energy measure Laplacian in harmonic
coordinates. This formula was announced in [42], in the case of the standard energy
form on the Sierpinski gasket, without a proof. In a sense, the formula for the en-
ergy Laplacian is the second derivative with respect to the generalized Riemannian
metric. In the case of the standard energy form on the Sierpinski gasket, it is proved
by Kusuoka in [29] that this generalized Riemannian metric has rank one almost ev-
erywhere. This can be interpreted as that in harmonic coordinates on the Sierpifiski
gasket the energy Laplacian is the one dimensional second derivative in the tangential
direction. We conjecture that this is the case for any finitely ramified fractal consid-
ered in this paper. The main tool we use in this theorem is approximating the finitely
ramified fractal by a sequence of so-called quantum graphs [27,28]. In Section 7 we
discuss self-similar finitely ramified fractals, and the existence of self-similar resis-
tance forms in particular. In Section 8 we give several examples of finitely ramified
fractals for which our theory can be applied. Among them are factor-spaces of pcf
self-similar sets, and post-critically infinite analogs of the Sierpinski gasket.

In the case of the standard energy form on the Sierpinski gasket, it is proved by
Kigami in [26] that the heat kernel with respect to the energy measure has Gaussian
asymptotics in harmonic coordinates (a weaker version was obtained in [34]). Re-
cently, powerful machinery was developed to obtain heat kernel estimates on various
“rough” spaces, including many fractals [6, 25]. It is not unlikely that this theory
is applicable to many, if not all, finitely ramified fractals in harmonic coordiantes.
Also, some results about the singularity of the energy measure with respect to prod-
uct measures [8, 14, 15] are valid in the case of finitely ramified self-similar fractals
under suitable extra assumptions.

1 Kigami’s Resistance Forms

Below we restate the definition of a resistance form in [23].

Definition 1.1 A pair (£, Dom €) is called a resistance form on a countable set V.,
if it satisfies the following conditions.
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(RF1) Dom € is a linear subspace of ¢(V ) containing constants, € is a nonnegative
symmetric quadratic form on Dom &, and &(u,u) = 0 if and only if u is
constant on V.

(RF2) Let ~ be the equivalence relation on Dom € defined by u ~ v if and only if
u — v is constant on V. Then (£/ ~, Dom €) is a Hilbert space.

(RF3) For any finite subset V' C V, and for any v € £(V'), there exists u € Dom &
such that u|y = v.

(RF4) Forany p,q €V,

up{W:MEDom&S(%U) >0} < 0.

This supremum is denoted by R(p, q) and called the effective resistance be-
tween p and q.
(RF5) For any u € Dom € we have the £ (i1, 1) < E(u, u), where

1 ifu(p) > 1,
i(p) = qulp) if0<u(p) <1,
0 ifu(p) < 1.

Property (RF5) is called the Markov property.

Note that the effective resistance R is a metric on V,, and that any function in
Dom € is R-continuous. Let €2 be the R-completion of V... Then any u € Dom € has
a unique R-continuous extension to €).

For any finite subset U C V, the finite dimensional Dirichlet form £y on U is
defined by

8U(f7f) = lnf{g(gvg) :g € D0m83g|U = f}a

which exists by [23], and moreover there is a unique g for which the inf is attained.
The Dirichlet form &y is called the trace of € on U, and denoted £y = Tracey (€).
By the definition, if U; C U, then &y, is the trace of £y, on Uy, that is, &y, =
Tracey, (Ey,)-

Theorem (Kigami [23])  Suppose that V,, are finite subsets of V. and that | J,°, V, is
R-dense in V.. Then E(f, f) = lim,_ Ev,(f, f) for any f € Dom E, where the
limit is actually non-decreasing. Is particular, € is uniquely defined by the sequence of
its finite dimensional traces Ey, on V.

Theorem (Kigami [23])  Suppose that V,, are finite sets, for each n there is a resistance
form €y, on'V,, and this sequence of finite dimensional forms is compatible in the sense
that each vy, is the trace of Cy,,, on V,, wheren = 0,1,2,.... Then there exists a
resistance form & on V. = |J;2 V,, such that E(f, ) = lim,_. Ev,(f, f) for any
f € Dom &, and the limit is actually non-decreasing.
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2 Finitely Ramified Fractals

Definition 2.1 A finitely ramified fractal F is a compact metric space with a cell
structure F = {Fy }aca and a boundary (vertex) structure V = {V,}aca such that
the following conditions hold.

(i) Aisa countable index set.

(ii) Each F, is a distinct compact connected subset of F.

(iii) Each V, iska finite subset of F,, v}:rith at least two elements.
(iv) IfF, = j=1 Fa;» then V, C U =1 Va,-

(v) There exists a filtration {A,,}5°, such that

(a) A, are finite subsets of A, Ag = {0}, and F, = F;

(b) AxNA, =2ifn#m

(c) forany a € A, thereare o, ...,y € Apy such that F, = Ul;:1 Fy;.

(vi) F,» NF, =V, NV, forany two distinct a, &’ € A,,.

(vii) For any strictly decreasing infinite cell sequence F,, 2 F,, 2 --- there exists

x € Fsuchthat(,5, Fo, = {x}.

If these conditions are satisfied, then (F, F,V) = (F, {Fa}aca, {Va}aca) is called a
finitely ramified cell structure.

Notation 2.2 We denote V,, = Ua6 A, Va- Note that V,, C V4 foralln > 0 by
Definition 2.1. We say that F, is an n-cell if &« € A,,.

