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Abstract
This paper introduces a class of automata and associated languages, suitable to model a computational
paradigm of fuzzy systems, in which both vagueness and simultaneity are taken as first-class citizens. This
requires a weighted semantics for transitions and a precise notion of a synchronous product to enforce the
simultaneous occurrence of actions. The usual relationships between automata and languages are revisited
in this setting, including a specific Kleene theorem.
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1. Introduction
The notion of an automaton (Kleene 1956), as the de facto mathematical abstraction of a com-
putational process over a discrete state space, is constantly revisited to capture different sorts of
computational behaviours in the most varied contexts, either prescribed in a program or discov-
ered in Nature. Already in 1997, Milner (2006) emphasised that from being a prescription for how
to do something – in Turing’s terms a ‘list of instructions’, software becomes much more akin to a
description of behaviour, not only programmed on a computer, but occurring by hap or design inside
or outside it.Over time different kinds of automata were proposed generate (or recognise, depend-
ing on the perspective) such behaviours (or the languages that express them). Regular expressions,
as a basic notation to express languages and behaviours, were first axiomatised by Kozen (1990) as
Kleene algebras, which are basically partially ordered, semirings endowed with a closure operator.
Several interpretations and variants of this structure are documented in the literature (Hoare et al.
2011; Jipsen and Andrew Moshier 2016; Kozen and Mamouras; Kozen 1997; McIver et al. 2006,
2013; Qiao et al. 2008; Thiemann 2016).

This paper was born out of a challenge: having previously worked with the Fuzzy Arden
Syntax (FAS) (Gomes et al. 2021), a fuzzy, imperative language used for medical diagnosis and
prescription of medical procedures, our aim was to introduce a specific kind of automata, and
corresponding languages, are able to express the behaviour of the underlying fuzzy systems.

Two specific ingredients have to be taken into consideration. The first is vagueness, or
uncertainty, a notion that underlies the interpretation of both variables and predicates in FAS
programs. The second is simultaneity, i.e. a form of parallel execution which is not captured by
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non-deterministic interleaving of elementary steps, as in typical models of concurrency. Consider,
for illustration purposes, the following program.

Example 1.1.
if (Temperature is in Fever_condition)
then medicine:=5 else medicine:=0

The program adjusts the dose of medicine to be administrated to a patient depending on her
temperature. The variable Fever_condition is a function assigning, to each real value of the
temperature measured, a value (e.g. within the range [0, 1]) to record how close such tem-
perature is of a ‘fever condition’. In a scenario where the predicate Temperature is in
Fever_condition and its negation have a value greater than 0, let us say, 0.4 and 0.6, respec-
tively, the program executes both the then and the else blocks, weighted by the value associated
to each of them. In practice, this results in a multiplication of the values taken, in each case, by
variable medicine. Intuitively, the values 0.4 and 0.6 mean that Temperature has probably not
reached the limit of a fever condition but is close to it.

Summing up, the intended semantics of a conditional statement in FAS does not reduce to a
non-deterministic, or even to a probabilistic choice (McIver et al. 2013). Instead, it corresponds
to a sort of parallel execution enforcing all branches to run in parallel, with (possibly) different
weights associated to the evaluation of each condition. Therefore, as this small program illustrates,
vagueness and simultaneity are the two ingredients our framework needs to deal with.

Vagueness can be captured by a fuzzy finite-state automata (FFA), a structure introduced
in the 1960’s in Wee and Fu (1969) to give a formal semantics to uncertainty and vagueness
inherent to several computational systems. Different variants of this idea, e.g. incorporat-
ing fuzziness into either states or transitions, or both, are well documented in the litera-
ture (Doostfatemeh and Kremer 2005; Li and Pedrycz 2005; Liu et al. 2021; Mateescu et al. 1995).
The corresponding fuzzy languages (Lee and Zadeh 1969; Zadeh 1996) are recognised by this
class of automata only up to a certain membership degree. Applications are transversal to several
domains as reported in Lin and Ying (2002), Mordeson and Malik (2002), Pedrycz and Gacek
(2001), Ying (2002).

On the other hand, simultaneitywas suitably formalised in whatMilner called the ‘synchronous
version of CCS’ – the SCCS calculus (Milner 1983), a variant of CCS (Milner 1980) where arbi-
trary actions are allowed to execute synchronously. This very same idea of synchronous evolution
appears in the work of C. Priscariu on synchronous Kleene algebra (Prisacariu 2010). Models for
such structures are given in terms of sets of synchronous strings and finite automata accepting
them. These structures found application, for instance, in variants of deontic logic to formalise
contract languages (Segerberg 1982; vonWright 1968) and of Hoare logic to reason about parallel
synchronous programs with shared variables (Prisacariu 2010).

The aim of this paper is to formalise the behaviour of this class of systems. H -automata are
introduced as a variant of fuzzy transition automata in the spirit of reference (Mateescu et al.
1995), where transitions take ‘truth’ values in a complete Heyting algebra H , and a suitable
synchronous product construction is defined. The paper proceeds by generalising synchronous
sets (Prisacariu 2010) into a notion of a H -synchronous language, defined as a word valuation
function over H . Some preliminary results in this direction appeared in the authors’ conference
paper (Gomes et al. 2020). However, the formal framework was now completely redefined in a
very general sense – note, for example, that the need for explicitly introducing H -valued guards
in the language, as suggested in that preliminary work, becomes redundant, i.e. implicit in the
relevant mathematical strucutre and, thus, in the proposed language semantics.

