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Surfactant-like impurities are omnipresent in multiphase emulsions and may substantially
affect the motion of small droplets by altering their interfacial properties. Usually these
surfactants are soluble in the bulk and undergo adsorption–desorption onto the interface
which modifies their surface concentration and hence their overall influence on droplet
motion. Yet, the impact of the bulk solubility and transport of surfactants on droplet
dynamics, especially in the presence of bounding walls, remains poorly understood. As
such, in this article, we assess the impact of bulk soluble surfactants on the settling of a
spherical drop towards a plane wall. We consider coupled bulk and interfacial transport of
surfactants, mediated by adsorption–desorption processes and construct a semi-analytical
framework for arbitrary values of ‘bulk interaction parameter’, which dictates the strength
of adsorption–desorption kinetics compared with bulk diffusion. Our results indicate
that while mass exchange between the bulk and the interface can remobilize the drop,
a finite bulk diffusion rate restricts this process and therefore slows down the drop.
This also results in bulk concentration depletion near the south pole and accumulation
near the north pole, the extent of which becomes strongly asymmetric with an enhanced
intensity of depletion, as the drop approaches the wall. Presence of the wall and bulk
solubility are found to aid each other towards remobilizing the drop by aptly modifying the
interfacial concentration. Our results may provide fundamental insights into the kinetics of
surfactant-laden drops, with potential applications in food and pharmaceutical industries,
separation processes, etc.
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1. Introduction

Settling of a drop through another immiscible fluid is a classical problem that has long
captured the interest of the scientific and the engineering communities alike. Indeed,
settling of drops remains relevant to a wide spectrum of natural and industrial processes
such as oil recovery (Wasan et al. 1978; Frising, Noïk & Dalmazzone 2006; Zhou et al.
2019), food and cosmetics processing (Brummer 2006; Dickinson 2011; Lamba, Sathish &
Sabikhi 2015; Varvaresou & Iakovou 2015; Venkataramani, Tsulaia & Amin 2020) as well
as in the pharmaceutical industry, where droplets are used as the carriers and protectors of
sensitive particles (Dams & Walker 1987; Zhang, Chan & Leong 2013; Iqbal et al. 2015).
The first theoretical efforts to estimate the settling velocity of a drop dates back to the
work of Hadamard (1911) and Rybczynski (1911), who independently considered a pure
spherical drop falling under its own weight in an otherwise stationary unbounded medium.
A rich body of literature has since followed (Taylor & Acrivos 1964; Rushton & Davies
1973; Stone & Leal 1990; de Blois et al. 2019; Castonguay et al. 2023; Michelin 2023),
where more physically realistic paradigms such as the presence of bounding walls (Brenner
1961; Wacholder & Weihs 1972; Pozrikidis 1990; Desai & Michelin 2021; Jadhav & Ghosh
2021a), alongside the impact of externally imposed fields (Barton & Subramanian 1990;
Das et al. 2017; Das, Mandal & Chakraborty 2018; Poddar et al. 2018, 2019) have been
accounted for both numerically (Pozrikidis 1990; Stone & Leal 1990; Li & Pozrikidis
1997; Tasoglu, Demirci & Muradoglu 2008) and analytically (Haber & Hetsroni 1971,
1972; Tsemakh, Lavrenteva & Nir 2004; Manor, Lavrenteva & Nir 2008; Vlahovska,
Bławzdziewicz & Loewenberg 2009; Pak, Feng & Stone 2014), towards computing the
settling velocity of the drop.

It has long been established that multiphase systems such as those mentioned above
inevitably contain surfactant-like impurities which either occur naturally or are added
intentionally to stabilize such systems (Pal 1992, 2007; Zell et al. 2014). They tend to get
adsorbed at the interface between the two phases and usually reduce the surface tension,
which becomes a function of the local interfacial surfactant concentration. Hence, any fluid
flow such as those generated by the settling of a drop, transport the surfactants, leading to
a non-uniformity in their distribution, which in turn gives rise to surface tension gradients
and thereby Marangoni stresses (Stone & Leal 1990; Leal 2007). Generally, the Marangoni
stresses slow down the drops, the extent of which depends on the nature of the surfactants
and the properties of the fluids (Levich & Krylov 1969; Holbrook & Levan 1983a,b; Leal
2007; Castonguay et al. 2023).

The exact manner in which surfactants influence the surface tension depends on the
size of the surfactant molecules and the strength of the interactions between them, both of
which may be mathematically described using specific adsorption isotherms. The simplest
one among them is the ideal gas isotherm (Adamson & Gast 1967) which assumes the
surfactant molecules to be point-like and non-interacting and the vast majority of the
existing studies (Stone & Leal 1990; Milliken, Stone & Leal 1993; Vlahovska, Loewenberg
& Blawzdziewicz 2005; Hanna & Vlahovska 2010; Mandal, Ghosh & Chakraborty 2016;
Jadhav & Ghosh 2021a) which investigate the influence of surface impurities on settling
velocities use the ideal gas isotherm to model surfactant kinetics. Several others, such as
Chen & Stebe (1996) and Jadhav & Ghosh (2022), do consider the non-ideal aspects of the
surfactants’ behaviour using the Frumkin and the van der Waals isotherms while probing
the dynamics of drops and establish that factors such as surfactant packing play key roles
in governing their settling velocity.

It is important to emphasize that most surfactants remain soluble in the bulk (from where
adsorption–desorption takes place) to varying degrees, although the impact of their bulk
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solubility is routinely ignored in the literature while analysing their influence on droplet
motion. Chen & Stebe (1996) were among the first to account for adsorption–desorption
from the bulk and showed that such interactions tend to remobilize the interface by
making the surfactant distribution more uniform across it, thereby reducing the Marangoni
stresses. Their analysis was performed in the kinetically limited regime, which requires
the time scale of adsorption–desorption from the bulk to be much larger than the time
scale of bulk diffusion close to the interface (Stebe & Barthes-Biesel 1995; Eggleton
& Stebe 1998; Jin, Balasubramaniam & Stebe 2004). This is of course an idealization
since the bulk transport (advection and diffusion) of surfactants is naturally expected to
alter the adsorption–desorption rates, the local surfactant concentrations as well as the
remobilization of the interface (Muradoglu & Tryggvason 2008; Sengupta, Walker &
Khair 2018; Lippera, Benzaquen & Michelin 2020a; Lippera et al. 2020b; Morozov 2020;
Chakraborty, Pramanik & Ghosh 2023). This issue, however, has hitherto remained poorly
explored in the existing literature.

It is thus evident that there are still several open questions pertaining to the role played by
surfactants in the settling of a drop that are yet to be properly addressed, despite this being
a classical problem. First, although a bounding (or bottom) surface is omnipresent in any
settling problem, its interactions with the surfactant kinetics remain largely unexplored,
perhaps because of the analytical and even numerical challenges it poses owing to the
continuously changing geometry. In a recent work, Jadhav & Ghosh (2021a) have shown
that the impact of surface impurities on settling velocity may become more prominent
close to the wall, although they only considered bulk-insoluble, ideal surfactants in the
limit of diffusion-dominated interfacial transport. Second, the impact of the interactions
between the bulk and the interfacial transport of surfactants on their kinetics, the overall
motion of the drop and how these interactions evolve in the presence of a bounding wall
have also remained an uncharted territory thus far.

To address some of the outstanding issues discussed above, in this article we analyse
the settling dynamics of a drop towards a bounding wall in the presence of bulk-soluble,
non-ideal surfactants which obey the Langmuir adsorption isotherm. The coupling
between the bulk and the interfacial transport of surfactants is characterized by a bulk
interaction parameter (Eggleton & Stebe 1998) (ω), defined in § 2.3. We subsequently
construct a combined semi-analytical and numerical framework for arbitrary values of ω,
considering the bulk and the interfacial surfactant transport to be fully coupled. The special
case of ω = 0 associated with the kinetically limited regime (the decoupled limit) is also
discussed as a reference case. The transports of surfactants are characterized by arbitrary
interfacial and bulk Péclet numbers (Pes and Peb, respectively; see § 2.3) and hence are
inherently unsteady in nature.

Our results confirm that the bulk solubility of surfactants indeed remobilizes a
drop by acting as a source/sink for the surface impurities and its effects in doing so
are the most prominent close to the wall. However, a finite rate of bulk diffusion
of surfactants restricts the adsorption–desorption processes because of local depletion
or accumulation of surfactants and therefore also hinders the remobilization of the
drop. We further establish that an overall larger concentration of surfactants generally
leads to stronger Marangoni stresses and thus results in a relatively slower motion of
the drop.

The rest of the paper is arranged as follows. In § 2, we lay out the details of the
physical system under consideration, the key assumptions, the important non-dimensional
numbers along with the governing equations and boundary conditions. Section 3
discusses the details of the bispherical coordinate system, the arbitrary ω framework for
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Figure 1. Schematic of a spherical drop of radius a′ settling with velocity U ′ = −U′ îz due to its own weight
towards a wall located at z′ = 0. The continuous phase (fluid-1) and the droplet (fluid-2) have density ρ ′

1 and ρ′
2

and viscosity μ′
1 and μ′

2, respectively. Dissolved surfactants are present in fluid-1 with far-field concentration
C′∞ < critical micelle concentration, as well as at the droplet interface with equilibrium concentration Γ ′

eq,
governed by the adsorption from the bulk. The surface tension of the clean drop (γ ′

s ) is reduced by the
surfactants (γ ′(Γ ′

eq) < γ ′
s ). A bispherical coordinate system (ξ ′, η′, φ′) is used in which the drop interface

is located at ξ ′ = α′(t′). A reference cylindrical coordinate system (z′, ρ′, φ′), with its origin on the wall (O),
is also shown.

deducing the settling velocity (along with ω = 0 scenario) and a brief outline of the
semi-analytical-cum-numerical solution strategy. Section 4 presents the detailed results
for the surfactant concentration distribution and droplet motion. Finally, we conclude in
§ 5.

