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Facets of Complex Systems

What is complex about a complex system? This seemingly simple question has
neither a simple answer nor a unique one (Ladyman and Wiesner, 2020; Gell-
Mann, 2002). Over the past few decades, the science of complex systems has been
applied across many disciplines ranging from the physical and biological sciences
to the social sciences. Given the widespread usage of the term, an all-encompassing
definition is hard to come by. One such definition comes from Rosser (1999) who
in turn borrowed the idea from Day (1994): “a dynamical system is complex if it
endogenously does not tend asymptotically to a fixed point, a limit cycle, or an
explosion.” This description squarely relies on the dynamical behavior of a system
to categorize it as a complex system. For our purpose, we will take a complemen-
tary approach which is considerably broader in scope and phenomenological in its
essence (Ladyman et al., 2013). The idea is to not define the system a priori, but to
describe the characteristics or different facets of complex systems, which may help
us to identify a system as complex and to decipher its properties. Loosely speaking,
a complex system is one that comprises a large number of interacting simple enti-
ties, which leads to emergent behavior at the macro level. This emergent behavior
of the system cannot be reduced to the behavior of individual entities at the micro
level. Complex systems, however different they may be at the micro level, have
three broad classes of characteristics associated with their behavior: heterogeneity,
interactions, and emergence.

Let us start with a simple example to elucidate the idea of a complex system.
Viewed from the angle of literature on complex systems, a wheel is a “simple”
entity. A car is a “complicated” object, which represents a collection of many sim-
ple entities. And traffic jam is a “complex” phenomenon – literally, not figuratively.
The explanation is as follows. A wheel’s functionality can be understood by ana-
lyzing simple linear dynamics. The functioning of a car, which consists of many
parts each of which is simple, can be understood by taking it apart and studying
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4 1 Facets of Complex Systems

the properties of each constituent part separately. However, the dynamics of a traffic
jam cannot be reduced to the motion of each individual car – it is a complex system.
Instead of looking into how cars behave in isolation, we have to look at how cars
interact with each other resulting in a new emergent property called “traffic jam.”
Such emergent properties are ubiquitous in nature, and they go beyond the realm
of human interactions. For example, scientists noted a long time back that how
an ant colony functions cannot be understood by observing a single representative
ant (Kirman, 1993)!

However, the mere existence of a certain type of system may not necessarily
imply that it is useful to build a paradigm to study its properties. We also need
to know how generalizable the ideas are. It turns out that many phenomena tak-
ing place around us do seem to possess the facets of complex systems, at both a
theoretical and a practical level. Therefore, a natural question arises: how do we
see real-world systems through the lens of complex systems? Real-world systems
are dynamic, evolving, and intertwined. Examples of such systems can be found
in a wide variety of contexts ranging from the economy to living organisms to the
environment to financial markets. The ways in which public opinion swings from
one extreme to another, flocks of birds fly in sync, financial markets crash, and
languages compete with each other like species with the emergence of dominant
languages are all examples of emergent behavior at the scale of underlying systems
as a result of interactions among constituent parts.

The next question, therefore, is: how do we make sense of these widely dif-
ferent systems and their behavior? Deciphering complexity is a daunting task as
the world around us steadily assumes a more complex and interrelated form. One
approach could be from a purely theoretical perspective: for example, by using
toy models to establish the so-called “universal” behavior exhibited by some intri-
cate real-world systems. In this respect, sand-pile models exhibiting self-organized
criticality have been widely studied. Interacting particle models exhibiting scaling
behavior in size distributions are yet another class of models that has become very
popular. However, the wide variety of quantitative and qualitative behavior that is
demonstrated by complex systems make it seemingly impossible to unify all pos-
sible features under one grand theory. Therefore, we follow a different approach.
Instead of defining precise universal behavior, which are rare to begin with, we aim
to quantify the behavioral traits that describe and/or indicate complexity and build
a toolkit to achieve that objective. Fundamentally, the necessary framework to con-
ceptualize a complex system encompasses analytical, computational, and empirical
apparatus for studying dynamics that display a wide spectrum of behavior ranging
from critical phenomena and complex interactions to the emergence of patterns.
Therefore, the challenge appears in the form of approaching the problem with an
integrative perspective, in contrast to a reductionist approach.
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We pursue an empirical approach toward complex socio-economic systems. The
ongoing digital transformation has brought forth new challenges to our current
understanding and a new era in studying social and economic systems. A huge
amount of data are being generated every moment across different spheres that
can be used to understand the complex relationships between the underlying vari-
ables. And though the social and economic systems that we study may appear
very different from one another, often they have similar characteristics in their
dynamics. A crucial aspect of our empirical approach is the explicit attention to
phenomenology in the form of a top-down zooming-in approach to deciphering
complexity, rather than the prevalent bottom-up approach of describing assump-
tions and theoretically working out the resulting aggregate implications. In the
context of complexity-driven economics, especially macroeconomics, a similar
point was made by Di Guilmi et al. (2017), although they differ from us in terms
of their emphasis on theory. In the empirical portion of this book, we describe
the top-down approach to characterizing macroscopic behavior. Once having built
insights into the characterization of macroscopic behavior, we provide a bottom-up
approach to arrive at such behavior from microscopic interaction rules similarly to
the reductionist approach that connects the behavior of a system with its constit-
uent parts. However, these two approaches retain their differences which arise in
the form of emergence. As opposed to the sum of all the smallest component-level
behavior representing the macroscopic behavior, we emphasize systems where the
macroscopic behavior is more than the sum of its parts.