As a main result it is shown that, for any complete Heyting algebra H ,
H -synchronous languages equipped with suitable language operators, as proposed here,
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defines a synchronous Kleene algebra. Moreover, its actions can generate a H -automaton accept-
ing precisely the H -synchronous language that constitutes its interpretation. As in the classical,
well-known case, a regular expression can be obtained from a H -automaton by a standard state
elimination procedure (Hopcroft et al. 2003). The procedure results in a H -automaton with a
single transition from the initial to the final state, labelled by an action α whose interpretation is
precisely the language recognised by that H -automaton.

This paper is organised as follows. The remaining of this section sums up related work and
some preliminaries to the paper’s contribution. Section 2 introduces H -synchronous languages
and defines a number of operators over them, proving that, in this wayH -synchronous languages
forms a synchronous Kleene algebra. Section 3 studies H -automata, including their synchronous
product. A few examples of FAS programs involving conditionals are interpreted in this frame-
work. Then, a Kleene theorem for H -automata and H -synchronous languages is proved in
Section 4. Finally, Section 5 concludes and enumerates some topics for future research.

1.1 Related work
The construction of a finite fuzzy automata with membership degrees taken in a lattice-ordered
monoid L is studied in Li and Pedrycz (2005) in a context analogous to the one considered here,
based on the concept ofL -fuzzy regular expression. Those are defined as regular expressions from
an alphabet X with a scalar λ ∈L multiplication, which resorts to the monoid multiplication. It
is precisely this scalar that attributes the weight to a transition in the automaton. In our approach,
on the other hand, automata are built using standard regular expressions instead of fuzzy regular
expressions. Regular expressions are then interpreted as some sort of weighted languages (i.e.
functions with values on a complete Heyting algebra) accepted by an automaton with weighted
transitions.

Most of the results presented in the context of fuzzy languages are constructed using either the
real interval [0, 1] or a generic residuated lattice to model the (possible) many valued membership
values. Such is the case of reference (Mateescu et al. 1995). However, one of the main results of this
paper, Theorem 1, relies on properties provided by a specific characterisation of the underlying lat-
tice structure. In particular, the operator ‘;’ has to be idempotent and commutative. The definition
a H -automaton proposed here differs from the one in Mateescu et al. (1995) with respect to the
underlying semantic structure, which is assumed to be as a complete Heyting algebra.

Probabilistic automata (Rabin 1963), another approach to handle uncertainty, weigh transi-
tions by elements of a probability distribution. An equivalent to Kleene’s theorem for these family
of automata is presented by Bollig et al. (2012), considering (probabilistic) strings with probabilis-
tic choice, guarded choice, concatenation and the star operator. Extensive surveys on this class
of automata are documented in Vidal et al. (2005a,b). In the approach proposed here, however,
uncertainty can be measured in an arbitrary, either discrete or continuous, domain, depending on
the relevant application scenario. This is captured by a complete Heyting algebra introduced as a
parameter in the model.

Figure 1 summarises some systems from the literature, highlighting the difference of the
approach taken in this paper.

Moreover, as we summarised above, the notion of weight can take different meanings. Figure 2
summarises some of these different approaches.

1.2 Preliminaries
The notion of a synchronous Kleene algebra (SKA) plays in the automata construction introduced
by Prisacariu (2010) a role similar to the one played by Kleene algebras in the classical case (Broda
et al. 2013). Actually, SKA:
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Figure 1. Simple representation of different classes of automata: finite state automata, their version with weights intro-
duced in this paper (H -automata) and the synchronous product (non-weighted Prisacariu 2010 and weighted).

Figure 2. Taxonomy of related work. Values a, a1, . . . an represent probabilities or weights.

• extends Kleene algebra with a synchronous operator to model synchronous execution of
actions;

• has an interpretation over synchronous languages, the equivalent of regular languages to
include actions corresponding to the synchronous execution of other actions;

• induce the construction of a class of finite automata, which accept the same languages that
defines the interpretation of the SKA actions.

The relevant definitions are recalled below.
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Definition 1. (Kleene algebra). A Kleene algebra (A,+, ·,∗ , 0, 1) is an idempotent semiring with
a unary operator ‘∗’ satisfying axioms (1)–(13) in Table 1. Partial order ≤ is induced by ‘+’ as
α ≤ β⇔ α + β = β.

Well-known examples of Kleene algebras include the algebra of binary relations over a set, the
set of all languages over an alphabet, and the (min,+)-algebra, also known as the tropical algebra,
defined over the reals with an additional+∞ constant, as

R= (R+0 ∪+∞,min,+,∗ ,+∞, 0)
Extending this definition with a multiplication ‘×’ to capture the synchronous execution of
actions1 leads to the notion of a synchronous Kleene algebra (SKA), introduced in Prisacariu
(2010).