2. The problem statement

2.1. Physical description of the system
Figure 1 shows a schematic representation of the system under consideration. We consider
the gravitational settling of a drop of radius a′ towards a wall with velocity U ′(t′), which
is a priori unknown. The outer fluid (fluid-1) has density ρ′

1 and viscosity μ′
1, while

the droplet (fluid-2) has density ρ′
2 (> ρ′

1) and viscosity μ′
2. Surfactant-like impurities

are present in fluid-1 with uniform far-field bulk concentration C′∞ (< critical micelle
concentration) and molecular diffusivity D′

b. These surfactant molecules get adsorbed
onto the drop interface from the bulk. The interfacial surfactant concentration is Γ ′ and
its equilibrium value is denoted by Γ ′

eq. The adsorption and desorption rate constants
between the interface and the bulk are, respectively, taken as k′

a and k′
d. The surface

tension of a clean interface (with no surfactants) is γ ′
s and that with equilibrium surfactant

concentration is γ ′
eq = γ ′

eq(Γ
′

eq), where γ ′
eq < γ ′

s .
A cylindrical coordinate system (z′, ρ′, φ′) with origin at O is defined such that the z′

axis passes through the droplet centre and the wall is located at z′ = 0. An instantaneous
bispherical coordinate system (ξ ′, η′, φ′) allows us to define the wall at ξ ′ = 0 together
with the droplet surface at ξ ′ = α′(t′), at any given instant. The instantaneous height of
the droplet centre above the wall is denoted by h′(t′). Details of the bispherical coordinates
can be found in § 3.1.
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Settling of a drop towards a wall in presence of surfactants

Variable Characteristic scale Remarks

Length a′ Droplet radius
Velocity uc = (ρ′

2 − ρ′
1)a

′2g′/3μ′
1 Velocity due to gravity

Time a′/uc Advection time scale
Pressure and stress μ′

iuc/a′ Viscous scale (i = 1, 2)
Bulk surfactant concentration C′∞ Far-field bulk concentration
Interface surfactant concentration Γ ′

eq Equilibrium concentration
Surface tension γ ′

eq Equilibrium surface tension
Interface surfactant diffusivity D′

s Dilute/ideal surfactant diffusivity

Table 1. Characteristic scales chosen for the pertinent variables.

2.2. Key assumptions and the characteristic scales
For the rest of this article, we use dimensionless variables to describe any quantity. To this
end, the non-dimensional version of any variable (say, A) is chosen as A = A′/Ac, where
Ac is the characteristic scale for the said variable and the ‘prime’ symbol is dropped from
the dimensional (with units) counterpart. Table 1 lists the characteristic scales chosen for
all the pertinent variables herein.

Before moving towards the formal analysis, it is important to point out some of the
key assumptions made in this article. First, the flow is assumed to be viscosity-dominated
and quasi-steady, on account of low Reynolds number (Re = ρ′

1uca′/μ′
1 � 1) and unit

Strouhal number (St = tc/(a′/uc) = 1). Second, we assume that the droplet deformation
remains negligibly small throughout its motion on account of small capillary number
(Ca = ucμ

′
1/γ

′
eq � 1), generally true for creeping flows (Leal 2007; Hanna & Vlahovska

2010; Pak et al. 2014) (see table 2). Third, it is assumed that the surfactant molecules
undergo adsorption–desorption from the bulk obeying the Langmuir adsorption isotherm
(Leal 2007; Manikantan & Squires 2020). As such, the molecules have a finite size and
may only get adsorbed onto a finite number of lattice sites at the interface, although
their intermolecular interactions are considered to be negligible. This limits the maximum
possible surfactant concentration at the interface to a finite value denoted by Γ ′∞ (m−2).
The variation in the surface tension also follows directly from the choice of the isotherm
(Leal 2007; Manikantan & Squires 2020). Although the presence of surfactants may lead
to excess interfacial rheological stresses (Agrawal & Wasan 1979; Schwalbe et al. 2011;
Elfring, Leal & Squires 2016; Manikantan & Squires 2017; Dandekar & Ardekani 2020),
those effects are ignored in the present study.

2.3. The non-dimensional numbers
Upon enforcing the non-dimensionalization scheme mentioned above in the governing
equations and the boundary conditions (the dimensional equations have been omitted
for brevity) for fluid flow and surfactant transport, several key non-dimensional numbers
emerge that dictate the physics of the problem. These non-dimensional numbers along
with their expressions and the possible range of values are listed in table 2.

Of particular interest to us are the following entries: (i) the bulk and the surface Péclet
numbers (Peb and Pes), which represent the ratio of the advective and the diffusive fluxes
in the bulk and the interface, respectively; (ii) the Biot number (Bi), which represents
the ratio of the desorptive flux to the interfacial advective flux of the surfactants; (iii) the
surfactant packing factor (ζ ) and the adsorption number (K) which are related to each other
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Non-dimensional number Expression Range

Reynolds number (Re) ρ′
1uca′/μ′

1 O(10−8)–O(1)

Capillary number (Ca) ucμ
′
1/γ

′
eq O(10−7)–O(10−2)

Bulk Péclet number (Peb) uca′/D′
b O(10−2)–O(104)

Surface Péclet number (Pes) uca′/D′
s O(10−2)–O(104)

Marangoni number (Ma) RTΓ ′∞/(μ′
1uc) O(1)–O(105)

Biot number (Bi) k′
da′/uc O(10−5)–O(10)

Surfactant packing factor (ζ ) Γ ′
eq/Γ

′∞ 0–1
Adsorption number (K) k′

aC′∞/k′
d 0–∞

Adsorption depth (δ) Γ ′
eq/(C

′∞a′) O(10−4)–O(102)

Bulk interaction parameter (ω) BiPebδ O(10−11)–O(107)

Table 2. Important non-dimensional numbers and their range of values. The following values have been
chosen for the various characteristic scales: uc ∼ O(10−6)–O(10−3) m s−1; a′ ∼ O(10−6)–O(10−3) m; D′

b ∼
D′

s ∼ O(10−10) m2 s−1; γ ′
eq ∼ 10−2 N m−1; μ′

1 ∼ O(10−3)–O(10−1) Pa s. Data taken from Ferri & Stebe
(2000). Here T is the absolute temperature and R is the universal gas constant.

as ζ = KCs,eq/(1 + KCs,eq), where Cs,eq is the bulk concentration next to the interface at
equilibrium, K represents the ratio of the adsorptive and the desorptive fluxes from the
bulk and ζ quantifies the ratio of the equilibrium surfactant concentration to the maximum
possible concentration on the interface; (iv) the adsorption depth (δ) which indicates the
thickness of the depleted region near the interface because of adsorption (Eggleton & Stebe
1998); and (v) the bulk interaction parameter (ω), which itself is a composite number and
represents the strength of coupling between the bulk and the interfacial transport.

Evidently, ζ → 1 represents a very densely packed interface, while ζ � 1 represents the
ideal gas limit on account of dilute surfactant concentration. It is also important to note that
although Re � 1, Peb and Pes may still be O(1) or larger because molecular diffusivity of
surfactants (D′) is usually significantly smaller than the kinematic viscosities of various
liquids. On the other hand, the insoluble surfactant limit (Leal 2007) may be recovered by
enforcing Bi = 0. Readers are referred to the work of Manikantan & Squires (2020) and
Eggleton & Stebe (1998) for further insights into the various numbers appearing in table 2.
Detailed discussion of the significance of ω is postponed until § 3.2.

Figure 2 schematically depicts the physical mechanisms that various non-dimensional
numbers mentioned above represent. Figure 2(a) illustrates bulk and interfacial advection,
adsorption–desorption and accumulation of surfactants at the north pole of the drop due
to its downward motion. Figure 2(b) exhibits a section of the interface with non-uniform
surfactant concentration leading to Marangoni stresses (quantified by Ma) and the
adsorption depth around the interface where the bulk surfactant concentration is diluted as
compared with its far-field value, because of adsorption onto the interface.

2.4. The non-dimensional governing equations and boundary conditions
The interfacial surfactant concentration (Γ ) is governed by the following conservation
equation (Wong, Rumschitzki & Maldarelli 1996; Eggleton & Stebe 1998; Leal 2007):

∂Γ

∂t

∣∣∣∣
ξ,η

− χ̇ · ∇sΓ + ∇s · (Γ u) = 1
Pes

∇s · (Ds,eff ∇sΓ ) + Bi
[

KCs

(
1
ζ

− Γ

)
− Γ

]
,

(2.1)
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Bulk

advection

Surface

advection

Adsorption/

desorption

Depletion

layer

Surface

tension

gradient

Bi

Ma

Peb

Pes

δ

(a) (b)

Figure 2. Schematic showing the role played by the various non-dimensional numbers listed in table 2. (a) The
bulk Péclet number (Peb), the surface Péclet number (Pes) and the Biot number (Bi) respectively contribute to
the bulk and interfacial transport and the adsorption–desorption process. (b) The Marangoni number (Ma) is
associated with the surface tension gradient and adsorption depth (δ) is related to the rate of adsorption from
the bulk.

where u is the fluid velocity at the interface and ∇s = Is · ∇ is the surface gradient
operator, where Is = (I − n̂n̂), I is the identity tensor and n̂ is the outward unit normal
to the droplet interface. The transient term ∂Γ/∂t is evaluated at fixed surface coordinates
((ξ, η); defined later) (Wong et al. 1996). However, since the left-hand side of (2.1)
is to be evaluated at a material point, a correction term, namely χ̇ , must be added
(Wong et al. 1996) to account for the velocity of the coordinate system itself. Term χ̇

represents the velocity of a point with fixed coordinates and its expression is provided
in Appendix A. For non-deforming drops in Cartesian or spherical coordinate systems,
χ̇ = 0; however, since we have chosen a bispherical coordinate in this work, generally
χ̇ /= 0 (see (A1)). Parameter Ds,eff represents the effective surface diffusivity, whose
expression may be derived using the Gibbs relation and for the Langmuir isotherm it
reads Ds,eff = (1 − ζΓ )−1; see the work of Jadhav & Ghosh (2022) for further details.
The last term on the right-hand side of (2.1) is the net adsorption flux onto the interface
according to the Langmuir isotherm (Chen & Stebe 1996; Manikantan & Squires 2020).
A relation between ζ and Cs,eq may be established based on the equilibrium configuration
(Γ = 1) when there is no net adsorption–desorption, and this leads to (Eggleton & Stebe
1998) ζ = K(1 + K)−1 at equilibrium (with Cs,eq = 1). We emphasize that the interfacial
transport at Pes ≥ O(1) is inherently unsteady in the present scenario because of the
continuously changing geometry, although the flow itself is quasi-steady.