The nature and features of complexity differ across socio-economic, physi-
cal, and biological systems. For quite some time, scientists have gathered sizable
amounts of data on physical and biological systems. In recent times, the economy
and human society have gone through a revolution due to the explosive growth
of information science. This, in turn, is facilitated by rapid technological advances,
yielding a high volume and a tremendous variety of data in multiple domains at any
given point of time. The big challenge of the present day is in extracting meaningful
insights from the data in ways that go beyond data-crunching and data-engineering.
More clearly pinned-down rules of interactions governing the dynamics of social
and economic agents will lead to a clearer understanding of the corresponding
emergent properties. This conjunction is our main thesis.

To explore the emergence of macroscopic behavior from microscopic interac-
tions, we focus on some of the most pressing problems of the present-day world,
ranging from social segregation and economic inequality to the extinction of lan-
guages, among others. We argue that the paradigm of complex systems can shed
light on these phenomena. Clearly, a lot more data are available now to study such
systems than was available earlier. We argue that the features of heterogeneity,
interactions, and emergence are embedded in each of the systems we examine
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here, which make the systems complex. With this understanding, we can make
sense of the connections between microscopic and macroscopic properties. While
this description of complexity is less stringent than other definitions (e.g., see the
discussion in Ladyman et al. [2013]), it allows us to simplify our exposition consid-
erably. With that in our view, we will first explain the defining features of complex
systems in terms of measurable empirical properties.

1.1 Features of Complex Systems

Some of the early attempts to understand complex systems came from the phys-
ics literature and there is a specific reason for that. A natural feature of a complex
system is its dynamics, and the study of the mathematics of dynamical systems
in the natural world found a home in the physics literature. Such dynamics can
be either stochastic or deterministic (including chaotic), often displaying nonlinear
and emergent phenomena. To capture system-level dynamics by aggregating the
dynamics of all of a system’s constituent entities is a non-trivial and often intrac-
table problem. Moreover, the constituents of complex systems are heterogeneous
and there can be time-varying interactions between them. Most of the formalisms
of statistical physics that are used to understand macroscopic or collective behav-
ior from the dynamics of the microscopic constituents have insufficiencies in this
regard. One fascinating example where the application of such theories has been
very successful is the type of systems that exhibit self-organization and critical
behavior. Notably, the famous “sand-pile” models in physics have been very useful
for understanding the universal behavior arising out of such systems. However, as
we will discuss later, a direct mapping of such systems on to real-world phenomena
has had very limited success. To summarize, the standard approach used in statisti-
cal physics has its limitations, although there has been enormous progress in terms
of the theoretical understanding of the dynamical properties of complex systems.
In order to develop these ideas further, we first need to describe the features of
complex systems beyond their dynamics.

The first feature is the stability of an interacting dynamical system. As we have
noted above, complex systems can be large and the constituent entities may display
heterogeneity. This, in turn, influences the stability of the system. It is probably eas-
iest to grasp this idea with an intuition from ecology. A dominant paradigm in the
ecology literature has been centered around the idea that diverse systems would be
more stable than their less diverse counterparts. Intuitively, a more heterogeneous
system will be able to adapt more to adverse shocks and therefore should display
more stability. However, Robert May’s work famously turned this idea upside down
when he showed that a larger and more diverse system can be actually prone to
more instability, rather than stability (May, 1972). The stability of a system also
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relates to the linkages between its constituent entities. Are more linkages good or
bad for stability of a system? May’s work showed that more linkages can be bad
for stability. A similar insight also carries through in the context of financial mar-
kets. More connected financial markets provide more opportunities to diversify and
thereby, potentially, create more stability. However, the recent literature recognizes
that too many interlinkages may lead to hidden feedback loops, which can destabi-
lize the system rather than imparting stability to it (May et al., 2008; Haldane and
May, 2011).