Remark 2.3 By the definition every cell in a finitely ramified fractal has a boundary
consisting of isolated points (see Proposition 2.10), which implies the name point
connected. In particular, any pcf self-similar set is a finitely ramified fractal. However,
every vertex v € V. of a finitely ramified fractal can be an intersection of countably
many cells with pairwise disjoint interior (see Example 8.9). Hence even if a finitely
ramified fractal is self-similar, it does not have to be a pcf self-similar set.

Remark 2.4 In this definition the vertex boundary V, of Fy = F can be arbitrary,
and in general may have no relation with the topological structure of F. However,
Assumptions (WN) and (HC) made below will de facto impose restrictions on the
choice of V. In particular, the energy measure, gradient and the energy measure
Laplacian all depend on the choice of V.

This is somewhat different from the theory of pcf self-similar sets in [19, 21, 22],
where V) is uniquely determined as the post-critical set of the pcf self-similar struc-
ture. Note, however, that the same topological fractal F can have different self-similar
structures, and different post-critical sets in particular.

Note that every pcf self-similar set is a finitely ramified fractal, see [19,22] and
Section 7.

Remark 2.5 In general a filtration is not unique for a finitely ramified fractal. For
example, the filtration flk = Ay satisfies all the conditions of Definition 2.1. How-
ever, the results of this paper do not depend on the choice of the filtration. In particu-
lar, Kigami’s resistance forms, energy measures, etc. are independent of the filtration.
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If the fractal is self-similar, then changing the self-similar structure sometimes is very
useful, and changing filtration is one of the results of changing it. Moreover, if the
finitely ramified fractal is not self-similar, then it may not be clear what the natural
filtration is.

Assumption 1 In what follows we assume that some filtration is fixed.

Proposition 2.6  For any x € F there is a strictly decreasing infinite sequence of cells
satisfying condition (vii) of the definition. The diameter of cells in any such sequence
tend to zero.

Proof Suppose x € F is given. We choose F,, = F. Then if F,, is chosen, we
choose F,,,, to be a proper sub-cell of F,,, which contains x. Suppose for a moment
that the diameter of cells in such a sequence does not tend to zero. Then for each n
there is x, € F,, such that liminf,_, . d(x,,x) = € > 0. By compactness there is
y € ﬂ@l F,, suchthatd(y,x) > . This is a contradiction with the property (vii) of

Definition 2.1. u
Proposition 2.7  The topological boundary of F,, is contained in V,, for any o € A.

Proof For any closed set A we have 9A = A N Closure(A°), where A° is the comple-
ment of A. If A = F,, is an n-cell, then Closure(A) is the union of all n-cells except
F, . Then the proof follows from property (vi) of Definition 2.1. ]

Proposition 2.8  The set V. = J,c 4 Vo is countably infinite, and F is uncountable.

Proof The set V. is a countable union of finite sets, and every cell is a union of at
least two smaller sub-cells. Then each cell is uncountable by properties (ii) and (iii)
of Definition 2.1. u

Proposition 2.9  For any distinct x, y € F, there is n(x, y) such that if m > n(x, y),
then any m-cell cannot contain both x and y.

Proof Let B,,(x, y) be the collection of all m-cells that contain both x and y. By
definition any cell in B,,11(x, y) is contained in a cell which belongs to B,,(x, y).
Therefore, if there are infinitely many nonempty collections B,,(x, y), then there is
an infinite decreasing sequence of cells that contains both x and y. This is a contra-
diction with property (vii) of Definition 2.1. ]

Proposition 2.10 For any x € Fandn > 0, let U,(x) denote the union of all n-cells
that contain x. Then the collection of open sets U = {U,(x)° }xern>o is a countable
fundamental sequence of neighborhoods. Here B°® denotes the topological interior of a
set B.

Moreover, for any x € F and open neighborhood U of x there exist y € V, and n
such that x € U,(x) C U,(y) C U. In particular, the smaller collection of open sets
U = {U,(x)° }xev, n>0 is a countable fundamental sequence of neighborhoods.
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Proof Note that the collection U’ is countable because V., is countable by Proposi-
tion 2.8. The collection U is countable because if x and y belong to the interior of the
same n-cell, then U,(x) = U,(y).

First, suppose x € V... Then we have to show that for any open neighborhood U
of x there exists n > 0 such that U,(x) C U. Suppose for a moment that such n does
not exist. Then for any n the set U,,(x)\U is a nonempty compact set. Moreover, the
sequence of sets {U,(x)\U },>o is decreasing and so has a nonempty intersection.
Then we can choose z € (1,5, Ux(x)\U, and for any n there is an n-cell that contains
both x and z. This is a contradiction with Proposition 2.9.

Now suppose x ¢ V.. Then for any n > 0 there exists y, € V, such that x €
U,(y,) C U,—1(x). Moreover, we can assume also that U,(y,) C U,_1(y,—1) for
any n > 1. Then we have to show that for any open neighborhood U of x there
exist n > 0 such that U,(y,) C U. Suppose for a moment that such n does not
exist. Then the set U, (y,)\U is a nonempty compact set. Moreover, the sequence of
sets {U,(y4)\U },>1 is decreasing and so has a nonempty intersection. Then we can
choose z € (>, Un(y»)\U, and for any n > 1 there is an (n — 1)-cell that contains
both x and z. This is a contradiction with Proposition 2.9. ]

3 Resistance Forms on Finitely Ramified Fractals

We assume that there is a resistance form on V., in the sense of Kigami [22, 23], see
Definition 1.1. For convenience we will denote £,(f, f) = Ev,(f, f), see Section 1.
Recall that E(f, f) = lim,,» €,(f, f) for any f € Dom &, where the limit is actu-
ally non-decreasing.