The bulk transport of surfactants in fluid-1 is governed by the advection–diffusion
equation, given by (Eggleton & Stebe 1998; Lippera et al. 2020b)

∂C
∂t

∣∣∣∣
ξ,η

+ (u1 − χ̇) · ∇C = 1
Peb

∇2C, (2.2)

where C is the bulk concentration. We again note that similar to (2.1), the bulk transport
is also inherently unsteady when Peb ≥ O(1). Therefore, akin to (2.1), for evaluating the
time derivative ∂C/∂t at fixed coordinates (ξ, η; defined later), a correction term needs
to be added on the left-hand side to account for the velocity of the coordinate system.
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Equation (2.2) is subject to the far-field condition, ∇C → 0 as (ρ2 + z2)1/2 → ∞, and no
flux condition at the wall, îz · ∇C = 0 at z = 0. At the droplet interface, the bulk diffusion
flux balances the net adsorption–desorption flux, which may be expressed as (Manikantan
& Squires 2020)

n̂ · ∇C = ω

[
KCs

(
1
ζ

− Γ

)
− Γ

]
= ω[Cs(1 + K(1 − Γ )) − Γ ]. (2.3)

According to (2.3), the bulk interaction parameter (ω = BiPebδ) may also be interpreted
as the ratio of the adsorption–desorption flux to the diffusive flux of the surfactant at
the interface. It is evident that the above condition couples the bulk and the interfacial
transport processes ((2.2) and (2.1)), the strength of which is determined by ω.

The flow in the ith fluid (for i = 1, 2) satisfies

∇2ui = ∇pi, ∇ · ui = 0, (2.4a,b)

subject to far-field condition u1 → 0 as (ρ2 + z2)1/2 → ∞ and the boundedness condition
is |u2| < ∞, |p2| < ∞, inside the drop. At the wall, no-slip and no-penetration conditions
imply u1 · îρ = 0, u1 · îz = 0, at z = 0. The boundary conditions at the (non-deforming)
droplet interface take the following form (Leal 2007):

û1 · n̂ = û2 · n̂ = 0, (2.5a)

Is · û1 = Is · û2, (2.5b)

Is ·
[
(τ 1 − λτ 2) · n̂ + ∇sγ (Γ )

Ca

]
= 0. (2.5c)

In the above, (2.5a) and (2.5b) are, respectively, the no-slip and the velocity continuity
conditions. Equation (2.5c) expresses the tangential stress balance, where τ i is the viscous
stress in the ith fluid (i = 1, 2), defined as τ i = ∇ui + (∇ui)

T , and λ = μ′
2/μ

′
1 is the

viscosity ratio. The Marangoni stress is represented by ∇sγ /Ca, where the surface tension,
γ (Γ ), can be written as follows, based on the Langmuir isotherm (Eggleton & Stebe 1998):

γ = 1 + MaCa ln
(

1 − ζΓ

1 − ζ

)
. (2.6)

3. Analysis of droplet motion

3.1. The bispherical coordinate system
The (spherical) droplet interface and the wall may be simultaneously represented as
coordinate surfaces using the bispherical coordinate system (ξ, η, φ), where ξ represents
a set of non-intersecting spheres and η (0 ≤ η ≤ π) represents the position on a particular
sphere. The origin (O) coincides with the cylindrical coordinate system as depicted in
figure 1. It is to be noted that at every time instant a new bispherical coordinate has to be
defined, since the droplet continuously falls towards the wall. We follow the convention
used by Lippera et al. (2020b), who analysed the axisymmetric motion of an active drop
towards a rigid wall. At any instant t, the relation between a point in the fixed cylindrical
coordinate system (z, ρ, φ) and the bispherical coordinate system (ξ, η, φ) is given by
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Settling of a drop towards a wall in presence of surfactants

(Happel & Brenner 1983; Lippera et al. 2020b)

ρ = c0(t)
√

1 − ν2

L , z = c0(t) sinh (α(t)ξ)

L , (3.1a,b)

where L(ξ, ν, t) = cosh (α(t)ξ) − ν and ν = cos η. The parameter α depends upon the
distance of the centre of the drop from the wall (h(t)) as α(t) = cosh−1 (h(t)), and c0 is
a positive constant defined as c0(t) = sinh α(t). As per the coordinate system defined in
(3.1a,b), at any instant the drop surface and the wall are, respectively, denoted by ξ = 1 and
ξ = 0. For a non-deforming spherical drop, the outward surface normal becomes n̂ = −îξ
(see figure 1). The metric coefficients for bispherical coordinates are (Happel & Brenner
1983) �1 = �2 = L/c0, �3 = L/(c0

√
1 − ν2), and the gradient operator is defined as ∇ =

îξ �1∂/∂(αξ) + îη�2∂/∂η + îφ�3∂/∂φ.
It is straightforward to rewrite equations (2.1), (2.2) and (2.4a,b), along with the

boundary conditions (2.3) and (2.5) in bispherical coordinates.

3.2. A closer look at the bulk interaction parameter (ω)
The bulk interaction parameter (ω) in (2.3) may be written as the ratio of two time
scales: ω = tGM

diff /tdes, where tdes ∼ k′−1
d is the time scale of desorption and tGM

diff ∼ δ′a′/D′
b

is the mean bulk diffusion time scale, which is the geometric mean of two distinct

diffusion time scales (Jin et al. 2004): tGM
diff =

√
tdrop
diff tads

diff . The first of these (tdrop
diff ) is

defined at the length scale of the drop itself, denoted as tdrop
diff ∼ a′2/D′

b, and the second
is associated with the length scale of the adsorption layer, given by tads

diff ∼ δ′2/D′
b.

Therefore, ω � 1 when tGM
diff � tdes, implying that bulk diffusion is significantly faster

in replenishing the bulk surfactant concentration as compared with desorption, resulting
in a kinetically limited coupling between the bulk and the interfacial surfactant transport.
The scenario corresponding to ω = 0 represents the so-called ‘decoupled limit’, where the
bulk diffusion is infinitely fast compared with the adsorption–desorption kinetics, and was
the paradigm investigated by Chen & Stebe (1996). On the other hand, ω ∼ O(1) implies
that bulk diffusion and interfacial adsorption–desorption occur at about the same rate,
which may lead to significant variations in the bulk surfactant concentrations around the
drop, as we show later. The key role played by the geometric mean of two distinct diffusion
times scales is not very dissimilar to what is observed in the case of charging–discharging
of electrical double layers where the resistance–capacitance time scale (tRC) becomes
important (Kilic, Bazant & Ajdari 2007). Akin to tGM

diff , tRC is also the geometric mean
of two diffusion times scales, one associated with the overall geometry and a second
associated with diffusion across the electrical double layer.

Table 2 shows that it is possible to write ω = BiPebδ. The Biot number may be expressed
as the ratio of advection and desorption time scales: Bi ∼ tadv/tdes, where tadv ∼ a′/uc.
Therefore, for small Bi, the desorption rate becomes very slow (tdes � 1), resulting in a
small value of ω. Similarly, the bulk Péclet number may be expressed as the ratio of the
bulk diffusion time scale (at the length scale of the drop) and the advective time scale:
Peb ∼ tdrop

diff /tadv . Hence, Peb → 0 entails very fast bulk diffusion (tdrop
diff → 0), resulting

in ω → 0, even when Bi /= 0. Finally, recall that the adsorption depth is defined as δ =
Γ ′

eq/(C
′∞a′). Therefore, δ → 0 refers to an infinitely large bulk concentration (C′∞ → ∞),
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such that any change in concentration because of adsorption–desorption near the interface
is instantaneously replenished by very fast local diffusion (i.e. tads

diff ∼ δ′2/D′
b → 0). This

will also result in ω → 0, without explicitly requiring Bi → 0.
In what follows, we seek to construct a combined semi-analytical and numerical

framework to solve the equations in § 2.4 for a finite speed of bulk diffusion (i.e. arbitrary
ω). The decoupled limit (ω = 0) is taken as the reference case. At the same time, we also
consider Bi, Pes and Peb to remain O(1) throughout the remainder of this article (which
also entails ω ∼ O(1) or larger). Table 2 exhibits that it is plausible for all of the above
parameters to assume O(1) values. We reiterate that in this article, the drop is assumed to
be spherical (on account of Ca � 1) and, therefore, O(Ca) corrections to the flow field
are not considered.