Definition 2. (SKA). Let B be a set of labels. A SKA is a Kleene algebra extended with an operator
‘×’ i.e. a tuple

S= (A, B,+, ·,×,∗ , 0, 1)
where B⊂A, satisfying the axioms in Table 1.

α + (β + γ ) = (α+ β)+ γ (1)
α + β = β + α (2)
α + α = α (3)
α + 0 = 0+ α = α (4)

α · (β · γ ) = (α · β) · γ (5)
α · 1 = 1 · α= α (6)

α · (β + γ ) = (α · β)+ (α · γ ) (7)
(α+ β) · γ = (α · γ )+ (β · γ ) (8)

α · 0 = 0 · α= 0 (9)
1+ (α · α∗) = α∗ (10)
1+ (α∗ · α) = α∗ (11)

α · γ ≤ γ ⇒ α∗ · γ ≤ γ (12)
γ · α ≤ γ ⇒ γ · α∗ ≤ γ (13)

α× (β × γ ) = (α× β)× γ (14)
α× β = β × α (15)
α× 1 = 1× α = α (16)
α× 0 = 0× α = 0 (17)
a× a = a , a ∈ B (18)

α× (β + γ ) = (α× β)+ (α× γ ) (19)
(α + β)× γ = (α× γ )+ (β × γ ) (20)

(α× · α)× (β× · β) = (α× × β×) · (α× β) , where (21)
α×, β× ∈ B×, with B×the× -closure of B.

Table 1. Axiomatisation of a SKA (based on Prisacariu 2010)

Following a common practice, we write ab, rather than a · b, for a, b ∈ B. Note that axiom (18)
applies only to elements of B, instead of any arbitrary action A. This comes from the fact that
such a property, being intuitive for atomic actions, is not so, or even desirable, for an arbitrary
action in A. Consider, for example, action (a+ b)× (a+ b), whose execution may result in a× b
by choosing a from the first entity and b from the second. However, by the axiomatisation above,
we have

(a+ b)× (a+ b)

= { (19)}
(a+ b)× a+ (a+ b)× b

= { (20)}
(a× a)+ (b× a)+ (a× b)+ (b× b)

https://doi.org/10.1017/S0960129522000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000421


Mathematical Structures in Computer Science 1239

= { (15)}
(a× a)+ (a× b)+ (a× b)+ (b× b)

= { (3) and (18)}
a+ (a× b)+ b

Moreover, axiom (21) provides an exchange like rule to describe interaction between elements
in B× and A. The restriction to actions in B× relates to the synchrony model, describing the
parallelism of sequences of actions by concatenating small synchronous steps.

We will call by synchronous regular expressions the terms of a SKAs, i.e., the terms given the
grammar

α ::= a | 0 | 1 | α + α | α · α | α× α | α∗
where a is a atomic action, constituting the set B. Actions α×, β× are built only with operator
‘×’ from B, constituting the set B× (e.g. a, a× b ∈ B× but a+ b, a× b+ c, 0, 1 /∈ B×). The set of
synchronous regular expressions will be denoted by Sreg.

If synchronous execution of actions is captured as above, vagueness, on the other hand, requires
the consideration of weighted transitions forming a complete Heyting algebra.

Definition 3. (Complete Heyting algebra). A Heyting algebra is a bounded distributive lattice

H = (H,∨,∧, 0, 1,→ )

with join ‘∨’ and meet ‘∧’ operators, least ‘0’ and greatest ‘1’ elements, equipped with a binary
operator ‘→’ that is right adjoint to ‘∧’. Some axioms are listed in Table 2.

a∧ b = b∧ a (22)
a∧ a = a (23)

a∨ (a∧ b) = a (24)
a∧ b ≤ c⇔ b ≤ a→ c (25)

Table 2. Part of the axiomatisation of a Heyting algebra

H is a complete Heyting algebra (CHA) iff it is complete as a lattice, therefore entailing the
existence of arbitrary suprema. The usual precedence of the operators, with ‘∗’ having the highest
precedence, then ‘;’, ‘×’, and finally ‘+’, will be assumed.

Let us briefly revisit some properties of this structure that will be later used in proofs.
Completeness ensures that all suprema exist when characterising operators ‘·’, ‘×’ and ‘∗’ on
H -synchronous languages as (possible) infinite sums. Let us denote by

∨
,
∧

the distributed ver-
sions of the associative operators ‘∨’ and ‘∧’, respectively, and by I a (possible infinite) index set.
Axiom (25) ensures that every suprema distributes, on both sides, over arbitrary infima, i.e.

a∧ (
∨
i∈I

ai) =
∨
i∈I

(a∧ ai) (26)

(
∨
i∈I

ai)∧ a =
∨
i∈I

(ai ∧ a) (27)

Instances of a complete Heyting algebra are enumerated in the following examples.
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Example 1.2. (2- the Boolean algebra). A first example is the well-known binary structure

2= ({,⊥},∨,∧,⊥,,→ )

with the standard interpretation of Boolean connectives.