Definition 3.1 A function is harmonic if it minimizes the energy for the given set
of boundary values.

Note that any harmonic function is uniquely defined by its restriction to V. More-
over, any function on V| has a unique continuation to a harmonic function. For any
harmonic function h, we have €(h, h) = &,(h, h) for all n by [23]. Also note that for
any function ¢ € Dom &, we have €y(g, g) < £(g, £), and a function h is harmonic if
and only if Eq(h, h) = E(h, h).

Let E,(f, f) = (Ea)v, (f, f), where &, is the restriction of € to F,. Then

En= Y &y,

acA,

Lemma 3.2 If h is harmonic and continuous, then

Tim Z Ealhly,, hlv,) =0

acA,
x€F,

for any x € F.
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Proof Let E(h,h) = e > 0. It is easy to see that the limit under consideration is
decreasing and so it exists. Suppose for a moment this limit is equal to ¢ > 0.

Without loss of generality we can assume that h(x) = 0 and that |h(y)| > 1 for
any y € Vo\{x}. By Proposition 2.6 for any € > 0, there are cells F,,, . .., F,, such
that [h(x) — h(y)| < eforany y € Ulj:1 F,;, and Ui-:l F,, contains a neighborhood
of x. Without loss of generality we can assume that Vy N (Ulj:1 F,\{x}) = @.

Let V! = U;:1 V., and consider the trace of the resistance form on Vo [JV'.
Obviously if € is small, then there is a uniform bound for conductances between
points in Vo\{x} and V’. Then consider changing the values of h on V' to zero.
Inside of U?:l F,,,; the energy will be reduced by at least , since the function is now
constant there. On the other hand, outside of Ul.:1 F,,; the energy increase will be
bounded by a constant times ce. So the total energy will decrease if ¢ is small enough.
This is a contradiction with the definition of a harmonic function, and so ¢ = 0.

Note that the proof works even if V' is an infinite set, and so it is applicable to
connected spaces with cell structure, such as the Sierpinski carpet, which is not a
finitely ramified fractal. u

Corollary 3.3  If h is harmonic and continuous, then there is a unique continuous
energy measure vy, on F defined by vy, (F,) = E,(h v ,h’ v ) forall o € A.

Assumption 2  In what follows we assume that harmonic functions are continuous.

Definition 3.4 We fix a complete, up to constant functions, energy orthonormal
set of harmonic functions hy, ..., b, where k = |Vy| — 1, and define the Kusuoka
energy measure by v = vy, + - -+ + v,

If F,v C F,, then M, 4/ : £(V,) — £(V,) is the linear map which is defined
as follows. If f, is a function on V,,, then let iy, be the unique harmonic function
on F, that coincides with f, on V,,. Then we define M, o' fo = hy,|v,,. Thus M o
transforms the (vertex) boundary values of a harmonic function on F,, into the values
of this harmonic function on V.. We denote M, = M, ,. We denote D, the matrix
of the Dirichlet form &, on V,,. By elementary linear algebra we have the following
lemma (see [19,22,29,41]).

Lemma 3.5 IfF, =|JF,, then
D, = ZM:’&]-D(!]'MQ,(Y]' and v(F,) = TrM:DaMa-

In particular v is defined uniquely in the sense that it does not depend on the choice of
the complete energy orthonormal set of harmonic functions.

We denote
o M;DuMa

Z(! -
v(Fa)

if v(Fy) # 0. Then we define matrix valued functions Z,(x) = Z, if v(F,) # 0,
«a € Ay, and x € F,\V,. Note that Tr Z,(x) = 1 by definition.
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Theorem 3.6  For v-almost all x there is a limit Z(x) = lim,,_ oo Z,(x).

Proof One can see, following Kusuoka’s original idea [29,30], that Z, is a bounded
v-martingale. ]

Remark 3.7 In a sense, the matrix valued measure Zdv plays the role of a gener-
alized Riemannian metric on the fractal F (see Theorems 5.6 and 6.1). The matrix
Z has trace one by definition, but on many fractals it is discontinuous. Moreover,
in some examples, such as the Sierpifiski gasket, the matrix Z has rank one almost
everywhere. Then it can be described as the projection onto the one dimensional
tangent space.

One can see that the energy measures vy, are the same as the energy measures in
the general theory of Dirichlet forms [9, 10]. One can also define the matrix Z as the
matrix whose entries are the densities

thi,hj

Zij = O

using the general theory of Dirichlet forms in [9,10]. However we give a different de-
scription because the pointwise approximation using the cell structure is important
in this theorem.

Definition 3.8 A function is n-harmonic if it minimizes the energy for the given set
of valueson V,,.

Note that any n-harmonic function is uniquely defined by its restriction to V.
Moreover, any function on V, has a unique continuation to an #-harmonic function.
Also note that for any function g € Dom € we have €,(g, g) < €(g, ), and a function
f is n-harmonic if and only if €,,(f, f) = E(f, f).