3.3. General framework for arbitrary values of ω

3.3.1. The flow field
The flow is axisymmetric and hence (2.4a,b) may be solved using the Stokes stream
function (Ψ ). In the bispherical coordinates, the velocity components in the ith fluid
(u = uξ îξ + uη îη) are related to the stream function Ψi as (Mandal et al. 2016; Lippera
et al. 2020b)

uξ,i = −L2

c2
0

∂Ψi

∂ν
, uη,i = − L2

αc2
0

√
1 − ν2

∂Ψi

∂ξ
. (3.2a,b)

Equation (2.4a,b) may then be expressed for the ith fluid (Happel & Brenner 1983) as
E2(E2Ψi) = 0, where E2 = ∂2/∂z2 + ρ(∂/∂ρ)[ρ−1(∂/∂ρ)] (Brenner 1961). The general
solution for Ψ in the bispherical coordinates is as follows (Stimson & Jeffery 1926; Lippera
et al. 2020b):

Ψi(ξ, ν, t) = L−3/2
∞∑

n=1

n(n + 1)Wn,i(ξ, t)C−1/2
n+1 (ν), (3.3)

where C−1/2
n+1 (ν) is the Gegenbauer polynomial of order n + 1 and degree −1/2, and the

functions Wn,1 and Wn,2 for, respectively, the outer and the inner fluids have the following
form:

Wn,1(ξ, t) = An(t) cosh
[(

n + 3
2

)
αξ

]
+ Bn(t) sinh

[(
n + 3

2

)
αξ

]

+ Cn(t) cosh
[(

n − 1
2

)
αξ

]
+ Dn(t) sinh

[(
n − 1

2

)
αξ

]
, (3.4a)

Wn,2(ξ, t) = En(t) e−(n+3/2)αξ + Fn(t) e−(n−1/2)αξ , (3.4b)

where the coefficients An to Fn are to be evaluated at each time instant t. Based on
(2.5), the boundary conditions for the velocity components at the droplet interface (ξ = 1)
become uξ,1 = uξ,2 = −Uîz · îξ and uη,1 = uη,2, while the stress balance condition takes
the following form:

τξη,1 − λτξη,2 − ζMa(cosh α − ν)
√

1 − ν2

c0(1 − ζΓ )

∂Γ

∂ν
= 0, (3.5)

where U is the droplet velocity (yet unknown) and τξη is the tangential component of the
viscous stresses, and its expression in bispherical coordinates is given in Appendix A. The
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Settling of a drop towards a wall in presence of surfactants

rest of the boundary conditions remain unchanged. As such, the boundary conditions at
the wall are uξ,1 = uη,1 = 0 at ξ = 0.

It is important to note that the coefficients An to Fn will be linear functions of
U, provided Γ is known in (3.5) – see the solution strategy discussed in § S1 in
the supplementary material available at https://doi.org/10.1017/jfm.2024.406, along with
(B8a,b) and the discussion before it in Appendix B.1. For instance, An(t) may be expressed
as An(t) = U1,1(t; n) + UU1,2(t; n); the remaining coefficients may also be written in a
similar form and their expressions are provided in Appendix B.1. The above boundary
conditions may be used to determine a set of algebraic equations governing the coefficients
An to Fn (or, equivalently, U1,1,U1,2, . . . , etc.) and these equations are included in
Appendix B.1 (see (B3) therein). For computing the solutions for the coefficients, we have
truncated the series in (3.3) after N1 terms (see § 3.5 for further details).

3.3.2. The droplet velocity (U) and position (h)

The droplet velocity is computed by carrying out an overall force balance. For quasi-steady
flow, the hydrodynamic drag force (F′

D) on the drop is balanced by the net gravitational
force (F′

G = gravity-buoyancy) at every instant. The drag force may be expressed as
(Mandal et al. 2016; Jadhav & Ghosh 2021a) F′

D = 2
√

2μ′
1a′ucπ

∑∞
n=1(An + Bn + Cn +

Dn)n(n + 1)/c0. The net gravitational force on the drop reads F′
G = 4πa′3g′(ρ′

2 − ρ′
1)/3,

where g′ is acceleration due to gravity. Now, using the definition for uc from table 1, the
overall force balance takes the form

∞∑
n=1

(An + Bn + Cn + Dn)n(n + 1) =
√

2c0. (3.6)

Upon using the appropriate form of the coefficients An–Fn as given in § 3.3.1 and
Appendix B.1 in the above, and subsequently truncating the summation after N1 terms,
the droplet velocity (U) may be computed.

The droplet position (h(t)) is then governed by the following equation: dh/dt =
−U(h(t)), which has to be solved at every time instant. However, (3.5) suggests that
the surfactant concentration (Γ ) will also appear in these equations and hence must be
determined, as discussed in the following.

3.3.3. The interface surfactant concentration (Γ )

The surfactant concentration on the droplet interface (ξ = 1) may be written as (Morozov
2020)

Γ (ν, t) =
∞∑

n=0

an(t)Pn(ν), (3.7)

where Pn(ν) is the Legendre polynomial of order n and degree 1 and the coefficients
a(t) = [a0(t), a1(t), . . .] are to be evaluated at each time instant t. Substituting (3.7) along
with the expressions for the velocity field from (3.2a,b) and the surface divergence and
gradient operators from Appendix A into (2.1) and subsequently using the identities
for the Gegenbauer (see (B2)) and the Legendre (see (B10a,b)) polynomials, the same
may be transformed into a system of ordinary differential equations (ODEs) provided in
Appendix B.2 (see (B11) therein).
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Upon using the orthogonality property of the Legendre polynomials, a set of ODEs for
the individual coefficients ar (r = 0, 1, 2, . . .) may be determined from (B11) as follows:

dar

dt
= 1

2
(2r + 1)Br(ν, t, a). (3.8)

The functional form of Br is provided in (B14). The above set of ODEs have been solved
using a fourth-order Runge–Kutta method by truncating the series in (3.7) after N2 terms
(see § 3.5 for further details).

3.3.4. The bulk surfactant concentration (C)

Taking hint from the general solution for the Laplace equation in bispherical coordinates
(Jeffery 1912) (see (C1) in Appendix C), we have chosen C to be of the following form,
such that its variations vanish at infinity (Lippera et al. 2020b):

C(ξ, ν, t) = 1 + L1/2
∞∑

n=0

bn(ξ, t)Pn(ν), (3.9)

where the functions bn(ξ, t) are to be determined. Upon substituting (3.9) into (2.2) and
using the identities for the Legendre polynomials (see (B10a,b)), (2.2) may be transformed
into a system of partial differential equations, reported as (B15) in Appendix B.3. Then
an equation governing the rth mode (i.e. br, r = 0, 1, 2, . . .) may be extracted from (B15)
using the orthogonality condition for the Legendre polynomials as follows:

2
2r + 1

∂br

∂t
+

∞∑
k=0

[
∂2bk

∂ξ2 Hkr(ξ, t) + ∂bk

∂ξ
Gkr(ξ, t) + bkDkr(ξ, t)

]
= 0. (3.10)

The expressions for the entities Hkr, Gkr and Dkr are provided in Appendix B.3 (see (B17)
therein). Similarly, the boundary conditions for C stated earlier (after (2.2)) may be recast
using (3.9) as

∞∑
k=0

(
(cosh (αξ)R0

kr − R1
kr)

∂bk

∂ξ
+
(

α sinh (αξ)

2
R0

kr + Vkr

)
bk

)∣∣∣∣
ξ=1

= Qr|ξ=1,

(3.11a)(
∂br

∂ξ
− r + 1

2r + 3
∂br+1

∂ξ
− r

2r − 1
∂br−1

∂ξ

)∣∣∣∣
ξ=0

= 0, (3.11b)

wherein the expressions for R0
kr,R1

kr,Vkr and Qr are included in Appendix B.3. Equations
(3.10) subject to (3.11) have been solved using an implicit finite difference scheme, by
truncating the series in (3.9) (and consequently (3.10) and (3.11a)) after N3 terms (see
§ 3.5 for further details).

3.4. The decoupled limit (ω = 0)

In the decoupled limit, the bulk surfactant concentration (C) satisfies an equation of
the form (2.2), subject to the initial condition C = 1 everywhere, the far-field condition
∇C → 0 and the no-flux condition at the wall îz · ∇C = 0 (at z = 0), while at the droplet
interface (ξ = 1), it satisfies (see (2.3)) −îξ · ∇C = 0. It is straightforward to deduce that
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Settling of a drop towards a wall in presence of surfactants

C = 1 satisfies the initial condition, all the boundary conditions as well as the governing
equation, and hence represents the solution to the bulk concentration. Therefore, in the
decoupled limit, bulk diffusion of surfactants is essentially an instantaneous process and
hence the interface always ‘sees’ a uniform bulk concentration field (Chen & Stebe
1996). As such it is straightforward to find the droplet velocity and interface surfactant
concentration for this scenario, by simply substituting C = 1 in the appropriate equations
appearing in §§ 3.3.1–3.3.3, while § 3.3.4 becomes redundant.

3.5. Solution methodology
In an effort to deduce a complete solution to the settling problem, we solve for the
coefficients appearing in the stream function in (3.4), the coefficients a(t) from (3.8), along
with (3.10) for the bulk concentration (subject to the conditions (3.11)). The step-by-step
solution strategy for the above set of equations is provided in § S1 of the supplementary
material. The discretized equations for bulk transport (i.e. (3.10) and (3.11)) are provided
in equations (S1) and (S2) in the supplementary material. Below we mention the choices
for a few important parameters, relevant to the numerical simulations.

• In all cases, the drop commences its descent from h0 = 12 and we terminate the
simulations when it reaches hend = 1.5.

• For computing the flow field and the drop’s velocity (see (3.3) and (3.6)), we
observe that N1 = 6 modes are sufficient when 5 ≤ h ≤ h0, whereas N1 = 10 for
hend ≤ h < 5. With regards to the surfactant transport (interfacial as well as bulk;
see (B11) and (B15)), we have chosen N2 = N3 = 15.

• In all simulations, a uniform time step of �t = 2 × 10−4 has been chosen.
• In all simulations, a uniform grid size of �ξ = 0.01, corresponding to the number of

grid points of Nξ = 101 has been chosen (see § S1.2 in the supplementary material).

Tests for grid independence (to fix Nξ ), time step independence (to fix �t) and mode
independence (to fix N1, N2 and N3) are included in § S2 of the supplementary material.

4. Results and discussion

Our main objective here is to probe the role of coupling between the bulk and interfacial
surfactant transport in the overall settling dynamics and how this interaction evolves
as the drop approaches a solid surface. We recognize that the transport of surfactant
depends on Pes and Peb. On the other hand, the impact of its solubility is captured by the
following parameters: (i) the Biot number (Bi), which controls the adsorption–desorption
of surfactants from the bulk; (ii) the adsorption number (K) as a function of interface
surfactant packing factor (ζ ), which controls the amount of surfactant present in the system
and also the adsorption–desorption flux; and lastly (iii) the bulk interaction parameter (ω),
which dictates how strongly the bulk and the interfacial surfactant transport are coupled.
In view of the fact that the impact of Peb and Pes on the settling dynamics has already
been reported in the literature (Wang, Papageorgiou & Maldarelli 1999; Muradoglu &
Tryggvason 2008; Jadhav & Ghosh 2022), we have fixed the values of both the Péclet
numbers as (unless otherwise mentioned) Pes = Peb = 5. Additionally, we have taken
λ = 0.2, Ma = 2 for the rest of this article, except in § 4.1. In what follows, we thus
focus on the variations in the settling kinetics caused by varying the Biot number (Bi),
the adsorption number (K) and the bulk interaction parameter (ω).