Example 1.3. A second example is the three-valued Gödel chain, which introduces an explicit
denotation u for ‘unknown’ (or ‘undefined’). 3= ({, u,⊥},∨,∧,⊥,,→ ) where

Example 1.4. (Gödel algebra). Another example is given by the standard Gödel algebra
G= ([0, 1], max, min, 0, 1,→ ) where

x→ y=
{
1, if x≤ y
y, if y< x

2. H -Synchronous Languages
In order to capture both synchronous execution and vagueness in transitions, their interpre-
tation is made over synchronous languages with embedded weights. The latter are taken, as
explained above, from a complete Heyting algebra H . In a sense, this generalises the work
of Prisacariu (2010) which considers non-weighted, but synchronous languages. A number of
operators over these languages, referred to as H -synchronous languages, are introduced below,
structuring this domain as a SKA, parametric on the set of weights.

Definition 4. (H -synchronous languages). Let B be a set of symbols and H a complete Heyting
algebra over a carrier H. H -synchronous actions are pairs associating a non-empty set of sym-
bols in B to a weight in H. Formally, � =Pne(B)×H \ {0}, where Pne(X) denotes the non-empty
powerset of X. For each action, functions b :� −→Pne(B) and h :� −→H \ {0}, denote the cor-
responding projections. H -synchronous words are elements of �∗. H -synchronous languages are
sets of such words, i.e. elements of P(�∗).

The weight of a word is computed by

hs :�∗ −→H, hs(u)=
∧
x←u

h(x)

Clearly, hs(ε)= 1, for ε the empty string.
As an illustration, consider a finite set of labels B= {a, b} and take the Gödel algebra G, from

Example 1.4, as a domain for weights. Thus, representing a sequence by the juxtaposition of its
elements, hs(({a}, 0.6)({a, b}, 0.5))= 0.6∧ 0.5= 0.5. Thus, one may turn a language L ∈P(�∗)
into a function of synchronous words to weights through a translation function

t :P(�∗)−→HP(B)∗

such that

t(∅) = ()
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t(L ) = (
π∗1 (w) �→ hs(w)

)
w∈L

Of course, t is not injective, thus two characterisations of a language, i.e. as an element of P(�∗)
or of HP(B)∗ , are not isomorphic. Function hs is particularly relevant to state, as we will do later,
that an automata recognises a word w if it does so with a weight equal or bigger than hs(w).

The standard operators from regular language theory can be defined over
H -synchronous languages, as follows.

Definition 5. The following operations are defined over H -synchronous languages L , L1, L2, for
any complete Heyting algebra H :

- ∅=∅ (the empty language)
- 1= {ε} (the language containing only the empty string)
- L1 +L2 =L1 ∪L2
- L1 ·L2 = {uv| u ∈L1, v ∈L2}
- L1 ×L2 = {u× v| u ∈L1, v ∈L2}, where u× v is defined by

– u× ε= u= ε× u
– u× v= (b(x)∪ b(y), h(x)∧ h(y))(u′ × v′) where u= xu′ and v= yv′.

- L ∗ is the least fixed point of equation X= 1+L · X.

With respect to the product of languages, note that {a, b} ∈L1 ×L2 may correspond to any of
the following situations: {a} ∈L1 and {b} ∈L2, {b} ∈L1 and {a} ∈L2, or, finally, {a, b} belongs
just to one of the languages, and ε to the other. Note also that if a ∈L1 and bc ∈L2, then {a, b}c ∈
L1 ×L2.

Definition 6. (Atomic languages). Let B be a set of symbols andH a complete Heyting algebra over
a carrier H and � =Pne(B)×H \ {0} a set of synchronous actions. The set of atomic actions of �
is given by �0 = {a ∈� | |b(a)| = 1}. For any atomic action a ∈�0, the language La = {a} is called
atomic language. We denote by B� the class of atomic languages of � and by B×� the×-closure of
B. We use also L� to denote the class of the languages of �.

Theorem 1. Let B be a set of symbols and H a complete Heyting algebra over a carrier H and
� =Pne(B)×H \ {0} a set of synchronous actions. The structure

L= (L� ,B� ,+, ·,×,∗ ,∅, 1)
defines a SKA.

Proof. We detail the verification of axioms (1), (13), (20) and (18) making repeated use of
Definition 5. The remaining cases follow a similar argument. For axiom (1) observe:

w ∈L1 · (L2 ·L3)
⇔ w= u · v such that u ∈L1 and v ∈L2 ·L3

⇔ w= u · v such that u ∈L1 and v= s · t such that s ∈L2 and t ∈L3

⇔ w= u · s · t such that u · s ∈L1 ·L2 and t ∈L3

⇔ w ∈ (L1 ·L2) ·L3

Regarding axiom (18), consider the atomic language La. We have
w ∈La ×La

⇔ w= a× a such that a ∈La
⇔ w= (b(a)∪ b(a), h(a)∧ h(a)) such that a ∈La

https://doi.org/10.1017/S0960129522000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000421


1242 L. Gomes et al.

⇔ w= a such that a ∈La
⇔ w ∈La

For axiom (20),

w ∈ (L1 +L2)×L3

⇔ u ∈ (L1 +L2) and v ∈L3 for some u and v such that w= u× v
⇔ u ∈ (L1 ∪L2) and v ∈L3 for some u and v such that w= u× v
⇔ u ∈L1 or u ∈L2, and v ∈L3, for some u and v such that w= u× v
⇔ w ∈L1 ×L3 or w ∈L1 ×L3

