
30

Beyond the SVZ expansion

30.1 Tachyonic gluon mass

We have extensively discussed power corrections related to the IR regions, where the phys-
ical picture is simply the increase of the running coupling at large distance. Unconventional
1/Q2 corrections which go beyond this simple picture have been also analysed in the litera-
ture [161,162,342,341,329,344]. A lattice calculation of [487] shows that the 1/Q2 correc-
tion arises within a dispersive approach or from a removal of the Landau pole of the running
coupling [162,488]. We have sketched this point when presenting the UV renormalons in
the previous chapter. Following the presentation in [162], the leading UV renormalon gives
the series expansion:

F =
( ∑

n

anαs(Q2)

)
U V

=
∑

n

n!(−b0)nαn
s (Q2) . (30.1)

Using its Borel transform, one has the integral representation:

B[F] =
∫

dz exp(−z)
(αsb0z)N

1 + αsb0z
, (30.2)

where N = 1/b0αs is the value of n for which the absolute value of the terms reaches its
minimum. The integral is of the form:

(
anα

n
s (Q2)

)
n=N

� 1

2

�2

Q2
, (30.3)

where one can notice that the correction comes from the large virtual momenta p2 ∼
Q2 exp(N ), which is very different with the case of IR renormalon. However, in a theory
such as lattice, which possesses an intrinsic UV cut-off, this effect can be irrelevant. There-
fore, the alternative dispersive approach of the coupling can be used. The coupling can be
parametrized as:

1

ln Q2/�2
→ 1

ln Q2/�2
− �2

Q2 − �2
. (30.4)

This modification can be justified if one argues that at finite order of perturbation theory
the coupling satisfies dispersion relations with cuts at physical s > 0. More explicitly, one
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330 VII Power corrections in QCD

has:
∑

n

anαs(Q2) →
∑

n

anαs(Q2) −
∑

n

ann!bn
0
�2

Q2
. (30.5)

In the case:

an = n!(−b0)n , (30.6)

the power correction in the second term is still poorly defined. Taking its Borel transform,
one obtains: (∑

n

(−1)n �2

Q2

)
Borel

= 1

2

�2

Q2
, (30.7)

showing that the power corrections from the procedures in Eqs (30.2) and (30.5) are the
same, which may indicate that the Borel summation of the UV renormalon series and the
removal of the Landau pole from dispersion relation can be intimately connected.

Another issue is the short distance (r � �) modification of the QCD potential, which
becomes (k is the string tension):

lim
r→0

V (r ) = −CF
αs(r )

r
+ kr , (30.8)

while in standard QCD, the leading power correction at short distance is r2. This leads to
the introduction of new small-size non-perturbative corrections and of a new picture of the
QCD vacuum. In [161] one discusses this modification of the standard picture in terms of the
phenomenology of the tachyonic gluon mass which is assumed to mimic the short-distance
non-perturbative effects of QCD. We have seen previously that the 1/Q2 corrections to DIS
can be explained from the IR region and is consistent with the OPE. In this picture, the
constant term of the linear correction can be expressed as [162]:

k ≈ −4

6
αsλ

2 , (30.9)

where λ2 < 0 is the tachyonic gluon mass. In this framework, the standard picture of the
OPE within the SVZ expansion gets modified due to the presence of the new 1/Q2 term. A
systematic evaluation of this contribution using Feynman diagrams has been developed in
CNZ. For the current–current two-point functions, it corresponds, to lowest order in αs , to
the evaluation of the diagram in Fig. 30.1.

. . .+

Fig. 30.1. Lowest order diagram contributing to 1/Q2. The cross in the gluon propagator corresponds
to the tachyonic gluon mass insertion λ2.
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30 Beyond the SVZ expansion 331

The value of the tachyonic gluon mass has been extracted phenomenologically using
previous analysis in [341,329] from e+e− data. Analyses of some other channels by CNZ
have confirmed such findings. The pion and ρ meson channels give the intersection range:

(αs/π )λ2 � −(0.06 ∼ 0.07) GeV2 , or λ2(1.25GeV2) ≈ −(0.34 ∼ 0.52) GeV2 ,

(30.10)
leading to the value of the string tension:

√
k � (369 ± 14) MeV , (30.11)

in agreement with the lattice results. The consequences of this result in some paradoxical
QCD spectral sum rules channels have been also studied by CNZ, and lead to a resolution
of different puzzles for the sum rule scales. One finds, for instance, for these scales:

M2
π � 4M2

ρ , (30.12)

in agreement with the expectations of [382]. Analogous expectations in the gluonium chan-
nel has been also recovered. However, this change in the scale does not affect the predictions
on the QCD parameters from the sum rules (quark mass, . . . ).

