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Abstract

We consider two person, zero sum games with several symmetries. Where such symmetries are present
there is a group acting on the strategies of the game. We show how to use this action to produce a
reduced game with a smaller matrix, but having the same value as the original game, and how to
obtain optimal strategies for the original game from optimal strategies of the reduced game. An
analysis of a simplified version of the popular game Mastermind is given to illustrate the theory
developed.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 D 05, 90 D 45.

The rules of many games give them a number of symmetries. When analysing
such a game one keeps meeting cases which seem very much like ones already
encountered and the natural approach is to try to link together somehow
strategies that appear similar to each other.

In this paper we formalize these feelings for two person, zero sum games (with
imperfect information) with several symmetries. Where such symmetries are
evident, there is in fact a group acting on the strategies of the game. This action
ytelds homogeneous optimal strategies (that is, optimal strategies in which linked
strategies are used with equal probability) for each player, and makes it possible
to guarantee the existence of a smaller matrix game with the same value as the
original one. Further, all homogeneous optimal strategies in the original game can
be obtained from a knowlege of all optimal strategies in the smaller or reduced
game. The greater the number of symmetries, the smaller will this reduced game
be, in general.
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{21 Reducing games with underlying symmetry 153

The reduction turns out to be the same as the one considered in
[Gale /Kuhn /Tucker (1950), Application (e), pages 94-95], where they reduce
games whose matrices can be partitioned into submatrices within each of which
column totals are equal and row totals are equal. The virtue in considering the
groups acting is that the recognition of such an action guarantees a priori that
such a partitioning is possible (without first calculating the full matrix and having
to play with rearrangements of its rows and columns) and indeed tells in advance
exactly how to do the partitioning.

The reduction leads to the concept of a strategy being weakly dominated (see
Section 2). Such a strategy may not be dominated in the usual sense but the
results of Section 2 show that it can be ignored as its only contribution to the
reduced matrix is dominated in the usual sense. In a simplified version of the
popular game Mastermind (an analysis of which prompted the results of this
paper) the original matrix is 9 X 168 and contains no row or column domination.
However weak domination allows us to ignore 72 of player 2’s strategies. Then
reduction using the underlying symmetries, following the method developed here
(the group involved is S, X §;, where S, is the group of all permutations of
{1,2,...,n}), produces a 2 X 3 matrix which can of course be easily solved and
used to find the value of the original game and to produce all homogeneous
optimal strategies for it. More details are given in Section 3.

1. Theory

A group G acts on a set § when there is a function from S X G — G, mapping
(s, g) — sgsuch that, foralls € S, g, h € G,

s(gh) = (sg)h, sl=s
where 1 is the identity of G. The action of a group G on a set .S partitions S into
the orbits under G: two elements s,, s, of S are in the same orbit if 5,g = s, for
some g € G [see, for example, Mac Lane /Birkhoff (1979), pages 70-71].

We consider a finite, two person, zero sum game in normal form with pure
strategies I' = {vy,,...,v,,} for player 1 and A = {§,,...,4,} for player 2 with
payoff matrix 4 = (a;;) where a;; = 7(y,, §;) is the payoff to player 1 when the
players use y; and §; respectively. We suppose that there is a (finite) group H (of
symmetries) acting on both I" and A so that

(1) 7(y,8) = n(yh, 8h)
for all y €T, d € A, h € H; this is a formal way of stating that symmetrical

positions have the same payoff. We denote by X and Y the sets of mixed
strategies for players 1 and 2 respectively.
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First notice that the action of H extends to all m X I (or n X 1) row vectors
linearly; that is, if

X=(XpyeeisXp) =x71 + 0 X,V
and h € H then
xh = x,(y,h) + - +x,,(¥.h).

For each i, xh has its ith component (xh), equal to the kth component x, of x
where ;™' = v,. If x € X and h € H then xh € X again. It follows readily from
(1) that

(xh)A = (xA)r and A(yh)" = (4y7)h
for all x €E X, y € Y, h € H. (For example, if y,h~' = Yiqy for all i, the jth
component of (xh)A equals

2 (xh)m(v,,8,) = Eka(%h—l,sjh-l) = Zxk(r)"(ka k")

which equals the /th entry of x4 if SJh" = §,, and so equals the jth entry of
(xA)h.) Since
(zh)(wh)" = zwT

for all A € H and all m X 1 (or n X 1) vectors z and w, we conclude that, for all
xEX,yEY,hEH,
(2) (xh)A(yh)" = xay™.

Let h € H. Since x +> xh(y > yh) is a bijection from X(Y) to itself, the
following is an easy consequence of (2).