Recall that R is the effective resistance metric on V,, and that any function in
Dom € is R-continuous. Let §2 be the R-completion of V... Then any u € Dom € has
a unique R-continuous extension to {). The next theorem generalizes [22, Proposi-
tion 3.3.2] for possibly non self-similar finitely ramified fractals.

Theorem 3.9  Suppose that all n-harmonic functions are continuous. Then any con-
tinuous function is R-continuous, and any R-Cauchy sequence converges in the topology
of E. Also, there is a continuous injective map 0: Q) — F which is the identity on V..

Proof It is easy to see from the maximum principle that any continuous func-
tion can be uniformly approximated by n-harmonic functions, which implies that
any continuous function is R-continuous. Suppose for a moment that {x;} is an
R-Cauchy sequence in V.. which does not converge. By compactness, it must have a
limit point, say x. Then, by the results of Section 2, there is n and two disjoint n-cells
F, and Fj3 such that x € Fj, but F, contains an infinite subsequence of {x;}, say
{¥m}. There is an n-harmonic function f which is identically 1 on F3 and 0 on every
point of V,, which is not in Fs. Then for any m we have R(x, y,,) > 1/E(f, f) > 0,
which is a contradiction. Thus, any R-Cauchy sequence converges in the topology
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of F. Therefore we can define a continuous map 6: {2 — F which is the identity on
V... Now suppose for a moment that 6 is not injective. Then there are two R-Cauchy
sequences in V,, say {x;} and {yx}, which have the same limit in F but two differ-
ent R-limits in §2, say x and y. By continuity, for any m-harmonic function f we
have f(x) = f(y). This is a contradiction since the space of m-harmonic functions
separates points of € by [23]. Thus, 8 is injective. ]

Remark 3.10  If conditions of Theorem 3.9 are satisfied, then we may consider £2
as a subset of F. Then () is the R-closure of V.. In a sense, {2 is the set where the
Dirichlet form & “lives”.

Theorem 3.11  Suppose that all n-harmonic functions are continuous. Then € is
a local regular Dirichlet form on §) (with respect to any measure that charges every
nonempty open set).

Proof The regularity of € is proved in [23]. In particular, Dom € mod (constants)
is a Hilbert space in the energy norm. Note that the set of #n-harmonic functions is a
core of € in both the original and R-topologies. Also note that if a set is R-compact,
then it is compact in the original topology of f by Theorem 3.9. Suppose now f and
g are two functions in Dom € with disjoint compact supports. Then, by the results

of Section 2, there is n and a finite number of n-cells F,,,, . .. , F,, such that Ule F,,
contains the support of f but is disjoint with the support of g. Then it is easy to see
that for any m > n we have £,,,(f,g) = 0andso E(f,g) =0. [ |

4 Generalized Riemannian Metric and Weak Gradient

Definition 4.1 We say that f € Dom € is n-piecewise harmonic if for any o € A,
there is a (globally) harmonic function h, that coincides with f on F,,.

Note that, by definition, the notion of n-piecewise harmonic functions in general
is more restrictive than the more commonly used notion of n-harmonic functions
defined in the previous section.

Definition 4.2  We say that the resistance form on a finitely ramified fractal is weakly
nondegenerate if the space of piecewise harmonic functions is dense in Dom €.

The notion of weakly nondegenerate harmonic structures was studied in [41] in
the case of pcf self-similar sets.

Assumption (WN) In what follows we assume that the resistance form is weakly
nondegenerate.

Proposition 4.3  Assumption (WN) implies supp(v) = F.
Proof Our definitions imply that for any cell F,, there is a function of finite energy

with support in this cell. If it can be approximated by piecewise harmonic functions,
then v(F,) > 0. [ |
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By Proposition 2.10 supp(v) = F if and only if every cell has a positive measure.

Theorem 4.4  Let F, be the factor-space (quotient) of F obtained by collapsing all cells
of zero v-measure. Then F, is a finitely ramified fractal with the cell and vertex structures
naturally inherited from F.

Proof The only nontrivial condition to verify is that any cell of F, has at least
two boundary points. The maximum principle implies that a cell F, has a positive
v-measure if and only if there is a harmonic function which is non constant on V,,.

|

Definition 4.5 If f is n-piecewise harmonic, then we define its tangent Tan,, f for
a € A, as the unique element of £(V) that satisfies two conditions:

(i)  if hy 1an is the harmonic function with boundary values Tan,, f, then h, 1,y co-
incides with f on F,;

(ii) o an has the smallest energy among all harmonic functions h, such that h,
coincides with f on F,,.

We define L as the Hilbert space of £(V)-valued functions on F with the norm
defined by [|u)?, = [.(u, Zu) dv.
Z

Definition 4.6 If f is n-piecewise harmonic, then we define its gradient Grad f as
the element of L2 such that, for v-almost all x, Grad f(x) = Tan, f in the sense of L%

ifxe F,anda € A,,.

Lemma 4.7  If f is n-piecewise harmonic, then E(f, f) = || Grad f||7,.

4
Proof Follows from Lemma 3.5. ]
Theorem 4.8  Under Assumption (WN), Grad can be extended from the space of
piecewise harmonic functions to an isometry Grad: Dom & — L2, which is called
the weak gradient.
Proof The statement follows from Lemma 4.7 and Assumption (WN). [ |

Corollary 4.9  Under Assumption (WN), we have vy < v for any f € Dom €.

Proof The statement follows from Theorem 4.8. It can also be obtained directly
from Assumption (WN) or the general theory of Dirichlet forms [9,10]. [ |

Conjecture 4.10  'We conjecture that the assumption supp(v) = F is equivalent to
Assumption (WN) for all finitely ramified fractals.