What is the role of interlinkages beyond influencing the stability of a sys-
tem? To understand this, we need the help of the network view of the system,
a useful paradigm for capturing the topological characteristics of a system with
non-trivial interlinkages (Newman, 2010). The main understanding comes from the
idea that for many (if not most) socio-economic systems, the connections between
the constituent entities do not display symmetry and regularity. Connections are
heterogeneous and so are their corresponding influences on the system-level prop-
erties (Page, 2010). For example, consider a growing online social network. It is
dynamic and heterogeneous in its connections across all the users and the diffu-
sion of a piece of news on the network may heavily depend on its topology. More
importantly, different social media may actually exhibit non-trivial differences in
topology, resulting in differences in macroscopic behaviors such as the diffusion of
a piece of news or a rumor. Thus the nature of interlinkages is a crucial component
of the complexity of the system.

Competition and the emergence of dominant traits represent another key fea-
ture of complex systems (Chakrabarti and Sinha, 2016). One can conceptualize
this mechanism via heterogeneity in the macro-behavior of the system. It has long
been recognized that even when there is little heterogeneity in core characteristics
among the constituent entities of a given system, the outcomes for each of them
may diverge widely. An oft-cited example of such a system is income inequality.
All characteristics of human beings are possibly well approximated by bell curves
– normal distributions, which have a small variance. However, the corresponding
income or wealth distribution among the people interacting through the economy
has a variance many times larger than the underlying variances in characteristics
of the people. The famous Pareto law was first found in income distribution itself,
which says that income m is distributed as a power law p(m) ∼ m−(1+γ ) where γ
is the Pareto coefficient (typically with a magnitude close to 1, although there are
notable exceptions). We will explore this law in much more detail later on when
we study size distributions in income and cities. For the time being, one can see
the implication of the law in the following way: going by this law with the coef-
ficient being equal to 1, 20% of the entities are responsible for 80% of all events.
In this case, that translates into the idea that 20% of the people acquire 80% of
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the total income. In the context of the present-day world, this degree of hetero-
geneity and inequality is fairly accurate in an empirical sense although the exact
magnitude may differ. Such heterogeneity is seen not only in economic contexts but
also in scientific paradigms where citations are power-law distributed and in many
other systems that we will describe later. Chakrabarti and Sinha (2016) observed a
unique case with movie income distributions, which actually possess bimodal char-
acteristics where success and failure literally translate into two different modes of
the outcome distribution. In the extreme, an asymptotic case of inequality in out-
comes is seen in the case of language dynamics: some languages may actually die
completely, which leads to the emergence of extreme dominance by the remaining
languages.

1.2 A Data-Driven View of Complexity

In what follows, we adopt a data-driven view of complex systems. Our focus will
be less on the mathematical modeling of complex systems, and much more on the
empirical analysis of the resulting behavior of such systems. Recent advances in
computation for solving empirical problems have pushed the frontier of science
by leaps and bounds. Google’s AlphaFold is possibly one of the most impressive
achievements in discovering the structures of proteins. This builds on a series of
inventions in computer hardware and software over the last century – from the
breaking of the Enigma code during the Second World War to IBM’s Deep Blue
defeating the famous chess grandmaster Garry Kasparov, from IBM’s Watson to
Google’s AlphaZero to the latest technology ChatGPT from OpenAI which can
mimic human conversation. This has been possible due to massive advances not
only in computational ability but also in data management. At the outset, this may
not look like a challenging problem. But often data management turns out to be the
biggest practical challenge in computation. One of the great resources has come
in the form of shared and distributed computing and data annotation. As we will
see in Chapter 4, many learning algorithms require labeled data. Many software
packages and websites, among them GitHub open codes, Google Colab, and Ama-
zon Mechanical Turk, have helped the transition from single-user to multi-user
crowdsourced computation and data annotation. In what follows, we will not data
management any further and will focus almost exclusively on data analysis and
modeling.

We consider data collected at different frequencies: low-frequency data (e.g.
societal changes spanning centuries), mid-frequency data (e.g. economic data
collected at business cycle frequencies in the order of a few years), and high-
frequency data (e.g. financial data collected daily or even more frequency). We
will refer to such data as time series data. The other dimension of the data would
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be its heterogeneity. A set of observations at any given point of time would allow
us to conceptualize and quantify heterogeneity. We will refer to such data as
cross-sectional data.