⇔ w ∈ (L1 ×L3)+ (L2 ×L3)

For axiom (21), consider the �-languages L ×1 , L ×2 ∈B×. Then,

w ∈ (L ×1 ·L1)× (L ×2 ·L2)
⇔ w= (x · u)× (y · v) such that x ∈L ×1 , u ∈L1, y ∈L ×2 , v ∈L2

⇔ (b(x)∪ b(y), h(x)∧ h(y)) · (u× v) such that x ∈L ×1 , u ∈L1, y ∈L ×2 , v ∈L2

⇔ (x× y) · (u× v) such that (x× y) ∈L ×1 ×L ×2 , u× v ∈L2 ×L2

⇔ w ∈ (L ×1 ×L ×2 ) · (L1 ×L2)

Similarly to the homomorphism used to interpret Sreg as synchronous sets (Prisacariu 2010),
we define a map to interpret actions of α ∈ Sreg as H -synchronous languages.

Definition 7. (Sreg-interpretation). The function I : Sreg→P(�∗), called a Sreg-interpretation,
is defined as follows:

I(a)=La, a ∈ B×H
I(0)=∅

I(1)= χ

I(α + β)= I(α)∪ I(β)
I(α · β)= I(α) · I(β)
I(α× β)= I(α)× I(β)
I(α∗)= I(α)∗

3. H -Automata
This section presents the automata construction for H -synchronous languages. First we define
a class of automata on top of a complete Heyting algebra H , referred as H -automata. An
appropriate notion of a synchronous product for these automata is then presented.

Definition 8. (H -Automata). Let H be a complete Heyting algebra and B a set of symbols. A
H -automaton is a tuple

M = (S,�, s0, F, δ)

where:

• S is a finite set of states;
• � =Pne(B)×H is the input alphabet;
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• s0 ∈ S is the initial state;
• F⊆ S is the set of final states;
• δ : S×� × S→H is the transition function.

Intuitively, δ(s1, x, s2), for x ∈�, can be interpreted as the truth degree of ‘input x causing a tran-
sition from s1 to s2’. In a graphical representation of a H -automaton, the weight of a transition
from s1 to s2 caused by an action a is represented explicitly as follows:

s1 s2
(a,δ(s1, a, s2))

The transition function can be inductively extended to sequences �∗ by defining
δ∗ : S×�∗ × S→H such that, for any s1, s2 ∈ S,

δ∗(s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

and, for any s1, s2 ∈ S,w ∈�∗ and x ∈�,

δ∗(s1, xw, s2)=
∨
s′∈S

(δ(s1, x, s′)∧ δ∗(s′,w, s2))

Clearly, for any states s1, s2 ∈ X and any word w ∈�∗, δ∗(s1,w, s2) can be interpreted as the truth
degree of ‘word w causes a transition from s1 to s2’.

A recognising function for a particular automatonM succeeds in recognising a word if, for each
label x ∈� appearing in the word, the weight associated to the corresponding transition δ(s1, x, s2)
is such that h(x)≤ δ(s1, x, s2). Formally,

Definition 9. (Recognising function). Let H be a complete Heyting algebra and
M = (S,�, s0, F, δ) a H -automata. The recognising function for M , ρM : S×�∗ × S→H, is
recursively defined by

ρM (s1, xw, s2)=
{

δ(s1, x, s′)∧ ρM (s′,w, s2) if h(x)≤ δ(s1, x, s′)
0 otherwise

and

ρM (s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

Definition 10. Let H be a complete Heyting algebra, M = (S,�, s0, F, δ) be an H -automaton,
and ρM a recognising function for M . The H -synchronous language recognised by M is defined
as follows:

L (M )= {w ∈�∗|ρM (s0,w, s)> 0 for some s ∈ F}

Theorem 2. Let H be a complete Heyting algebra, M = (S,�, s0, F, δ) be an H -automaton, and
ρM a recognising function for M and w ∈�∗. Then,

w ∈L (M ) iff ρM (s0,w, s)≥ hs(w)

Proof. First observe that from the definitions of ρM and hs, for any s, s′ ∈ S and w ∈�∗, either
ρM (s,w, s′)= 0 or ρM (s,w, s′)≥ hs(w). For the converse direction, since ρM (s,w, s′)≥ hs(w), we
have ρM (s,w, s′)≥ 0 and hence w ∈L (M ).
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Figure 3. Conditional in FAS, illustrated by a liquid flowing through a ‘Y-shaped’ pipe.