30.2 Instantons

Instanton–anti-instanton singularities occur for b = 4π in the positive real axis [375]. They
occur because far-separated instanton–anti-instanton pairs cannot be properly treated in a
perturbative expansion around αs = 0. Due to graph counting rules, perturbation theory has
a singularity at b = 4π , such that perturbation theory alone cannot give an unambiguous
answer to the Borel integral for b > 4π . However, the singularity at b = 4π in perturbation
theory should also appear in the valley method for instanton-anti-instanton pairs. In addition,
a proper definition of D̃(b) for b > 4π , including non-perturbative and non-analytic terms
in b should also emerge from the valley method.

In QCD, one expects an important rôle of the instantons due to the topologically non-
trivial fluctuations of the gauge fields [381,264], where they are expected to explain the
large mass of the η′ compared with the usual pseudoscalar mesons [262–264].

30.2.1 ’t Hooft instanton solution

For a pedagogical introduction, let us start from the example of the Riemann integral (see
e.g. [51]):

I =
∫ +∞

−∞
F(x)e−λ(x)dx , (30.13)

where λ(x) is some positive-definite functions. If λ(x) has a minimum at the position x0,
one can approximate this function by:

λ(x) � λ0 + λ′′

2
(x − x0)2 + · · · , (30.14)
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and obtain:

I � F(x0)e−λ0

√
2π

λ′′ . (30.15)

If instead, λ(x) has several minimas λ0,i at positions x0,i , one can approximately
write:

I �
∑

i

F(x0,i )e
−λ0,i

√
2π

λ′′
i

. (30.16)

A similar procedure can be done in the evaluation of a functional integral. If the action
S[�] has a minimum for a field �0(x), then this field gives a classical contribution to the
functional integral analogously to Eq. (30.15):∫

F[�]D� ∼ F[�0]e−S[�0] , (30.17)

where corrections to this result are quantum corrections. If the field �0(x) leads to a min-
imum of the action S[�], it is a solution of the Euler–Lagrange equations for that action.
Hence solutions of the classical equations of motion lead to classical contributions to the
functional integral in Eq. (30.17). There exist classical solutions of pure SU (2) Yang–Mills
theory which can be embedded in any SU (N ) gauge theory, which are called instantons.
The ’t Hooft instanton solution of the Yang–Mills equation is [264]:

Ga
µν = 4ηa

µνρ
2

g[(x − x0)2 + ρ2]2 , (30.18)

where x0 is the instanton position and ηa
µν is the t’Hooft anti-symmetric symbol with the

properties:

ηa
µν = εa

µν for µ, ν = 1, 2, 3

ηa
4ν = −δa

ν

ηa
4µ = δa

µ

ηa
44 = 0 , (30.19)

where εi jk is the totally anti-symmetric tensor in three-dimensions, while a = 1, 2, 3 for
the (subgroup) SU (2). The anti-instanton solution is obtained by replacing ηa

µν by its
dual:

η̃a
µν = (−1)δµ4+δν4ηa

µν . (30.20)

In Euclidian space–time, these solutions would correspond to particles of size ρ at a position
x0, while in Minkowskian space–time, the solutions are not particles but can be considered
as contributions to the tunnelling between different vacua. The action corresponding to the
solution in Eq. (30.18), is easily obtained:

S[Ga]cl = − 1

4g

∫
d4x Ga

µνGµν
a = 8π2

g2
. (30.21)
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The instanton fields are self-dual:

G̃a
µν = 1

2
εµναβGa

αβ = Ga
µν . (30.22)

The action of a self-dual field configuration is determined by its topological charge defined
as:

Q =
∫

d4x

(
g2

32π2

)
Ga

µν G̃µν
a , (30.23)

where an instanton has topological charge +1, and an anti-instanton −1. According to
Eq. (30.17), the contribution of a single instanton to the vacuum expectation value of the
functional F[G] of Ga

µν is:

F[G]e−S[G] = F[G]e
− 8π2

g2 . (30.24)

From Eqs. (30.21) and (30.24), one can deduce that instantons give genuine non-perturbative
contributions, since the exponential cannot be expanded in a convergent power series of g
and its asymptotic expansion in g is identically zero.