In order to develop the empirical apparatus, we first provide an introduc-
tion to probability and statistics, covering both classical and Bayesian statistics
(Chapter 2). We go through a discussion of the classical approach to probability and
develop the concept of statistical estimation and hypothesis testing, leading to a dis-
cussion of Bayesian models. Then we discuss time series models to analyze evolv-
ing systems (Chapter 3). In particular, we develop ideas to model stationary and
non-stationary systems. Additionally, we review some ideas from financial econo-
metrics that have proved to be very useful for modeling time-varying conditional
second moment: that is, volatility. In the next part of the book, we review machine
learning techniques emphasizing numerical, spectral, and statistical approaches to
machine learning (Chapter 4). Then we discuss network theory as a useful way to
think about interconnected systems (Chapter 5). These four components constitute
the building blocks of the data science approaches to complex systems.

1.3 A World of Simulations

There is no single unique framework for studying emergent behavior, and as
mentioned above, we often have to borrow tools from several domains such as
economics, mathematics, statistics, computer science, and physics. In some sense,
the abstract and non-unique nature of this mixed bag of tools is quite useful as one
can expand or compress the scope of analysis as necessary.

Due to the property of emergence, for many of the complex systems and their
dynamical patterns, characterization of local rules may not directly capture sys-
temic behavior. Whether we are studying self-organization in economic markets,
the dynamics of ethnic conflicts and cooperations, migration networks, or the
spread of epidemics, the modeling approach has to emphasize the varying scales
and nature of interactions. However, there is another dimension to this problem.
Along with making predictions for the expected behavior of the system, one may
also want to see what are the possible extreme cases. More generally, one may want
to first figure out what are the boundaries of possible behavior of a given system.
This is very important for systems that are prone to sudden collapse. Markets, in
particular financial markets, provide a great example of such behavior. For policy-
makers or even for market participants, a better understanding of large fluctuations
is typically more useful, for hedging against extreme outcomes, than the prediction
of average behavior.

How can we delineate the boundaries of all possible behaviors of a system con-
sisting of a large number of interacting entities, each with potentially non-trivial
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dynamics? This poses a big challenge. Analytically enumerating all possible
behaviors is a daunting task and often impossible for all practical purposes. The
complex systems literature has taken an alternative path to solving this problem.
Rather than trying to do brute-force calculations by ourselves, it is easier to ask
the computer to do so given the cheapness of computational power. The idea is
to simulate possible behaviors with simple iterative rules governing interactions
between individual agents, which can be tuned to mimic the dynamics of emergent
phenomena. Additionally, this approach is useful for finding the average behavior
of systems which are analytically intractable.

In order to develop insights into real-world socio-economic systems, in the later
part of the book we describe six models that illuminate different facets of complex
systems. We start with a model of social segregation which introduces a spa-
tial model of interaction between agents following the seminal work by Schelling
(1971). This is an elementary model that delivers the astounding insight that even
a minor preference for a homogeneous neighborhood in a heterogeneous popula-
tion may quickly result in strong segregation of the population. At the same time,
this model also started the literature on interaction models of grids or lattices, con-
necting it to the idea of cellular automata. Famous examples of this kind of model
include Conway’s Game of Life model and cellular automata model. Interested
readers may consult Wolfram (1984, 2002) for an in-depth view of such systems
in the context of discrete mathematics. Next, we describe a more intricate scaling
behavior on a square lattice in the form of the Bak–Tang–Wiesenfeld model (Bak
et al., 1987; Bak, 2013) that exhibits self-organized criticality through the famous
simulated sand-piles. A follow-up description of the Bak–Sneppen model sheds
light on extinction through competition in a multi-agent setup. In particular, this
model generates the scaling behavior of avalanches which models extinctions. A
simple time series analysis shows periods of bursts and calm, capturing punctuated
equilibrium behavior – reminiscent of the theory proposed by Gould and Eldredge
(1977). Building on these abstract spatial models, next we focus on city size distri-
bution which possesses a well-known defining feature in the form of Zipf’s law, a
special case of the Pareto law described above. This law provides a natural restric-
tion on the spatial organic growth of cities. We study two different mechanisms
that explain the appearance of Zipf’s law. Then we introduce bilateral interaction
between agents to explain the dispersion of agent-level attributes. As a modeling
paradigm, we then take up models of asset inequality. Empirically, such inequality
seems to exhibit robust behavior across economies and time especially in the right-
hand tails of income and wealth distributions, in the form of Zipf’s law. We show
that heterogeneity in general and Zipf’s law in particular arise out of interactive
systems. Next, we consider competition across groups of agents. As a model-
ing paradigm, we take up the case of linguistic competition where the emergence
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of dominant and recessive languages occur as an outcome of competition. Until
this point, all of the models we have discussed can be thought of as representing
interactions between zero-intelligence agents. In the last model, we consider agents
with limited intelligence or rationality who can strategically compete against each
other. We analyze a resource competition game to study the evolution of coordina-
tion and anti-coordination. We close the discussion with a brief detour through
the trade-off between the realism and the generalizability of these models and
corresponding insights.
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