We end this section defining and exemplifying a notion of synchronous product of
H -automata, which corresponds to the automata counterpart to synchronous composition in
Sreg. It is based on the parallel product of labelled transition systems with shared actions.
Formally,

Definition 11. (Synchronous product ofH -automata). LetMα = (Sα ,�α , sα0 , Fα , δα) andMβ =
(Sβ ,�β , sβ0 , Fβ , δβ) be two H -automata. Let �α×β =�α ∪�β ∪ (�α ×�β), with

�α ×�β = {a× b | a ∈�α , b ∈�β},
The synchronous product of Mα and Mβ is the H -automaton

Mα×β = (Sα × Sβ ,�α×β , (sα0 , s
β
0 ), F

α × Fβ , δα×β)

whose transition function

δα×β : (Sα × Sβ)×�α×β × (Sα × Sβ)→H

is defined by, for any p ∈�α×β ,

δα×β((sα , sβ), p, (tα , tβ))=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δα(sα , p, tα) if p ∈�α \�β and sβ = tβ

δβ(sβ , p, tβ) if p ∈�β \�α and sα = tα∨
a,b

p=a×b
(δα(sα , a, tα)∧ δβ(sβ , b, tβ)) otherwise

As discussed in the Introduction, H -automata provide a suitable semantic structure for FAS
programs. Let us illustrate such a potential through the discussion of two concrete examples.

Example 3.1. Our fist example, already mentioned in the introduction as Example 1.1, is that
of a conditional in FAS which involves the simultaneous execution of its branches. An intuitive
metaphor to this behaviour is represented as a pipe as depicted in Figure 3. The liquid, repre-
sented by blue arrows, reaches a point where it flows through both channels in parallel (capturing
simultaneity), with different volumes going through each channel, represented by the different
thicknesses of arrows (representing different truth degrees modelling vagueness).

The execution of this program, which involves the multiplication of the values assigned to
variable medicine in different branches, may lead to two distinct outcomes:

(A) The branches remain separated, and further instructions are executed in parallel. The
information from different branches is taken into account by the user;

(B) The information is combined, which results in a single (crisp) output.
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Option (B) enforce the consolidation of multiple variable values, which is achieved through
instruction aggregate, as in the program:

if (Temperature is in Fever_condition)
then medicine:=5 else medicine:=0
aggregate;

This behaviour can be modelled by the synchronous product of the automata, assuming, for
illustration purposes, that the weight of each branch are 0.58 and 0.50, respectively. We also
assume that weights are taken from a Gödel algebra (Example 1.4).

s1start s2
(medicine:=5, 0.58) s3start s4

(medicine:=0, 0.50)

Since we are assuming that the truth degrees associated to the evaluation of both branches
are strictly positive, actions medicine:=5 and medicine:=0 run in parallel. Formally, the two
automata are combined through ‘×’ giving rise to

s1start

s2

(medicine:=5,0.58)

×

s3start

s4

(medicine:=0,0.5)
−→

s1,s3start

s2,s4

x1 ,x2

where x1 =
({medicine:=5, medicine:=0}, δ((s1, s3), {medicine:=0, medicine:=5} and x2 =

(s2, s4)
The truth degree associated to aggregated variable medicine, after execution depends

on the truth degrees of both branches of the conditional, which corresponds to the
second projection of the actions (medicine:=5, δmedicine:=5(s1, medicine:=5, s2)) and
(medicine:=5, δmedicine:=0(s3, medicine:=0, s4)). Choosing the minimum function as the
aggregation operator, leads to the following computation:

δ
(
(s1, s3), {medicine:=5, medicine:=0}, (s2, s4)

)
= (

δmedicine:=5(s1, medicine:=5, s2)∧ δmedicine:=0(s3, medicine:=0, s4)
)

= min{0.58, 0.5}
= 0.5

Example 3.2. As a second example consider an excerpt of a FAS program representing a control
system intended to adjust the peak inspiratory pressure (PIP) of a patient depending on her levels
of O2 and CO2, after a cardiac surgery de Bruin et al. (2018) .

if (O2 is in O2_normal) and (CO2 is in CO2_very_high)
then PIP:=5
elseif (O2 is in O2_ low) and (CO2 is in CO2_very_high)
then PIP:=2
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Figure 4. The synchronous product interpreting the
FAS conditional.

if (O2 is in O2_ low) and (CO2 is in CO2_high)
then PIP:=0
aggregate;

The set of labels in this example is B= {PIP:=5, PIP:=2, PIP:=0}. Suppose that the truth
degrees of the predicates in each of the branches of the conditional are 0.4, 0.2 and 0.6, respec-
tively, and again assume the Gödel algebra as the domain for weights. The three branches of the
conditional are modelled by the automata below

s1start s2
(PIP:=5, 0.4) s3start s4

(PIP:=2, 0.2)

s5start s6
(PIP:=0, 0.6)

Again, the values of the three predicates are strictly positive and thus the three branches of
the conditional are executed in parallel, corresponding to action PIP:=5× PIP:=2× PIP:=0.
Operator ‘×’ being associative, such behaviour is modelled by the synchronous product of the
three automata above, yielding

⎛
⎝

s1start

s2

(PIP:=5,0.4)

×

s3start

s4

(PIP:=2,0.2)

⎞
⎠×

s5start

s6

(PIP:=0,0.6)

An intermediate step is represented in Figure 4, with s′ = (s1, s3), s′′ = (s2, s4), and (x1, x2)
abbreviating

({PIP:=5, PIP:=2}, δPIP:=5×PIP:=5((s1, s3), {PIP:=5, PIP:=2}, (s2, s4)
))
. Similarly,

(x3, x4) abbreviates
({PIP:=5, PIP:=2, PIP:=0}, δPIP:=5×PIP:=2×PIP:=0((s′, s5), {PIP:=5, PIP:=2, PIP:=0}, (s′′, s6)