LeMMA 1. Let x € X, y € Y, h € H. Then (x, y) is an equilibrium pair if and
only if (xh, yh) is. Thus x is optimal for player 1 if and only if xh is.

Let H = {h,,...,h,}. For each x € X we define x € X by
X = ( > xh)/r.
hEH

Since X is a convex linear combination of xh,,...,xh, it follows that X is optimal
for player if x is. Notice also that X is homogeneous in the sense that if y, and v,
are in the same orbit of I under H (that is y, = v, for some h € H) then the ith
and kth components of X are equal; this is an easy exercise. We denote by X the
set of all homogeneous elements of X; clearly the map x > X maps X onto X.

LEMMA 2. If x € X is optimal for player | then so is X, and X € X.
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Let T,...,I, be the orbits of I' under H, suppose that these have sizes
my,...,m, tespectively, and suppose that the y’s are renamed so that y, €
Iy,...,v, € I,. For each x € X we define an s X 1 vector

d(x) = (myx,,...,mx,).

Since x has m, entries equal to x, etc., d(x) is a probability vector. If x € X, we
see that, for all j, the jth entry of x4 equals

X, 2 akj+---+xs 2 ay;
€T} wel;

which equals the jth entry of d(x)B where B = (b, ;) 1s the s X n matrix with

for alli, j. Thusif x € X,
(3) xA = d(x)B.

Let X, denote the set of s X 1 probability vectors. Then d: XX is a
bijection with inverse e: X, — X where e(x,...,x,) =(z,...,z,,) with z; =
x,/m, when y, € I',. It follows that, for all x € X,

(4) xB = e(x)A.

The following is a simple consequence of (3) and (4).

THEOREM 3 (Reduction with respect to player 1). Let B be obtained from A and
H as above. Then

(i) x € X is optimal in A if and only if d(x) is optimal in B,

(1) if y € Y is optimal in A then it is optimal in B, and

(iii) the values of A and B are equal.

Thus if we find an optimal x for player 1 in B, we obtain from it e(x) which is
optimal for player 1 in A4, and all homogeneous optimal strategies for player 1 in
A arise in this way. (However player 1 may also have nonhomogeneous optimal
strategies in 4.)

A very simple example of this reduction is Colonel Blottowith 6 companies for
2 locations against the enemy’s 5 companies where each side must station at least
one company in each location (see [Williams (1966) pages 159-163]). Here equal
forces in any location is a draw and a superior force overwhelms the opposition
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and the payoff equals the size of the force overwhelmed. The payoff matrix A4 is

Enemy

41 32 23 14
51 4 2 1 0
42 1 3 0 -1

5
(5) Blotto B S

24l -1 0 3 1
IsL 0 1 2 4

Here 42 means 4 companies in location 1 and 2 in location 2. The symmetry here
is between the two locations, which are essentially the same so that the group H is
the group S, of permutations of the two locations. Clearly condition (1) holds.
The orbits of " are {51, 15}, {42, 24}, {33} and the reduced matrix B is

41 32 23 14
(51,15} 2 3% 3 2
(42,24} 0 3 3 0l
33y L-2 2 2 -2

Of course H also acts on A and the orbits are {41, 14}, {32, 23}. Notice that any
two strategies in the same orbit of A have equal columns in B. This always
happens.

LEMMA 4. Suppose 8, 8, € A are in the same orbit under H. Then in the matrix B
they have equal columns.

PROOF. Let h € H be such that §, = §,A. The ith entry in the 8,-column of B is

— 3 a(roh) = 3 alvh8)

i yeT; fyeL,

by (1). But {yA~'|y € I} =T, and so this equals the ith entry in the §,-column
of B.

Thus while B is an s X n matrix it only has at most ¢ distinct columns, where
A,,...,A, are the orbits of A under H. By using column dominance (or applying
the analogous reduction with respect to player 2 to B) we obtain an s X ¢ matrix
D with the same value as A and with a one-to-one correspondence (via the
functions d and e) between the homogeneous optimal strategies for player 1 in 4
and all optimal strategies for player 1 in D. The entry d,; in row I}, and column 4,
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of D is given by
1
(6) dij:?_ 2 m(y,8)
' y€eT;
foranyd € A,

Of course we could first reduce via the second player to an m X ¢ matrix C.
Then two rows in the same orbit of T" are equal and so we could obtain from C an
s X t matrix D’, which we could use to find all homogeneous optimal strategies
for player 2 in 4. The entry d;; in row [} and column A is given by

™) dy== 3 a(y,8)

J 8eA,;

for any y in I (where | A |= n;). But since (6) is independent of § € A; and (7) is
independent of y € I, we have

dij: — 2 2 W(Y’s):d;j'

Thus D and D’ are equal, and so we can use D to find all homogeneous optimal
strategies for either player.