The rest of this section is arranged as follows. In § 4.1, we validate our methodology by
comparing its predictions with the existing literature as well as with simplified limits of
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Figure 3. (a) Comparison between our results (lines) and those of Chen & Stebe (1996) (symbols) for the
droplet velocity (U/UHR, where UHR = 2(λ+ 1)/(3λ+ 2) is the Hadamard–Rybczynski velocity) plotted
versus Biot number (Bi), for Ma = 0.5, 1 and 10 with Pes = 104, h = 103 and ω = 0. Other parameters are:
K = 20, λ = 0. (b) Comparison of Γ versus θ (radians) between our work (lines) and that of Chen & Stebe
(1996) (symbols), for Bi = 0.5, 1 and 5, with K = 0.5, Ma = 0.5; other parameters are the same as in (a).
(c) Comparison between numerical (§ 3.5, lines) and semi-analytical solutions for diffusion-dominated bulk
transport (Peb = 0) derived in Appendix C for �C = C − 1 plotted as a function of αξ , along ν = −1, 0 and
1 at h = 3. For the numerical solutions, we have taken Peb = 0.01. Other parameters are: ω = 2, Bi = 10, K =
10, Pes = 10, Ma = 1, λ = 0.2.

the paradigm considered herein. This is followed by § 4.2, where we explore the variations
in the bulk (C) and the interfacial (Γ ) surfactant concentrations. Finally, in § 4.3, we probe
the impact of the parameters mentioned above on the settling velocity of the drop.

4.1. Validation
We first compare our results for the droplet velocity with those of the study of Chen &
Stebe (1996), who analysed the impact of bulk solubility (through Bi) on the settling
velocity of an unbounded drop in the kinetically limited regime, which entails ω � 1
and C = 1. Hence, their analysis becomes identical to the decoupled limit (ω = 0,
but finite Bi) considered in the present work, when h � 1. Chen & Stebe (1996) also
ignored interfacial diffusion of surfactants which may be replicated in our work by
taking Pes � 1. Figure 3(a) compares the results between our work and that of Chen
and Stebe, for the normalized settling velocity of the drop (U/UHR, normalized by the
Hadamard–Rybczynski velocity UHR = 2(λ+ 1)/(3λ+ 2)) plotted as a function of Bi
for various choices of Ma (see legend). To replicate the physical scenario considered in
their study, we have chosen Pes = 104 � 1 and h = 103 � 1. Values of all other relevant
parameters are mentioned in the caption. It is evident that our results show excellent
agreement with those of Chen & Stebe (1996). It may be observed that a larger value
of Ma results in a slower settling velocity. This is, of course, expected, since a larger Ma
entails stronger variations in the surface tension (γ ), which tend to oppose the local flow
thus arresting the settling velocity in the process. The nature of variation in U with Bi is
discussed in the following in more detail.

The interfacial surfactant concentrations (Γ ) for the decoupled limit (ω = 0) computed
in the present work have also been compared with those reported by Chen & Stebe (1996),
for various choices of Bi, and this comparison is shown in figure 3(b). In Chen and Stebe’s
work, the drop was moving upwards (against gravity; see figure 1 in their paper) and,
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Settling of a drop towards a wall in presence of surfactants

therefore, the sense of θ has to be reversed for an apt comparison with our work. Again, we
note excellent agreement between the two sets of results. For Bi = 0.5, there is a relative
difference of ∼O(10−2) close to θ = π, which may be attributed to the differences in the
coordinate systems, the very nature of the equations (steady versus unsteady) as well as
the numerical methods used by Chen and Stebe and in the present work. It is observed that
increasing Bi reduces the non-uniformities in Γ across the interface.

It is also possible to validate the solutions for arbitrary ω to a limited extent, by
comparing the bulk surfactant concentration (C) with the simplified scenario Peb � 1,
which results in diffusion-dominated bulk transport, and makes it possible to derive
semi-analytical solutions for C. The bulk surfactant transport equation then reduces to
∇2C = 0 subject to the same boundary conditions as outlined in § 3.3.4. The associated
semi-analytical solution is included in Appendix C. Figure 3(c) shows the comparison
between the numerical and the semi-analytical solutions for �C = C − 1, plotted as a
function of αξ for various choices of ν = 1, 0 and −1 at h = 3. Values of all other relevant
parameters are mentioned in the caption. The numerical solutions have been computed
for Peb = 0.01. We observe very good agreement between the semi-analytical and the
numerical solutions, which reaffirms the validity of the methodology employed. It may
be noted that �C > 0 near the north pole of the drop (ν = 1) because of accumulation,
while it is negative near the south pole, indicating concentration depletion. A detailed
discussion of the reason behind such variations is presented further ahead. Finally, we have
also compared our results with those of Jadhav & Ghosh (2021a), where the settling of a
surfactant-laden (bulk-insoluble, Bi = ω = 0, and ideal ζ � 1) drop towards a wall was
considered in the limit Pes � 1. This comparison is included in § S3 in the supplementary
material. There, it is also verified that for bulk-insoluble surfactants (Bi = ω = 0), their
total mass at the interface is indeed conserved.

4.2. Variations in the surfactant concentration
Figure 4 exhibits the evolution of the bulk surfactant concentration as the drop approaches
the bounding wall. Figure 4(a–c) demonstrates the contours of C at three locations, h = 10,
h = 3 and h = 1.5. Figure 4(d) also shows the variations in C at h = 1.5 by magnifying
the region close to the drop. Figure 4(e) depicts the variations in the adsorption–desorption
flux (defined as n̂ · ∇C = ω[Cs(1 + K(1 − Γ )) − Γ ]) as a function of position along the
droplet surface (ξ = 1), represented by the polar angle θ . Values of all other relevant
parameters are mentioned in the caption.

It is evident from figure 4 that there is concentration accumulation near the north pole
of the drop and depletion near the south pole. The spatial extent of the accumulation and
depletion, however, evolves significantly as the drop settles towards the bounding wall.
When the drop is sufficiently far away from the wall (h = 10 in figure 4a), the two regions
seem to have similar sizes. However, as the drop approaches the wall, the spatial extent of
the depleted region seems to grow and this squeezes the zone of surfactant accumulation
into a small region near the north pole of the drop. At the same time, the change in local
concentration (�C = C − 1) due to depletion is also significantly larger as compared with
that due to accumulation.

The depletion and accumulation of the surfactants as mentioned above may be explained
by noting that the interfacial flow sweeps the surfactants from the southern hemisphere
(θ > π/2) towards the northern hemisphere (θ < π/2) of the drop. This leads to an
increase in the interfacial surfactant concentration near the north pole such that Γ > 1 at
θ = 0 (see figure 5). The opposite effect is observed near the south pole where Γ < 1 (at
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Figure 4. Contours of the bulk surfactant concentration (C) at (a) h = 10, (b) h = 3 and (c) h = 1.5.
(d) Contour of C close to the drop, at h = 1.5. (e) Variations in the adsorption–desorption flux (n̂ · ∇C =
ω[Cs(1 + K(1 − Γ )) − Γ ]) along the droplet interface (ξ = 1) with θ , for the same choice of positions as
in (a–c). The dotted black line is for zero flux. Other parameters are: ω = 0.5, Bi = 0.2 and K = 10.

θ = π). As a consequence, the northern hemisphere of the drop undergoes net desorption
(see (2.3)) which enhances the local bulk concentration. On the other hand, net adsorption
takes place in the southern hemisphere, which leads to a depletion in the local bulk
concentration. This variation in the adsorption–desorption flux along the interface is
clearly depicted in figure 4(e). It may also be noted from this panel that the overall rate
of adsorption is stronger than the rate of desorption, which explains the relatively large
change in the bulk concentration in the depleted region as compared with the region
of accumulation. Indeed, K = 10 ensures that in general, the rate of adsorption will be
higher than that of desorption, which will favour net adsorption of surfactants from the
bulk, as evident from figure 4. We also observe that the extent of concentration depletion
gets enhanced (see figure 4d) as the drop inches closer to the wall, simply because of a
relative lack of availability of surfactant particles in the bulk owing to the reducing distance
between the wall and the south pole of the drop. Figure 5 illustrates the variations in the
interfacial surfactant concentration (Γ , in figure 5a) and the bulk surfactant concentration
next to the droplet (i.e. C(ξ = 1, ν), in figure 5b) as a function of θ , for various choices
of Biot number Bi = 0.2, 0.9 and 5. The inset in figure 5(a) shows the corresponding
variations of the surface tension (γ ). Values of all other relevant parameters are mentioned
in the caption. It has been shown (Chen & Stebe 1996) that exchange of surfactants
between the bulk and the interface tends to reduce the non-uniformities in the interfacial
surfactant concentration and thereby the Marangoni stresses. Therefore, for small values
of Bi (such as 0.2), which indicates weak interactions between the interface and the bulk,
Γ shows a relatively larger variation, as evident from figure 5(a); this variation gradually
reduces as Bi is enhanced. At the same time, we observe a strong correlation between
the bulk surfactant concentration at the interface and Γ in figure 5(b). This is indeed in
complete agreement with figure 4 and the associated discussion, where it was pointed out
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Figure 5. (a) Interfacial surfactant concentration (Γ ) versus θ for various choices of Bi = 0.2, 0.9 and 5. The
inset shows surface tension (γ ) versus θ for the same parameters as in the main panel. (b) Bulk surfactant
concentration near the droplet interface (C(ξ = 1, ν)) versus θ for the same choice of parameters as in (a).
Other parameters are: K = 0.1, h = 1.5, ω = 0.5.

that a relatively larger Γ would lead to a larger C because of local desorption, while the
opposite is true when Γ drops below 1.