))
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The truth degree corresponding to the combined values taken by variable PIP depends
on three other truth degrees: the second projections of (PIP:=5, δPIP:=5(s1, PIP:=5, s2)),
(PIP:=2, δPIP:=2(s3, PIP:=2, s4)) and (PIP:=0, δPIP:=0(s5, PIP:=0, s6)). It is computed as fol-
lows:

δPIP:=5×PIP:=2×PIP:=0((s1, s3), {PIP:=5, PIP:=2, PIP:=0}, (s′′, s6)
)

= (
δPIP:=5(s1, PIP:=5, s2)∧ δPIP:=2(s3, PIP:=2, s4)∧ δPIP:=0(s5, PIP:=0, s6)

)
=min{0.4, 0.2, 0.6}
=0.2

4. A Kleene Theorem forH -Synchronous Languages
This section establishes a Kleene theorem for H -automata and H -synchronous languages. To
proceed in such a direction, however, entails the need for showing that, as it happens in the classic
case, the introduction of non-determinism and transitions labelled by the empty string does not
compromise the expressiveness of finiteH -automata. Such is the aim of the following subsection.

4.1 H -Automata with ε-moves
In standard finite automata theory, it is well-known that the introduction of non-determinism and
the presence of ε-moves, i.e. spontaneous transitions labelled by the empty word, do not change
the expressiveness of finite automata, since given a non-deterministic automaton with ε-moves,
there is a standard procedure to build an equally finite and deterministic automaton recognising
exactly the same language (see e.g. Hopcroft and Ullman 1979).

This subsection develops an analogous result for H -automata. Firstly, we notice that the
non-determinism is inherent to the very definition of H -automata. For example, the non-
deterministic transition δ(s, a)= {w, v} can be represented in a H -automaton by δ(s, a,w)= 1
and δ(s, a, v)= 1. Of course, it is also easy to characterise the class of finite deterministic automata
as the subclass of H -automata such that, for each s, v,w ∈ S and for any symbol a, if δ(s, a, v)=
1= δ(s, a,w) then v=w. This clarified, let us consider the effect of ε-moves.

Definition 12. (H -Automata with ε-moves). Let H be a complete Heyting algebra and B a set of
symbols. A H -automata with ε-moves, εH -automaton for short, is a tuple

E = (S, �, s0, F, δ)

where

• S is a finite set of states;
• � ⊆P(B)×H such that, for any a ∈ �, if b(a)=∅, h(a)= 1 (by a slight abuse of notation,
the empty set of symbols will be represented by ε, originating transitions (ε, 1));

• s0 ∈ S is the initial state;
• F⊆ S is the set of final states;
• δ : S× �× S→H is the transition function such that

– for any s ∈ S, δ(s, ε, s)= 1
– for any s, s′ ∈ S, δ(s, ε, s′)= 1 or δ(s, ε, s′)= 0.

Definition 13. The language recognised by an εH -automaton E = (S, �, s0, F, δ) is given by

L ε(E )= {w ∈ (� \ {(ε, 1)})∗ | ρε(s0,w, s)> 0, for some s ∈ F} (28)
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where

ρε(s1, xw, s2))=
{

δε(s1, x, s′)∧ ρε(s′,w, s2) if h(x)≤ δε(s1, x, s′)
0 otherwise

(29)

ρε(s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

(30)

with
δε(s, a, v)=

∨
s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)
(31)

for any a ∈ � \ {(ε, 1)}.

Definition 14. Let E = (S, �, s0, F, δ), be a εH -automaton with E ⊆P(B)×H. The ε-closure of
E is the H -automaton

Ê = (Ŝ,�, ŝ0, F̂, δ̂) (32)
where

• Ŝ= {v̂ | v ∈ S} where v̂= {w | δ∗(v, ε,w)= 1}
• � = � \ {(ε, 1)}
• F̂= {P ∈ Ŝ | P ∩ F �= ∅}
• for any ŝ, v̂ ∈ Ŝ and a ∈�, δ̂(ŝ, a, v̂)=∨

s∈ŝ,v∈v̂ δε(s, a, v), where

δε(s, a, v)=
∨

s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)

Theorem 3. Let E = (S, �, s0, F, δ), be a ε−H -automaton. Then
L ε(E )=L (Ê ) (33)

Proof. First, observe that, for any a ∈ � \ {(ε, 1)} and for all s, v ∈ S,
δ̂(ŝ, a, v̂)≥ h(a)⇔ δε(s, a, v)≥ h(a) (34)

since
δ̂(ŝ, a, v̂)≥ h(a)

⇔ { δ̂ defn.}∨
s∈ŝ,v∈v̂

δε(s, a, v)≥ h(a)

⇔ { δε defn.}∨
s∈ŝ,v∈v̂

( ∨
s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

))≥ h(a)

⇔ { ŝ defn.}∨
s1,s2∈S

(
δ∗(s, ε∗, s)∧ δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)∧ δ∗(s2, ε∗, v)

)≥ h(a)

⇔ { δ∗ defn.}
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∨
s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)≥ h(a)

⇔ { δε defn.}
δε(s, a, v)≥ h(a)