Conjecture 4.11  We conjecture that for any finitely ramified fractal rank Z(x) = 1
for v-almost all x.
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The next proposition follows easily from our definitions. It means, in particular,
that Conjecture 4.11 implies Conjecture 4.10.

Proposition 4.12  If supp(v) = F and rank Z(x) = 1 for v-almost all x, then As-
sumption (WN) holds.

5 Gradient in Harmonic Coordiantes

To define harmonic coordinates one needs to choose a complete, up to constant func-
tions, set of harmonic functions iy, . . ., h and define the coordinate map 1): F — R¥
by ¥ (x)=(h;(x), ..., hk(x)). A particular choice of harmonic coordinates is not im-
portant since they are equivalent up to a linear change of variables. Below we fix the
most standard coordinates which make the computations simpler.

Definition 5.1 Let Vo = {vi,...,v,} and let h; be the unique harmonic function
with boundary values h;(v;) = ¢; ;. Kigami’s harmonic coordinate map ¢: F — R"

is defined by ¥ (x)=(h;(x), . . . , hp(x)).

Lemma 5.2

(1)  Any set Y(F,) is contained in the convex hull of (V).

(ii) A set (F,) has at least two points if and only if 1)(V,,) has at least two points.

(iii) If on Fy = v(F) we define a cell structure that consists of all sets 1(F,,) that have
at least two points, then conditions (1)—(v) and (vii) of Definition 2.1 are satisfied.

(iv) If for all n and for any two distinct o, o’ € A, we have

WFa’) N w(Fa) = ?/J(Va/) N w(va)a

then Fyy = 1(F) is a finitely ramified fractal with the cell structure defined in (iii)
of this lemma.

Proof The maximum principle implies that ¢(F,) is contained in the convex hull
of 1(V,,), which implies the other statements. [ |

The next theorem easily follows from this lemma.

Theorem 5.3 1): F — Fy = 1(F) is a homeomorphism if and only if for any o € A
the map |y, is an injection, and y(F,» N E,) = Y(Fy/) N Y(E,) forall a,a’ € A.

Assumption (HC) In what follows we assume that ¢): F — Fy = (F) is a home-
omorphism.

Proposition 5.4  Assumption (HC) implies Assumption (WN).
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Proof It is easy to see that under Assumption (HC), any cell has positive measure,
and that any continuous function can be uniformly approximated by piecewise har-
monic functions. The latter is true because all harmonic functions are linear in har-
monic coordinates, and the maximum principle implies that ¢)(F,) is contained in
the convex hull of ¥(V,,). [ |

Notation 5.5 In what follows, for simplicity, we assume F = Fy and ¥(x) = x.
Also, we identify £(Vj) with R” in the natural way.

Theorem 5.6  Under Assumption (HC), we have that if f is the restriction to F of a
CY(R™) function, then f € Dom &, and such functions are dense in Dom €. Moreover,
if f € CHR™), then Grad f = V f in the sense of the Hilbert space L%. In particular we
have the Kigami formula

. =911, = [(VF. 29 dv

forany f € CHR™).

Proof In fact, we will prove this result for a somewhat larger space of functions.
We say that f is a piecewise C'-function if for some n and for all a € A, there is
fo € CY(R™) such that f,| . = f ‘ E In particular, a piecewise harmonic function is
piecewise C!.

If g is a linear function in R, then g|y, = Vg since we identify (V) with R” in
the natural way. Therefore for any piecewise harmonic function f we have Grad f =
V f in the sense of the Hilbert space L%.

Any C'-function is a piecewise C!-function, and any piecewise C'-function can
be approximated by piecewise harmonic (that is, piecewise linear) functions in C!
norm. Thus, to complete the proof we need an estimate of the energy of a function
in terms of its C! norm, provided by the next simple Lemma 5.7. ]

[k,

Lemma 5.7 If f is the restriction to F of a C'(R™) function, then
(5.1) Enlf, ) < VB fllzrum
and the same estimate holds for |E(f, f)|.

Proof By definition [19,22] of £, we have that

(52) Efi )= Y tuny(f) = F)°

x,y€eV,

<y D enmple =y = 1 ey (B). .
x,y€Vy
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Remark 5.8 Using Theorem 4.8 one can prove Theorem 5.6 using the general the-
ory of Dirichlet forms in [9, 10] (see Remark 3.7). However, we give a constructive
proof which also defines an approximating sequence to the gradient. A similar proof
can be made along the lines of the proof of Theorem 6.1 using approximations by
quantum graphs.

6 Energy Measure Laplacian in Harmonic Coordinates

The the energy measure Laplacian can be defined as follows. We say that f € Dom A,
if there exists a function A, f € L2 such that

(6.1) E(f.g) = — / A, fdv,
F

for any function ¢ € Dom € vanishing on the boundary V. By [23], the Laplacian
A, is a uniquely defined linear operator with Dom A, C Dom €. In fact Dom A,
is €-dense in Dom €, and is also dense in L,zj. The Laplacian A, is self-adjoint with,
say, Dirichlet or Neumann boundary conditions. Formula (6.1) is often called the
Gauss—Green formula. Extensive information on the relation of a Dirichlet form and
its generator, the Laplacian, can be found in [9, 10,22].