4.3. Impact of bulk solubility on droplet motion
Figure 6 illustrates the impact of the bulk interaction parameter (ω) on the settling velocity
of the drop close to the wall (h = 1.5). Figure 6(a) shows the variations in the droplet
velocity (U/UHR) with Bi and its inset plots the relative change in the drop velocity,
defined as (U − Uω=0)/UBi=0, also as a function of Bi. In the inset, the velocity change
is computed relative to the scenario Bi = 0 where the interactions between the bulk and
the interface are absent. Figures 6(b) and 6(c), respectively, depict the variations in Γ and
C(ξ = 1, ν) (bulk concentration next to the interface) for Bi = 0.9 at the same position
as in figure 6(a). The inset in figure 6(b) shows the corresponding variation in the surface
tension as a function of θ . In all panels, we have considered ω = 0 (infinitely fast bulk
diffusion), 0.5, 5 and 10; values of all other relevant parameters are mentioned in the
caption.

When ω = 0, the bulk surfactant concentration remains uniform because of infinitely
fast bulk diffusion (as evident from figure 6c; also see § 3.4) and any exchange of
surfactant between the bulk and the interface because of adsorption–desorption will tend
to equalize the interfacial concentration. This will reduce the impact of the Marangoni
stresses, resulting in remobilization of the drop. Indeed, we observe from figure 6(a) that
U increases significantly with Bi and similar variations have also been reported in prior
literature (Chen & Stebe 1996). On the contrary, when ω > 0, the transport of surfactants
in the continuous phase, characterized by a finite diffusion time, tends to slow down
the mass transfer rate between the interface and the bulk and thus reduces the extent of
remobilization. The reason for such behaviour may be understood by referring to figure 4
(also see figure 6c), where the occurrence of net desorption near the north pole of the
drop (leading to surfactant accumulation) and net adsorption near the south pole (leading
to surfactant depletion) were noted. The higher bulk concentration at the north pole will
naturally hinder any further desorption, while a lower bulk concentration near the south
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Figure 6. (a) Droplet velocity (U/UHR) versus Bi for various choices of ω = 0 (fast bulk diffusion), 0.5, 5 and
10. The inset plots (U − Uω=0)/UBi=0 for the same parameters as in the main panel. (b) Interfacial surfactant
concentration (Γ ) versus θ for Bi = 0.9 and same choices of ω as in (a). The inset plots surface tension (γ )
versus θ . (c) Bulk surfactant concentration near the droplet interface (C(ξ = 1, ν)) versus θ for Bi = 0.9, for
the same choices of ω as in (a). Other relevant parameters are: K = 10, h = 1.5.

pole will also slow down the rate of adsorption from the bulk. As a consequence, a
finite mean bulk diffusion time, in the present scenario, will naturally oppose any mass
exchange between the interface and the bulk, which will enhance the non-uniformity in the
interfacial surfactant concentration (Γ ) and thereby the surface tension (γ ). This enhanced
non-uniformity in Γ as well as γ with increasing ω is clearly depicted in figure 6(b)
and its inset. One may thus infer that the changes in Γ caused by ω > 0 will strengthen
the Marangoni stresses, resulting in a smaller droplet velocity, as is indeed observed in
figure 6(a).

Figure 6(a) shows that there is an almost 30 % reduction in the droplet velocity (for
ω = 10) as compared with a scenario where the impact of bulk transport of surfactants is
neglected. It is thus evident that bulk transport and in particular finite bulk diffusion time
may indeed have a significant impact on the settling velocity and may restrict the gains
in speed caused by the exchange of surfactants between the interface and the bulk. It is
worth noting that (see § 3.2) ω ≥ 1 implies a diffusion-limited mass exchange between
the drop and the surrounding fluid, which will augment the depletion or accumulation of
surfactants close to the drop and therefore hinder the adsorption–desorption process. From
the expression for ω (= PebBiδ), one may infer that fast desorption kinetics (Bi � 1) or
weak bulk diffusion (Peb � 1) may further enhance the impact of bulk transport on the
settling velocity, while an elevated bulk concentration (i.e. a higher solubility) will imply
δ � 1 and thus will reduce the influence of bulk transport on the drop’s motion.

Interestingly, the inset in figure 6(a) reveals that the relative change in the droplet
velocity shows a non-monotonic variation with Bi and is maximal in magnitude when
Bi ∼ O(1), at least for ω � O(1) (a similar trend is also observed for ω = 0.2, although not
shown here for brevity). The precise magnitude of Bi at which these maxima appear seems
to possibly shift towards the right (and outside the range of Bi shown here) with increasing
ω. For a fixed ω, when Bi � 1, the adsorption–desorption rates are too small such that the
bulk transport of surfactants has little impact on the interfacial concentration, and therefore
on the drop velocity as well. On the other hand, when Bi � 1, the adsorption–desorption
processes quickly restore the interfacial concentration (Γ ) to 1 (see the Γ versus θ curve
for Bi = 5 in figure 5a) despite there being depletion or accumulation of surfactants in the
bulk and thus again reduce the impact of ω (i.e. bulk transport) on the drop’s movement. It
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Figure 7. (a) Droplet velocity (U/UHR) versus Bi for various adsorption numbers K = 0.1, 1 and 10,
corresponding to the surfactant packing factors ζ = K/(1 + K) = 0.0909, 0.5 and 0.909, respectively. The
inset plots the velocity ratio U/UBi=0 for the same parameters as in the main panel. (b) Ratio of the interfacial
surfactant concentration to its maximum possible value (Γ ′/Γ ′∞) versus θ for Bi = 0.9 and the same choices
of K as in (a). The inset shows the ratio of surface tension of a surfactant-laden drop to that of a clean drop
(γ ′/γ ′

s ) versus θ for the same parameters as the main panel. (c) Bulk surfactant concentration near the droplet
interface (C(ξ = 1, ν)) versus θ for Bi = 0.9 and the same choices of K as in (a). Other relevant parameters
are: ω = 0.5, h = 1.5.

thus seems plausible that there exists an intermediate Bi ∼ O(1), for which the impact of
finite mean bulk diffusion time on the overall settling kinetics is maximized, corresponding
to a specific choice of ω.

Figure 7 demonstrates the impact of surfactant packing at the interface on the settling
velocity of the drop close to the wall (h = 1.5). Figure 7(a) shows the variations in
U/UHR as a function of Bi; figures 7(b) and 7(c), respectively, depict the variations in
ζΓ (where ζ = K(1 + K)−1) and C(ξ = 1, ν) as functions of θ for Bi = 0.9. The insets
in figures 7(a) and 7(b), respectively, exhibit the variations in U/UBi=0 and γ /γR, where
γR is the surface tension at a clean interface. In all three panels, the variations are shown for
three choices of adsorption number (K = 0.1, 1 and 10), which amount to three distinct
equilibrium surfactant packing values: ζ = K/(1 + K) = 0.0909, 0.5 and 0.909. These,
respectively, represent weakly packed, moderately packed and densely packed interfaces.
Therefore, ζΓ in figure 7(b) indicates the ratio of interfacial surfactant concentration to the
maximum possible concentration. Values of all other relevant parameters are mentioned
in the caption.

From figure 7(a), it is observed that a more densely packed interface (i.e. a larger
K) leads to a reduction in the drop velocity. At the same time, the impact of
adsorption–desorption (characterized by Bi) on the settling velocity is also maximized
when the interface is densely packed. This is evident from the inset in figure 7(a),
from which it may be noted that the increment in the velocity upon increasing Bi from
0.02 to 5 is the largest when K = 10. The reason for this may be explained based on
figure 7(b), which establishes that in the dilute concentration limit (ζ = 0.0909, K = 0.1),
the product ζΓ assumes a relatively small value across the interface with an average
≈ 0.1 and the resulting surface tension is the closest to its clean interface value (see the
inset). The reverse is true for a densely packed interface – see the variations in ζΓ for
K = 10 (or ζ = 0.909). Now, recall that the Marangoni stresses at the interface (using
the Langmuir adsorption isotherm) may be written as (see (2.5c) and (2.6)) ∇sγ /Ca =
−Ma∇s{ζΓ (1 − ζΓ )−1}, which is significantly weakened in the dilute concentration
limit (ζΓ � 1) and therefore should have little impact on the droplet velocity. On the
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Figure 8. (a) Droplet velocity (U/UHR) versus Bi at various heights: h = 1.5, 3 and 10. The inset plots the
velocity ratio U/UBi=0 for the same parameters as in the main panel. (b) Plot of Γ versus θ for Bi = 0.2 and
the same choices of h as in (a). The inset shows γ versus θ for the same parameters as in the main panel. (c) Bulk
surfactant concentration near the droplet interface (C(ξ = 1, ν)) versus θ for Bi = 0.2 and the same choices of
h as in (a). The inset plots the net adsorption flux onto the interface (defined as Jkin = Bi[KCs(1/ζ − Γ ) − Γ ];
see (2.1)) versus θ for the same parameters as in the main panel. Other relevant parameters are: K = 10, ω =
0.5.

contrary, when ζΓ → 1, |∇sγ /Ca| can become large and thus the settling velocity in
such a scenario is naturally expected to exhibit stronger variations with Bi as compared
with the dilute concentration limit. The above argument also establishes why U should
decrease with K.

Interestingly, figure 7(c) reveals that the bulk surfactant concentration around the drop
tends to become more uniform when the interface is more densely packed. The reason
may be attributed to the fact that for densely packed interfaces ζΓ = Γ ′/Γ ′∞ → 1. Now,
if one considers a small deviation in the local bulk concentration around its equilibrium
value (Cs → 1), it follows from (2.3) that the adsorption–desorption flux may be written as
n̂ · ∇C ∼ ω(1 + K)(1 − Γ ). However, since the interface is already densely packed, the
scope of any further variation in Γ is relatively small, which results in a nearly uniform
profile with Γ → 1 as shown in figure 7(b). Hence, the adsorption–desorption fluxes,
which are proportional to (1 − Γ ), will become small in this scenario. Recalling that it
is this mass exchange between the interface and the bulk which causes the concentration
variations in the bulk, a larger interfacial packing will naturally reduce variations in C and
make the bulk concentration more uniform in the process.