30.2.2 Instanton phenomenology

Qualitative estimates of the instanton effects based on the dilute gas approximation have
been done in the literature [382–385], while an instanton liquid model has also been pro-
posed [386]. However, the results obtained in these papers, for example, for the pseudoscalar
quark currents are controversial, which come mainly from the uncontrolled use of the chiral
symmetry-breaking parameters entering the analysis. Indeed, one does not know exactly if
one should use the light quark current masses or the quark condensate. Moreover, the effects
depend also crucially on the size of the instanton, whose value is very inaccurate. In practice,
in this model, the instantons contribute as operators of dimension larger or equal than 9–11.
For Q2 ≥ 1 GeV2, no appreciable evidence of these effects has been detected in the phe-
nomenological analysis, (even in the pseudoscalar channel, where one often claims that the
effects are important!), as we shall see later on. A quantitative estimate of these effects from
e+e− → I = 1 hadrons data indeed shows that they are small [387,329], as expected from
[385]. A program for measuring instanton induced hard scattering processes at HERA has
been proposed [388]. In DIS, one expects to probe small-size instantons, which, in princi-
ple, are calculable, where the cross-section behaves as the square of the instanton density
D ∼ e− 2π

αs times a function F(ε = √
s/Q′) of the total energy over the invariant mass of

the particle produced:

σ ∼ e− 4π
αs

F(ε) . (30.25)

30.2.3 Dilute gas approximation

In principle, the superposition of two instanton solutions will not be a solution of the
Euler–Lagrange equations, due to the non-linearity of these equations for a non-Abelian
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334 VII Power corrections in QCD

gauge theory. If one considers two far-away solutions, the superposition should be a good
approximation for two instanton solutions (topological charge 2). In the dilute gas instanton
approximation (DIGA), the instanton contribution can be estimated very roughly [382]. In
so doing, one starts from the dilute gas density:

d(ρ) ≈ C

(
2π

αs(ρ)

)6

exp

( −2π

αs(ρ)

)
: C ≈ 0.06 for QCD , (30.26)

where ρ is the instanton radius. Using the previous t’Hooft instanton solution of the Yang–
Mills equation the gluon condensates of 2n dimensions can be represented as:

〈O2n〉 ≡ 〈 (
gGa

µν

)
1
· · · (gGa

µν

)
n

〉 =
∫ ρc

0
dρ

d(ρ)

ρ2n+1
, (30.27)

where ρc is the critical cut-off size of the instanton. By introducing the approximate
relation:

2π

αs(ρ)
≈ 2π

αs(ρc)
+ 11 log(ρc/ρ) , (30.28)

one obtains:

〈O2n〉 ≈ 1

(11 − 2n)

1

ρ2n
c

(
2π

αs(ρc)

)6

exp

(
− 2π

αs(ρc)

)

×
6∑

k=0

6!

(6 − k)!

(
11

2(11 − 2n)
αs(ρc)

)k

, (30.29)

indicating that, for condensates of a critical dimension:

2n = 11 , (30.30)

one has a phase transition which separates the large-size instantons (2n ≤ 11), that is, ordi-
nary low-dimension condensates, with the small-size instanton (instanton–anti-instanton or
one-instanton) effects. As emphasized in the previous derivation, the small-size instanton
is very sensitive to the value of the instanton radius ρc, which renders (among many other
unknown) uncertain the quantitative estimate of its effect. Some other reasons, as we shall
see below are the inconsistency of the size and distance between instanton ensembles. For
these different reasons, the estimate based on DIGA should only be considered at the qual-
itative level. Using the general expression in Eq. (30.29) for estimating, the contribution of
the instanton to the NP gluon condensate 〈g2G2〉, and using the value of αs(ρc) ≈ 1, one
can deduce:

〈
g2G2

〉1/4
inst ≥ 4

ρc
. (30.31)

Using the previous expression of the topological charge and the self-duality relation, one
obtains for nd dilute instantons in a volume V greater than the instanton size, the instanton
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density:1

n0 ≡ nd

V
= 1

V

∫
V

Q(x)d4x = 1

32π2
〈g2G2〉inst . (30.32)

Therefore the average distance dI between two instantons is:

dI ≡ n−1/4
0 =

(
32π2

2〈g2G2〉inst

)1/4

. (30.33)

These two equations give the ratio:

dI

ρc
≤ 0.7 , (30.34)

which is smaller than 1. It may indicate that the dilute gas approximation is inconsistent, or it
can indicate that higher unknown perturbative corrections or non-perturbative contributions
(multi-instantons) to the classical result are important. Alternatively, one can integrate the
tunnelling rate in order to get the phenomenological value of the instanton density [389]:

nphen =
∫ ρc

0
dρ n0(ρ) , (30.35)

which for nphen = 1 fm−4, gives ρc = 1 fm using the SVZ value of the gluon condensate,
which is rather pessimistic.2

30.2.4 The instanton liquid model

A more promising picture is the instanton liquid model [386,390]. The non-perturbative
contribution to the instanton density defined previously can be estimated from the gluon
condensate. The interaction of an instanton with an arbitrary external field Ga

µν is:

Sint = 2π2ρ2

g2
η̄a

µνU abGb
µν , (30.36)

which is a dipole interaction, and then does not contribute to the average action to first order.
U is an unitary matrix describing the orientation of the instanton in colour space. One can
deduce [391]:

n(ρ) = n0(ρ)

[
1 + π4ρ4

2g4
〈G2〉 + · · ·

]
, (30.37)

which has been exponentiated by [392]. In this way, and using nphen = 1 fm, one obtains
using the SVZ value of the condensate:

ρc = 1/3 fm , (30.38)

1 In the classical field approach, the quantity below has no g2 factor.
2 However, the SVZ value of the gluon condensate has been underestimated by a factor of about 2 [329,313] such that the value

of ρc becomes 0.5 fm which leads to a more optimistic situation.
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which is rather small. This result gives a different picture of the QCD vacuum. The instanton
size being smaller than the separation between instantons implies that the vacuum is dilute.
Also, the field inside the instanton is very strong:

Gµν � �2 , (30.39)

implying that the semi-classical approximation is valid. The action is large:

S = 8π2/g2 ∼ 10 − 15 � 1 . (30.40)

Also, instantons retain their individuality and are not destroyed by interactions:

δSint � S0 , (30.41)

while interactions are important for the structure of the instanton ensemble:

(exp |δSint| ∼ 20 � 1) . (30.42)

The phenomenology of the instanton liquid model has been published in [386], which
readers can consult for more details.

30.3 Lattice measurements of power corrections

Recent lattice measurements of the V ± A and (pseudo)scalar (S, P) two-point correlators
have been done in [393] in the x-space and have been compared with different models of
power corrections (SVZ, ILM). Using the expressions of the correlators in the momentum
space given in the previous section, and using the Fourier transform formulae in Table G.1
from [394] given in Appendix G, the different QCD expressions of the V + A and S + P
correlators of interest here3 in the x-space normalized to the perturbative contributions are
[394]:


V +A


V +A
pert

→ 1 − αs

4π
λ2 · x2 − π

48

〈
αs

(
Ga

µν

)2〉
x4 ln x2 + 2π3

81
αs〈q̄q〉2x6 ln x2 , (30.43)

where we adopt the convention ln x2 < 0. We have added to the usual SVZ-expansion the
quadratic x2 correction from [161]. In the V − A channel, the usual SVZ expansion works
quite well but for a small radius of convergence. In the V + A channel, the SVZ-expansion
as well as the ILM describe quite well the quantity Q2
(Q2), which is expected not to have
a 1/Q2-term [161]:

Q2 · 
V +A

Q2 · 
V +A
pert

→ 1 − π

96

〈
αs

(
Ga

µν

)2〉
x4 + 2π3

81
αs〈q̄q〉2x6 ln x2. (30.44)