Theorem 6.1  Under Assumption (HC), we have that if f is the restriction to F of
a C*(R™) function, then f € Dom A, and such functions are E-dense in Dom A,,.
Moreover, v-almost everywhere A, f = Tr(ZD? f) where D* f is the matrix of the sec-
ond derivatives of f.

Proof We start with defining a different sequence of approximating energy forms.
In various situations these forms are associated with so-called quantum graphs, pho-
tonic crystals and cable systems. If f € C'(R™), then we define

EnQ(f,g) = Z Cn,x,yggy(fa f)

X,y €V
where .
d 2
s,‘gy(ﬂf):/o (af(x(l—t)ntty)) dt

is the integral of the square of the derivative

%f(x(l —1)+ty) =(Vf(x(1 —1t)+ty),y —x)

of f along the straight line segment connecting x and y. Thus Egy(f, f) is the usual
one dimensional energy of a function on a straight line segment. If f is linear, then
_ 2 . . . . . _
83%(](, f) = (f(x) — f(y))*. Therefore if f is piecewise harmonic, then EQ(f, f) =
E.(f, f) for all large enough n. Also £Y satisfies estimate (5.1). Therefore for any
C!'(R™)-function we have lim, .o, E2(f, f) = &(f, f) by Theorem 5.6.
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It is easy to see that if g is a C!(R™)-function vanishing on Vj and f is a C*(R™)-
function, then

1 dz
Q _
En (f’g) = Z Cn,xﬁy\/o g(x(l —t)+ ty)<ﬁf(x(1 —1t)+ ty)) dt

X,y€EVy

because, after integration by parts, all the boundary terms are canceled. Then if o €

‘AT’I)
dz
> ey gp fl =) +1y)
X,yEVqy
= > cuxy O DHf(x(1 = 1) +1y) (yi — %) (yj — X))
X,y€Va i,j=1

= Tr(M;DaMa (D f(xa) + Ru(x, .1, f,0,%4)) ) 5
where x, € V, and lim,_ o |[R.(x, y,t, f,a,x,)| = 0 uniformly in « € A,,
X, ¥,%,€ Fo,and t € [0, 1]. This completes the proof. Note also that one can obtain
an estimate similar to (5.1), as in Corollary 6.4. [ |

Corollary 6.2  Under Assumption (HC), A, f € L*°(F) for any f € C*(R™).
Corollary 6.3  Under Assumption (HC), if f(x) = ||x||, then A, f = 1.

Corollary 6.4 If f is the restriction to F of a C*(R™) function, and g is the restriction
to F of a C'(R™) function vanishing on the boundary, then

[€.(f,9)| < V(F)||ch(Rm)|

and the same estimate holds for |E(f, g)|.

chz (Rm)

Proof This estimate follows from the proof of Theorem 6.1. ]

Remark 6.5 One can also obtain Theorem 6.1 from Theorem 5.6 using the general
theory of Dirichlet forms in [9, 10] (see Remark 3.7). However we give a different
constructive proof using the approximation by quantum graphs (see [27,28]).

7 Topologically Self-Similar Finitely Ramified Fractals

Definition 7.1 A compact connected metric space F is called a finitely ramified self-
similar set if there are injective contraction maps ¢, ...,%,: F — F and a finite
set Vo C F such that F = U;il ;(F) and for any n and for any two distinct words
wyw' € W, = {1,...,m}" we have F, N F,, = V,, NV, where F,, = 9,,(F) and
V. = ¥, (Vo). Here for a finite word w = wy - - - w,, € W, we denote

1/Jw=1/}wl°"'01/1w,,~

The set V is called the vertex boundary of F.
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Proposition 7.2 A finitely ramified self-similar set is a finitely ramified fractal, pro-
vided V has at least two elements. We have A,, = W, forn > land A = {0} UW,,
where W, = U@1 W,.

Proof All items in Definition 2.1 are self-evident. Note that item (ii) holds because
each cell is connected and has at least two elements, and the intersection of two cells
is finite. Item (vii) holds because v); are contractions. [ |

Remark 7.3 The question of existence of a “self-similar” metric on self-similar sets
was recently studied in detail in [16]. According to [16], our class of self-similar
finitely ramified fractals defined above is the same as finitely ramified SSH-fractals
(with finite fractal boundary) of [16]. The definition of SSH-fractals in [16] requires
fulfillment of a certain set of axioms, one of which is that the maps ¢;, ..., ¢,: F —
F are continuous injections. It is then proved that F can be equipped with a self-
similar metric in such a way that the injective maps v; become contractions (as well
as local similitudes), but the topology does not change. We use a simplified approach
when we assume from the beginning that 1); are contractions.

In addition, it is proved in [16,17] that for every pcf self-similar set defined in [19,
22], there exists a self-similar metric. Therefore our definition of self-similar finitely
ramified fractals generalizes the definition of pcf self-similar sets. Our definition
allows infinitely many cells to meet at a junction point, which is referred to in [16] as
fractals with “infinite multiplicity”.

Note that, by definition, each %; maps V. into itself injectively.