Figure 8 illustrates how the presence of a bounding wall influences the settling velocity
of the drop. Figure 8(a) plots U/UHR versus Bi at various distances from the wall (h =
1.5, 3 and 10) and the inset depicts the ratio U/UBi=0 as a function of Bi. Figures 8(b)
and 8(c), respectively, demonstrate the variations in Γ and C(ξ = 1, ν) for Bi = 0.2 at
those same distances from the wall. The inset in figure 8(b) showcases the associated
variations in the surface tension as a function of θ , while the inset in figure 8(c) depicts
the variations in the net adsorption flux onto the interface defined as Jkin = Bi[KCs(1/ζ −
Γ ) − Γ ] (see (2.1)) at the same positions of the drop as in figure 8(a). Values of all other
relevant parameters are mentioned in the caption.

Figure 8(a) clearly shows that the drop gradually slows down as it moves closer
to the wall and in fact decelerates rapidly when h < 3 – such behaviour is of course
intuitive and has indeed been reported in many prior studies (Wacholder & Weihs 1972;
Jadhav & Ghosh 2021a). The inset, however, reveals that closer to the wall, the impact

987 A41-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.406


Settling of a drop towards a wall in presence of surfactants

of adsorption–desorption in remobilizing the drop gets maximized as compared with a
scenario with only bulk-insoluble surfactants (Bi = 0). The reason may be understood by
examining figure 8(b,c), from which it becomes evident that close to the wall, surfactant
accumulation near the north pole gets reduced, whereas the extent of depletion near the
south pole becomes more intense (see figure 4 and the related discussion). The inset in
figure 8(c) reveals the reason for this apparent asymmetry; it is observed that the magnitude
of the desorptive fluxes (where Jkin < 0) near the north pole is weaker than that of the
adsorptive fluxes (Jkin > 0) near the south pole, resulting in an overall decrease in C. At
the same time, the movement of the surfactants along the interface towards the north pole
also diminishes thanks to a decelerating flow close to the wall. The kinetics described
above results in an overall reduction in Γ when the drop approaches the wall, as is indeed
observed in figure 8(b). Moreover, this same panel also reveals that the profile of Γ and
thereby that of γ (Γ ) gets flattened close to the wall (also see the inset in figure 8b), which
reduces the Marangoni stresses across a large part of the interface, except a relatively small
region near the south pole (verified by examining the variations in ∇sγ versus θ , although
not shown here for brevity). Similarly, a larger Bi (increased rate of desorption) also helps
reduce the variability in Γ (and also γ ) across the interface, leading to a flattened profile
for the same. Therefore, the presence of the wall and mass exchange between the interface
and the bulk both tend to flatten the profile of Γ , thereby aiding each other towards
reducing the Marangoni stresses, which speeds up the drop in relative terms. This explains
why the impact of adsorption–desorption processes towards remobilizing the drop gets
enhanced close to the wall.

Figure 9 shows the evolution of the droplet dynamics as it settles towards the wall,
and illustrates the roles played by Bi (figure 9a,d), K (figure 9b,e) and ω (figure 9c, f ) in
the overall settling kinetics. Figure 9(a–c) plots the variations in the droplet position (h)
with time (t), while figure 9(d–f ) exhibits the drop’s velocity (U/UHR) as a function of
its position (h) during the course of settling. Values of all other relevant parameters are
mentioned in the caption.

Figure 9 reaffirms the physics of settling discussed in figures 6–8. Figure 9(d–f )
clearly depicts that the drop slows down continuously while moving towards the wall
and undergoes a somewhat rapid deceleration close to the wall (h(t) ≤ 4), indeed as
discussed earlier in relation to figure 8(a). Figure 9(a,d) demonstrates that a stronger
adsorption–desorption between the interface and the bulk results in a faster settling
velocity, while figure 9(b,d) confirms that a more densely packed interface would slow
down the drop – these are in agreement with figures 6 and 7, respectively. Similarly,
figure 9(c,f ) also validates (see the discussion associated with figure 6) that the presence
of bulk transport, whose impact is embedded within ω, indeed slows down the drop
throughout its course of motion. The role played by bulk transport may thus have important
fundamental and practical consequences in terms of synthesis and choice of surfactants
and this remains one of the most novel findings of this article. In fact, table 2 depicts
that given the large range of possible values that ω may assume, bulk transport may
become one of the most important factors controlling droplet motion in the limit of strong
interactions between the interface and the surrounding fluid.

5. Conclusion

In this article, the dynamics of a droplet settling towards a bounding wall in the presence of
bulk-soluble surfactants (with concentrations below the critical micelle concentration) has
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Figure 9. Droplet position (h) versus t for (a) various Bi (= 0.2, 0.9 and 5) with K = 10, ω = 0.5,
(b) various K (= 0.1, 1 and 10) with Bi = 0.9, ω = 0.5 and (c) various ω (= 0, 5 and 10) with Bi = 0.9,

K = 10. (d) Droplet velocity (U/UHR) versus h for the same parameter settings as in (a). (e) Droplet velocity
(U/UHR) versus h for the same parameter settings as in (b). ( f ) Droplet velocity (U/UHR) versus h for the same
parameter settings as in (c).

been analysed. The interfacial transport of surfactants as well as their exchange between
the bulk and the drop surface are assumed to obey the Langmuir isotherm. The strength
of this interaction is characterized by the Biot number (Bi), which dictates the rate of
interfacial adsorption–desorption, and the bulk interaction parameter (ω), which depends
on Bi, the bulk transport (Peb) and the adsorption depth (δ). We construct a combined
semi-analytical and numerical framework for arbitrary values of ω, using Gegenbauer and
Legendre polynomials as the eigenfunctions to represent the velocity field, the interfacial
and the bulk surfactant concentrations in a bispherical coordinate system. The kinetically
limited regime of ω = 0 (also called as the decoupled limit) is also analysed as a reference
case. The Péclet numbers associated with both bulk and interfacial transport are assumed
to be O(1) and this makes the problem inherently unsteady in nature. The fluid flow,
however, is assumed to be viscosity-dominated and quasi-steady, while the drop is assumed
to remain spherical because of a small capillary number (Ca � 1). Our framework has
been extensively validated by comparing a few special cases of our results with the existing
literature.

Several interesting conclusions may be reached based on the results of the present study.
It is observed that the bulk solubility of the surfactants results in mass exchange between
the interface and the surrounding fluid through adsorption–desorption (characterized by
Bi), which helps reduce the non-uniformities in the interfacial surfactant concentration.
This results in a more uniform surface tension which reduces the Marangoni stresses, and
therefore helps remobilize the drop. When the mass exchange is kinetically limited (tdes �
tGM
diff and ω → 0), the bulk concentration remains uniform thanks to an asymptotically

fast bulk diffusion. However, when ω ∼ O(1), the rate of bulk diffusion becomes finite,
and then considerable depletion in the surfactant concentration (in the bulk) near the
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Settling of a drop towards a wall in presence of surfactants

southern hemisphere and accumulation near the northern hemisphere of the drop are
observed. Presence of the wall introduces an asymmetry in this concentration variability,
by aiding the region of depletion expand around the drop, which diminishes the extent of
(bulk) surfactant accumulation near the top as the drop approaches the wall. We further
show that a finite ω hinders the adsorption–desorption process and therefore restricts the
remobilization of the drop by increasing the variability in Γ . Indeed, we report a relative
change in the drop velocity of up to 30 %, driven solely by the bulk transport processes.
It is thus argued that in the case of a diffusion-limited adsorption–desorption process, the
bulk transport may potentially play a crucial role in dictating the settling velocity of the
drop.

The extent of surfactant packing at the interface also influences the settling velocity
to a significant extent. It is shown that overall, a larger concentration of surfactants,
characterized by a large adsorption number (K), generally leads to stronger Marangoni
stresses and thus results in a relatively slower motion of the drop. At the same time, the
presence of the wall and the adsorption–desorption processes between the bulk and the
interface seem to aid each other towards remobilizing the drop, when compared with a
scenario with only bulk-insoluble surfactants.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.406.
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Appendix A. Important equations in bispherical coordinates

Expression for the velocity of a point with fixed (ξ, η) coordinates (χ̇) appearing in (2.1)
may be evaluated based on (3.1a,b) and has the following expression (Happel & Brenner
1983):

χ̇ = �1

{
∂ρ

∂t
∂ρ

∂(αξ)
+ ∂z

∂t
∂z

∂(αξ)

}
îξ + �2

{
∂ρ

∂t
∂ρ

∂η
+ ∂z

∂t
∂z
∂η

}
îη. (A1)

Expression for the tangential component of the viscous stresses (τξη) appearing in (3.5)
for the ith fluid reads (Wacholder & Weihs 1972; Jadhav & Ghosh 2021b)

τξη,i = �2

{
∂ ûη,i

∂(αξ)
− �1ûξ,i

∂(1/�2)

∂η

}
+ �1

{
∂ ûξ,i

∂η
− �2ûη,i

∂(1/�1)

∂(αξ)

}
. (A2)

In connection with § 3.3.3, we note that in bispherical coordinates, the surface gradient
operator reads (Happel & Brenner 1983) ∇s = îη�1∂η + îφ�3∂φ (where ∂x ≡ ∂/∂x), and
for any vector V (V = Vξ îξ + Vη îη + Vφ îφ), the surface divergence (∇s · V ) has the
expression (Jadhav & Ghosh 2021a) ∇s · V = �1�2�3[∂η(Vη/�2�3) + ∂αξ (Vξ /�1�3)] −
�1�2Vη∂η(1/�2) − �2∂αξ Vξ .
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Appendix B. Details of the equations appearing in § 3.3

B.1. Detailed equations for the velocity field
We make use of the following orthogonality relations and identities for the Gegenbauer
polynomials (Leal 2007):