Then, the result follows by induction on the structure of words. For a basic word a ∈ � \ {(ε, 1)},
a ∈L ε(E )

⇔ { (28)}
ρε(s0, a, s)> 0, s ∈ F

⇔ { (29)}
δε(s0, a, s)≥ h(a), s ∈ F

⇔ { (34)}
δ̂(ŝ0, a, ŝ)≥ h(a), s ∈ F̂

⇔ { (29)}
ρÊ (ŝ0, a, ŝ)> 0, ŝ ∈ F̂

⇔ { (28)}
a ∈L (Ê )

For composed words aw ∈ (� \ {(ε, 1)})∗,
aw ∈L ε(E )

⇔ { (28)}
ρε(s0, aw, s)> 0, s ∈ F

⇔ { (29)}
δε(s0, a, s′)≥ h(a) and ρε(s′,w, s)> 0, s ∈ F

⇔ { (34) + I.H. (ρε(s′,w, s)> 0⇔w ∈L ε(E ) and ρÊ (ŝ0, aw, ŝ)> 0⇔w ∈L (Ê ))}
δ̂(ŝ0, a, ŝ′)≥ h(a) and ρÊ (ŝ

′,w, ŝf )> 0, ŝ ∈ F̂
⇔ { (29)}

ρÊ (ŝ0, aw, ŝ)> 0, ŝ ∈ F̂
⇔ { (28)}

aw ∈L (Ê )

4.2 The theorem
The setting is now ready to establish a Kleene theorem for H -automata and H -synchronous
languages. Thus, for any synchronous regular expression α ∈ Sreg, we will provide a method to
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Figure 5. Automata representing actions a ∈�, 0 and 1.

Figure 6. Automaton representing expression
α + β.

Figure 7. Automaton representing expression α · β.

build a εH -automaton (translatable to aH -automaton, as discussed above)Mα such that I(α)=
L (Mα).

For regular expressions built from atomic actions a ∈� =Pne(B)×H without resorting to
the synchronous product operator, the construction follows the classical recipe, as presented e.g.
in Hopcroft and Ullman (1979). This is then extended to synchronous regular expressions, by
generalising a construction in Prisacariu (2010) for the synchronous operator ‘×’.

Theorem 4. For any α ∈ Sreg, there exists a H -automaton Mα such that

I(α)=L (Mα)

Proof. The automata corresponding to a ∈�, 0 and 1, denoted, respectively, by Ma, M0 and
M1, are depicted in Figure 5. From Definitions 10 and 7, observe that I(a)=La =LMa ,
I(0)= {} =∅=LM0 and that I(1)= {ε} =LM0 . Then, assuming there exist automata for arbi-
trary regular actions α and β , we inductively build an εH -automaton for Sreg expressions
α + β , α · β and α∗. The resulting automata, denoted by ε−H -automata Eα+β , Eα·β , Eα∗
and Eα×β , are depicted in Figures 6, 7, 8 and 9, respectively. Clearly, Definition 13 entails
I(α + β)=L ε(Eα+β), I(α · β)=L ε(Eα·β), I(α∗)=L ε(Eα∗) and I(α× β)=L ε(Eα×β). Then,
by Theorem 3, we conclude that I(α + β)=L (Êα+β), I(α · β)=L (Êα·β), I(α∗)=L (Êα∗) and
I(α× β)=L (Êα×β).
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Figure 8. Automaton representing expression α∗.

Figure 9. Automaton representing the expression α× β.

5. Conclusions
The paper introduced a new class of automata, and corresponding languages, able to cap-
ture both vagueness, through transitions weighted over a complete Heyting algebra, and
synchronous execution, through a specific product operator. The work was motivated by the quest
for a suitable demantic structure for FAS programs.

To model other situations, for example, in face of a requirement to compute the number of
steps involved in an execution, or the resources consumed by a computational process, exploring
other structures to parametrise the construction would be a possibility. The tropical semiring

R= (R+ ∪ {∞}, min,+,∞, 0,→ )

with x→ y=max{y− x, 0}, ∀x,y∈R+∪{∞} would be worth to consider, although it fails idempo-
tency and, therefore Theorem 1.

Finally, a detailed comparison with other possible semantic structures is in order. Probabilistic
concurrent Kleene algebra (PCKA), introduced in McIver et al. (2013), is an obvious choice.
Such an approach embodies two distinct operators: the concurrency operator ‘||’, from concur-
rent Kleene algebra of Hoare et al. (2011), to describe the parallel execution of two crisp actions,
and a probabilistic choice operator ‘⊕’, to capture uncertainty in the execution of actions.

For reasoning about concurrent programs with some form of uncertainty, PCKA can model
Jone’s rely/guarantee style calculus with probabilistic behaviour, resorting to a probabilistic event
structure semantics (McIver et al. 2016). On the other hand, SKA encodes reasoning in the style
of Qwicki and Gries Owicki and Gries (1976) calculus. A possible direction for future work will
investigate whether and how this can be extended to the weighted case.

Conflicts of interest
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Note
1 Following Prisacariu (2010), the symbol ‘×’ stands for the synchronous product; any possible confusion with the same
symbol used for Cartesian product is disambiguated by context.
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