Definition 7.4 A resistance form € on V,, in the sense of Section 3, is self-similar
with energy renormalization factors p = (py, . . ., pm) if for any f € Dom € we have

(7.1) Ef )= pi€fis fi)-
i=1

Here we use the notation f,, = f o ¢, forany w € W,.
The energy renormalization factors, or weights, p = (p1,. .., p,) are often also

called conductance scaling factors because of the relation of resistance forms and

electrical networks. They are reciprocals of the resistance scaling factors r; = i

]

Definition 7.5  For a set of energy renormalization factors p = (py, ..., p,) and
any resistance form &, on V), define the resistance form ¥,(&;) on V; by

U, (0)(f, ) = pi€o(gi &),
i=1

where g = flyv,) © wi_l. Then A(&y) is defined as the trace of ¥,(&y) on Vi

A(&Ey) = Tracey, ¥, (&o).
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The next two propositions are essentially proved in [22,23,33].
Proposition 7.6 If € is self-similar, then £y = A(&y).

Proposition 7.7 If € is such that €y = A(&y), then there is a self-similar resistance
form € such that £ is the trace of € on V.

Theorem 7.8  On any self-similar finitely ramified fractal with a self-similar resistance
form, all n-harmonic functions are continuous.

Proof By the self-similarity, it is enough to prove that the harmonic functions are
continuous. Since all ¢; are contractions, there is # such that any n-cell contains at
most one point of Vj. By the strong maximum principle there is € > 0 such that for

any w € W, and any harmonic function h we have

|maxh(x) — min h(x)| >(1-— 5)| max h(x) — mi h(x)| .
x€F x€F x€F, x€F,

Then for any positive integer 1 and any w € W,,,, we have

‘r?eagi h(x) — min h(x)’ >(1—¢) ’ig%h(x) — chrel%rj h(x)‘ . [ |

We conjecture that the results of [22, Section 3.3], and many other results of [22,
23] on the topology and analysis on pcf self-similar set hold for finitely ramified self-
similar sets as well. The next theorem is one of these results. Following [19,22], we
say that the self-similar resistance form is regular if p; > 1 for all 1.

Theorem 7.9  If a self-similar resistance form on a self-similar finitely ramified fractal
F is regular, then Q) = F.

Proof If diampg(-) denotes the diameter of a set in the effective resistance metric R,
and p,, = py, - - - Pw, for any finite word w = w, - - - w, € W, then

diamg(F) > p,, diamg(F,)
by the self-similarity of the resistance form and the definition of the metric R. ]

Definition 7.10  The group G is said to act on a finitely ramified fractal F if each
g € Gisahomeomorphism of F such that g(V,,) = V,, foralln > 0.

Proposition 7.11  Ifa group G acts on a finitely ramified fractal F, then for eachg € G
and each n-cell F,,, g(F,) is an n-cell.

Proof From the results of Section 2 we have that n-cells are connected, have pairwise

disjoint interiors, and their topological boundaries are contained in V,,, which by
definition is preserved by g. ]
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Theorem 7.12  Suppose a group G acts on a self-similar finitely ramified fractal F and

G restricted to V is the whole permutation group of V. Then there exists a G-invariant
self-similar resistance form € with equal energy renormalization weights and

(7.2) &(f, )= D (fx) = f()

x,y€Vy
Such a form is unique up to a constant.

Proof It is easy to see that, up to a constant, E, is the only G-invariant resistance

form on V. Let p; = (1,...,1). Then A(&g) is also G-invariant and so &, =
cTracey, ¥, (€o) for some c. Then the result holds for p = ¢p, by Proposition 7.6
and Proposition 7.7. ]

An n-cell is called a boundary cell if it intersects V. Otherwise it is called an inte-
rior cell. We say that F has connected interior if the set of interior 1-cells is connected,
any boundary 1-cell contains exactly one point of V, and the intersection of two dif-
ferent boundary 1-cells is contained in an interior 1-cell. The following theorem is
proved in [13] for the pcf case, but the proof applies for self-similar finitely ramified
fractals without any changes.

Theorem ([13]) Suppose that F has connected interior, and a group G acts on a self-
similar finitely ramified fractal F such that its action on V. is transitive. Then there exists
a G-invariant self-similar resistance form &.

Other results in [13] also apply for self-similar finitely ramified fractals.

8 Examples

Example 8.1  Unit interval: the usual unit interval is a finitely ramified fractal. In
this case V. can be any countable dense subset of [0,1] which includes {0,1}. The
usual energy form E(f, f) = fol |f/(£)|? dt satisfies all the assumptions of our paper.
The energy measure is the Lebesgue measure and the Laplacian is the usual second
derivative.

Example 8.2  Quantum graphs: a quantum graph, a collection of finite number of
points in R™ joined by weighted straight line segments (see [27, 28] and also the
proof of Theorem 6.1), is a finitely ramified fractal. The usual energy form on a
quantum graph, which is the sum of weighted standard one dimensional forms on
each segment, satisfies all the assumptions of our paper.

Example 8.3  Sierpitiski gasket: the Sierpinski gasket is a finitely ramified fractal.
The standard energy form [18,19,22] on the Sierpinski gasket satisfies all the assump-
tions of our paper. The Sierpinski gasket in harmonic coordiantes (see Figure 1) was
first considered in [20], where the statement of Theorem 5.6 was proved in this case.
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Figure I: Sierpinski gasket in the standard harmonic coordinates.

The statement of Theorem 6.1 was announced in [42] without a proof. In the case of
the standard energy form on the Sierpiniski gasket Conjecture 4.11 was proved in [29].
The fact that the energy measure is singular with respect to any product (Bernoulli)
measure was proved in [8, 14,15, 29].

Figure 2: The residue set of the Apollonian packing.