∫ 1

−1

C−1/2
n+1 (ν)C−1/2

p+1 (ν)

1 − ν2 dν = 2δnp

n(n + 1)(2n + 1)
, (B1)

1 − ν2

L1/2 =
∞∑

n=1

Gn(ξ, t)n(n + 1)C−1/2
n+1 (ν),

where Gn(ξ, t) =
√

2

[
e−(n−1/2)αξ

2n − 1
− e−(n+3/2)αξ

2n + 3

]
(B2)

and L(ξ, ν, t) = cosh (α(t)ξ) − ν. The boundary conditions at the droplet surface (ξ = 1)
and the wall (ξ = 0) are simplified as described in § 3.3.1, to arrive at the following system
of six linear algebraic equations for An–Fn:

An + Cn = 0, (B3a)

Bn(2n + 3) + Dn(2n − 1) = 0, (B3b)

AnNn + BnN̂n + CnMn + DnM̂n = UIn, (B3c)

(2n + 3)[AnN̂n + BnNn + EnZn] + (2n − 1)[CnM̂n + DnMn + FnẐn] = 0, (B3d)

EnZn + FnẐn = UIn, (B3e)

(2n + 3)2[AnNn + BnN̂n − λEnZn] + (2n − 1)2[CnMn + DnM̂n − λFnẐn] = J̃n + UĨn,
(B3f )

where following notations have been used:

Nn = cosh
[(

n + 3
2

)
α

]
, N̂n = sinh

[(
n + 3

2

)
α

]
, Mn = cosh

[(
n − 1

2

)
α

]
,

(B4a–c)

M̂n = sinh
[(

n − 1
2

)
α

]
, Zn = e−(n+3/2)α, Ẑn = e−(n−1/2)α, (B5a–c)

In = c2
0√
2

[
Ẑn

2n − 1
− Zn

2n + 3

]
, Ĩn = (1 − λ) c2

0√
2

[(2n − 1)Ẑn − (2n + 3)Zn],

(B6a,b)

J̃n = −2(2n + 1)

∫ 1

−1

ζMac2
0K1

(1 − ζΓ )L1/2|ξ=1

C−1/2
n+1 (ν)

1 − ν2 dν. (B7)

The expression for K1 is provided in (B13a,b).
As per the numerical solution methodology outlined in § S1 of the supplementary

material, at every time step Γ is determined first. As a result, in (B3), J̃n is known,
and therefore the coefficients (An to Fn) may be written as a linear function of U, as
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Settling of a drop towards a wall in presence of surfactants

already shown for An in § 3.3.1. Here we show two more examples, while the remaining
coefficients also follow a similar pattern:

Bn(t) = U2,1(t; n) + UU2,2(t; n), Cn(t) = U3,1(t; n) + UU3,2(t; n), etc. (B8a,b)

B.2. Detailed equations for the interfacial surfactant concentration
We make use of the following orthogonality relations and identities satisfied by the
Legendre polynomials (Leal 2007):∫ 1

−1
Pn(ν)Pp(ν) dν = 2δnp

2n + 1
, (B9)

d
dν

[
(1 − ν2)

dPn

dν

]
+ n(n + 1)Pn = 0, (1 − ν2)P ′

n(ν) = n(n + 1)C−1/2
n+1 (ν).

(B10a,b)

The system of ODEs for a(t) as mentioned in § 3.3.3 have the following form (at ξ = 1):
∞∑

n=0

dan

dt

∣∣∣∣
ξ=1,η

Pn(ν) = X (ν, t)S1(ν, t, a) + Y(ν, t)S2(ν, t, a)

+ 1
Pes

S3(ν, t, a) + BiS4(ν, t, a) + S5(ν, t, a) = R(ν, t). (B11)

Here, X ,Y and S1 to S5 depend on the drop’s position (h(t)) and therefore are implicit
functions of t. Their functional forms are as follows:

X (ν, t) =
∞∑

n=1

(
1
α

dWn,2

dξ
− Uc2

0
2α

dGn

dξ

)∣∣∣∣∣
ξ=1

n(n + 1)C−1/2
n+1 (ν), (B12a)

Y(ν, t) =
∞∑

n=1

(
1
α

dWn,2

dξ
− Uc2

0
2α

dGn

dξ

)∣∣∣∣∣
ξ=1

n(n + 1)Pn(ν), (B12b)

S1(ν, t, a) = −K1
L3/2|ξ=1

(1 − ν2)c3
0

− Γ
L1/2|ξ=1

2c3
0

, (B12c)

S2(ν, t, a) = Γ
L3/2|ξ=1

c3
0

, (B12d)

S3(ν, t, a) = L2|ξ=1

c2
0

(
−K2

1 − ζΓ
+ ζ

1 − ν2

[ K1

1 − ζΓ

]2
)

, (B12e)

S4(ν, t, a) = Cs[1 + K(1 − Γ )] − Γ, (B12f )

S5(ν, t, a) = K1

(
ċ0

c0
cosh α + U

)
. (B12g)

Here, Gn satisfies the identity in (B2), ċ0 = dc0/dt and K1,K2 represent the following
summations:

K1 =
∞∑

n=0

ann(n + 1)C−1/2
n+1 (ν); K2 =

∞∑
n=0

ann(n + 1)Pn(ν). (B13a,b)
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Following § 3.3.3, upon applying the orthogonality properties of the Legendre polynomials
(equation (B9)), the functional form of Br appearing in (3.8) for the coefficients ar
becomes

Br =
∫ 1

−1
R(ν, t)Pr(ν) dν. (B14)

B.3. Detailed equations for the bulk surfactant concentration
The system of partial differential equations mentioned in § 3.3.4 have the following form:

∞∑
n=0

[
∂bn

∂t
Pn(ν) + ∂2bn

∂ξ2 F1,n(ξ, ν, t) + ∂bn

∂ξ
F2,n(ξ, ν, t) + bnF3,n(ξ, ν, t)

]
= 0, (B15)

where F1,n, F2,n and F3,n are implicit functions of t and their expressions are given as
follows:

F1,n(ξ, ν, t) = −L2

Pebα2c2
0
Pn(ν), (B16a)

F2,n(ξ, ν, t) =
[

ċ0ν sinh (αξ)

αc0
− α̇ξ

α
+ uξ,1L

αc0

]
Pn(ν), (B16b)

F3,n(ξ, ν, t) =
[ L2

Pebc2
0

(
n + 1

2

)2

+ uξ,1 sinh (αξ) + uη,1
√

1 − ν2

2c0

+ ċ0

c0

(1 + ν cosh (αξ))

2

]
Pn(ν) −

[
uη,1L

c0
√

1 − ν2
+ ċ0

c0
cosh (αξ)

]
n(n + 1)C−1/2

n+1 (ν),

(B16c)

where α̇ = dα/dt and uξ,1, uη,1 are computed from the solutions for Ψ1, using (3.2a,b).
The expressions for Hkr, Gkr and Dkr appearing in (3.10) are

Hkr(ξ, t) =
∫ 1

−1
F1,kPr dν = −1

Pebα2c2
0

[cosh2 (αξ)R0
kr − 2 cosh (αξ)R1

kr + R2
kr],

(B17a)

Gkr(ξ, t) =
∫ 1

−1
F2,kPr dν, Dkr(ξ, t) =

∫ 1

−1
F3,kPr dν. (B17b)

With regards to (B17a), we have further defined Ri
kr = ∫ 1

−1 νiPkPr dν. The expressions
for Vkr and Qr appearing in (3.11) are as follows:

Vkr =
∫ 1

−1
ωαc0(1 + K(1 − Γ ))PkPr dν, Qr =

∫ 1

−1

−ωαc0(1 + K)(1 − Γ )

L1/2|ξ=1
Pr dν.

(B18a,b)

Appendix C. Solution for the bulk concentration for diffusion-dominated transport
(Peb = 0)

For diffusion-dominated bulk surfactant transport, which entails Peb � 1, the
concentration satisfies ∇2C = 0, subject to the same conditions outlined in § 2.4.

987 A41-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.406


Settling of a drop towards a wall in presence of surfactants

Therefore, it then becomes possible to write a semi-analytical solution for C which may
be used to validate the numerical results for the limiting case Peb � 1. To this end, we
appeal to the known solution to the Laplace equation in bispherical coordinates, which
reads (Jeffery 1912)

C(ξ, ν, t) = 1 + L1/2
∞∑

n=0

(a∗
n(t) e(n+1/2)αξ + b∗

n(t) e−(n+1/2)αξ )Pn(ν), (C1)

where a∗
n(t) and b∗

n(t) are yet to be evaluated. Equation (C1) is subject to ∂C/∂ξ = 0 at
ξ = 0 (wall), which leads to a∗

n = b∗
n. Therefore, C may be written as

C(ξ, ν, t) = 1 + L1/2
∞∑

n=0

c∗
n(t) cosh

[(
n + 1

2

)
αξ

]
Pn(ν). (C2)

At the droplet interface (ξ = 1), C satisfies (see § 2.4) −îξ · ∇C = ω(C(1 + K(1 −
Γ )) − Γ ), which may be used along with the orthogonality relations for the Legendre
polynomials to write an equation for the rth mode:

∞∑
k=0

c∗
k

[
R0

kr

(
sinh α

2
cosh

[(
r + 1

2

)
α

]
+
(

r + 1
2

)
cosh α sinh

[(
r + 1

2

)
α

])

+ cosh
[(

k + 1
2

)
α

]Vkr

α
− R1

kr

(
k + 1

2

)
sinh

[(
k + 1

2

)
α

]]
= Qr

α
, (C3)

where R0
kr,R1

kr,Vkr and Qr have been defined in Appendix B.3. The above equation
is truncated after N3 terms (or modes) which would yield the same number of linear
equations for the N3 + 1 unknown coefficients c∗

r (r = 0, 1, . . . , N3) and may be solved
to deduce C. The rest of the equations (i.e. for velocity field and Γ ) remain identical to
those described in §§ 3.3.1 and 3.3.3. Parameter Γ is still deduced numerically using the
Runge–Kutta method (see § 3.3.3).
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