This is to be contrasted to the case of 
(Q2), which needs also to be measured on the
lattice, in order to test the existence of the 1/Q2 in the V + A channel. However, the channel

3 Some other correlators in the x-space are given in Chapter 39.
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Table 30.1. Different parameters used in the
analysis of the S + P data in units of GeVd (d is

the dimension of the operator)

Sources 〈αs G2〉 αs〈ψ̄ψ〉2 (αs/π )λ2

SET 1 (SVZ) [1] 0.04 0.256 0
SET 2 [313,329] 0.07 5.8 × 10−4 0
SET 3 [313,329,161] 0.07 5.8 × 10−4 −0.12

SET 2

SVZ

[        ]

R
P

S

Fig. 30.2. S + P channel: comparison of the lattice data from [393] with the OPE predictions for the
two sets of QCD condensate values given in Table 30.1 . The dot-dashed curve is the prediction for
SET 3 where the contribution of the x2-term has been added to SET 2. The bold dashed curve is SET
3 + a fitted value of the D = 8 condensate contributions. The diamond curve is the prediction from
the instanton liquid model of [386].

which is crucial for the present analysis is the (S + P) one. In this channel:

RP+S ≡ 1

2

(

P


P
pert

+ 
S


S
pert

)

→ 1 − αs

2π
λ2x2 + π

96

〈
αs

(
Ga

µν

)2〉
x4 + 4π3

81
αs〈q̄q〉2x6 ln x2 . (30.45)

As shown in Fig. 30.2, neither the SVZ-expansion nor the ILM can describe the lattice
data, where we have used the sets of condensate values given in Table 30.1.

If such data are confirmed, it may indicate a strong evidence of the quadratic 1/Q2 power
correction. We can see in Fig. 30.2, that for large x , the data is better fitted by including
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[        ]

R
V

A

Fig. 30.3. V + A channel: comparison of the lattice data from [393] with the OPE predictions for the
SET 3 QCD condensates values given in Table 30.1 including a fitted value of the D = 8 contributions.
The diamond curve is the prediction from the instanton liquid model of [386].

both the 1/Q2 correction and a D = 8 dimension condensates where the latter differ notably
from the vacuum saturation estimate, with the size:

C8O8 � +
( x

0.58

)8
, (30.46)

compared with the one from a modified vacuum saturation [399,411]:

C8O8|fac � + 3395

30855168
〈αs G2〉2x8 ≈

( x

1.2

)8
. (30.47)

For completeness we also show in Fig. 30.3, a fit of the V + A channel including the
D = 8 condensate contributions. One can notice that like in the case of the S + P channel,
the value of the D = 8 condensates differs notably from the vacuum saturation estimate. It
reads:

C8O8 � +
( x

0.7

)8
, (30.48)

compared with the one from a modified vacuum saturation [399,411]:

C8O8|fac � + 2

3428352
〈αs G2〉2x8 ≈

( x

2.5

)8
. (30.49)

One can conclude from the lattice measurement of the S + P correlators that, if the
data have to be explained by power corrrections, it can only be done by the presence
of λ2 quadratic corrections at moderate distance (less than 0.5 fm). For larger distances,
one needs to add the contributions of higher eight-dimension condensates. It has been
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argued [395] that the λ2 correction can be better understood within the effective Higgs-like
theories which are common within the monopole mechanism of confinement, where, in the
presence of a magnetically charged (effective) scalar field, the symmetry of the theory is
SU (3)colour × U (1)magnetic. Upon the spontaneous breaking of the magnetic U (1) the gauge
boson acquires a non-vanishing mass and its mass squared is the only parameter of dimension
d = 2 consistent with the symmetry. Moreover, in exchanges between (colour) charged
particles the gauge-boson mass appears to be the tachyonic mass as was demonstrated on
the U (1) example in [396,397]. Detailed analysis of various power corrections within the
Higgs-like models can be found in [396–398]. Moreover, if the monopole size is indeed as
small as indicated above, then the effective Higgs-like theories can apply at all distances
∼ (0.1 ÷ 0.5) fm.
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