Example 8.4  The residue set of the Apollonian packing: it was proved in [42] that
the residue set of the Apollonian packing (see Figure 2) is the Sierpinski gasket in
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harmonic coordinates defined by a non self-similar resistance form. This resistance
form satisfies all the assumptions of our paper, including Assumption (HC).

Example 8.5 Random Sierpiriski gaskets: in [35] a family of random Sierpinski gas-
kets was described using harmonic coordinates. Naturally, the results of this paper
apply to these random gaskets, and Assumption (HC) is satisfied due to the way
in which these gaskets are constructed. Also, many examples of random fractals in
[11,12] satisfy Assumption (HC), although the harmonic coordinates were not con-
sidered explicitly.

(-7,0) (7,0)

Figure 3: The hexagasket in harmonic coordinates and its first approximation.

Example 8.6  Hexagasket: according to [41], the hexagasket satisfies Assumption
(WN) but not Assumption (HC). However, by small perturbations of the harmonic
coordinates one can construct two functions of finite energy which map the hexagas-
ket into R? homeomorphically. Then the conclusion of Theorems 3.6 and 5.6 will
hold because of the general theory of Dirichlet forms in [9, 10] (see Remark 3.7).
However, Theorem 6.1 will not hold unless these coordinates are in the domain of
the energy Laplacian, which is difficult to verify.

Example 8.7  Quotients of pcf fractals: if we consider a quotient of a pcf fractal de-
fined by its space of harmonic functions, and conditions of Theorem 5.3 are satis-
fied (see also Theorem 4.4), then we have a finitely ramified fractal which satisfies
Assumption (HC) by definition. In the case of the hexagasket this is illustrated in
Figure 3. Note that this set is not self-affine. In harmonic coordinates the hexagas-
ket is represented as a union of a Cantor set and a disjoint union of countably many
closed straight line intervals. One can show that the energy measure of this Cantor
set is zero, and in fact the energy measure is proportional to the Lebesgue measure
on each segment. Note that in the limit no two intervals meet and so it is not a quan-
tum graph, but can be called a generalized quantum graph. In this case a three point

https://doi.org/10.4153/CJM-2008-022-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-022-3

476 A. Teplyaev

boundary (see [39]) is chosen so that the resulting fractal can be embedded in R
For a different choice of the boundary the local structure of the fractal in harmonic
coordinates is the same.

Example 8.8  Vicsek set: a Vicsek set (see, for instance, [42]) is a finitely ramified
fractal which does not satisfy the (WN) and (HC) assumptions. In harmonic coor-
dinates it is represented by four straight line segments which are joined at a point.
Therefore in our construction Fy is a quantum graph with five vertices and four
edges, which is not homeomorphic to the Vicsek set.

Example 8.9  Post-critically infinite Sierpiiski gasket: the post-critically infinite Sier-
pinski gasket is a finitely ramified fractal which has many properties of the Sierpiniski
gasket, but is not a pcf self-similar set. More exactly, its post-critical set defined in
[19,23] is countably infinite, and each vertex v € V, is an intersection of countably
many cells with pairwise disjoint interior. This fractal satisfies Definition 7.1 and
can be constructed as a self-affine fractal in IR? using nine contractions, see Figure 4.
In Figure 4 we also sketch the first approximation to it in harmonic coordiantes. In
particular, Figure 4 shows the values of a symmetric and a skew-symmetric harmonic
functions. By Theorem 7.12 one can easily construct a resistance form such that for
any n the resistances are equal to (50/53)" in each triangle with vertices in V,,. The
energy renormalization factor is 53/50 = p; = - -+ = po. The fact that this factor is
larger than one is significant because it implies that the harmonic structure is regular
by Theorem 7.9, that is, {2 = F. By Theorem 5.3, this resistance form satisfies all the
assumptions, including Assumption (HC).

Example 8.10 In the end we describe two more examples of post-critically infinite
finitely ramified fractals, which are shown in Figures 5 and 6. In these examples for
any n there are n-cells which are joined in two points. Both fractals satisfy Defini-
tion 7.1 and can be constructed as a self-affine fractal in R? using six contractions. In
Figures 5 and 6 we also sketch the first approximations to these fractals in harmonic
coordiantes. In particular, one can see the values of symmetric and skew-symmetric
harmonic functions on each fractal. By Theorem 7.12 one can easily construct re-
sistance forms such that Ej is given by (7.2). By Theorem 5.3 these resistance forms
satisfy Assumption (HC). In the case of the fractal in Figure 5, an elementary calcula-
tion shows that the common energy renormalization factor in (7.1) is 5/4, and so the
resistance form is regular. In the case of the fractal in Figure 6, the calculation shows
that the common energy renormalization factor in (7.1) is 4/5, and so the resistance
form is non regular.

Remark 8.11  If the assumptions of Theorem 7.12 are satisfied and a Laplacian is
defined with respect to the product (Bernoulli) measure that gives equal weight to all
n-cells, then one can compute the spectrum of this Laplacian by the so called spectral
decimation method of [1,32,40]. In particular, this can be done for the fractals shown
in Figures 4, 5 and 6. Note, however, that the results of Section 6 are not applicable
to such a Laplacian.
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s R\

(-106,0) (106,0)

Figure 4: The post-critically infinite Sierpinski gasket in harmonic coordinates and its first
approximation.
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(-5,0) (5,0)

Figure 5: A regular post-critically infinite fractal and its first approximation.

(-4,0) (4,0)

Figure 6: A non regular post-critically infinite fractal and its first approximation.
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