THEOREM 5. Let D be the s X t matrix obtained as above. Then D has the same
value as A and the sets of homogeneous optimal strategies for the players in A can be

obtained by applying the appropriate function e to the sets of all optimal strategies in
D.

In the Blotto example above, D is

(41,14) (32,23}

(51,15} 2 3
(42,24) 0 3
(33} ~2 2

This has value 14 /9 with unique optimal strategies (8 /9, 0, 1/9) and (1/9, 8/9).
Thus the original game 4 has value 14/9 and the unique homogeneous optimal
strategies in A are

x=(4/9,0,1/9,0,4/9),
y=(1/18,4/9,4/9,1/18).

(The nonhomogeneous (3 /90, 48 /90, 32 /90, 7/90) is also optimal for player 2
[Williams (1966) page 162].)
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The matrix A4 reflects the symmetries better if it is rewritten with strategies in
the same orbit adjacent.

41 14 '32 23
51 4 0 : 2 1
Is|_0__4,1_2
42 1 -1 ,3 0
24| —1 1,0 3

Bl-2 212 2

In each of the 6 submatrices column sums are equal, as are row sums (but the
common column sum is not necessarily the same as the common row sum as the
2 X 1 matrices show). Again it follows easily from (1) that this always happens.
(The proof is essentially given in Lemma 4.)

LEMMA 6. If T, and A; are orbits in 1" and A respectively then the submatrix of A
relevant to I; and A; has all row sums equal and all column sums equal.

Thus if we rearrange the rows and columns into their orbits, the resulting
partition is as in Application (e), pages 94-95 of [Gale /Kuhn /Tucker (1950)).
Knowing that a group of symmetries is acting on a game makes it possible to tell
what this partitioning is without writing down the matrix in full, and usually
makes it unnecessary to write down more than a few of the columns (or rows) in
order to calculate its value and find optimal strategies. We illustrate this with the
example in Section 3.

2. Weak domination

Consider two pure strategies v,, v, for player 1. We say that y, is weakly
dominated by v, if

(i) v, and vy, are not in the same orbit of I" under H, and

(i) in the matrix C obtained via the reduction with respect to player 2, the

v,-Trow is dominated in the usual sense by the y,-row.
Condition (ii) is the same as requiring that, for all orbits A, of A under H,
2 7(v,8) < X 7(v,,9).
s€b, sea,

(Notice also that if the domination in (ii) is strict, that is the two rows are not
equal, condition (i) automatically holds as strategies in the same orbit have equal
rows in C, by Lemma 4.)
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If y, in orbit T, is weakly dcminated by vy, in orbit I, the I';-row of D is
dominated by the I',-row of D and so there is an optimal strategy for player 1 in
D in which TI') is not used. Thus, by Theorem 5, there is a homogeneous optimal
strategy for player 1 in A in which y, (and all strategies in I')) are not used. Thus
we can ignore strategies which are weakly dominated.

For example, in the Blotto example above, the 51 and 42 rows of C are (2, 3/2)
and (0, 3/2) respectively. Thus 42 is weakly dominated by 51 and so we can
ignore 42 (and therefore 24). Notice however that 42 is not dominated in the
usual sense by 51 in A.

3. An example

In this section we examine a simplified version of the popular game Mastermind
and illustrate how the reduction techniques in §1 and the notion of weak
dominance enable us to transform this to a manageable problem.

Player 1, the “coder”, selects a “code” which is an ordered pair of pegs each of
which is one of the 3 colours red (R), blue (B) or green (G). Thus the coder has
3? = 9 pure strategies, namely RR, RB, RG, BR, BB, BG, GR, GB, GG. Player 2,
the “decoder”, makes successive guesses, trying to identify the code selected.
After each guess he is told how many pegs s, in his guess are exactly right (correct
colour in correct place) and how many pegs s, are partly right (correct colour but
in the wrong place); we call this information the “signal” (s, s,). The payoff to
the coder is the number of guesses it takes the decoder to identify the code. (In
the two commerically available versions a code consists of four or five pegs each
of which is one of six or eight colours.)

There are two kinds of symmetry here, one obtained by permuting the 3 colours
(this is the group S,) and the other (the group S,) by permuting the order of the
pegs in a code (for example mapping BG to GB). It is easy to see that the action
of these two groups commute with each other (that is ygh = yhg for a strategy v
and for g € S;, h € S,); thus indeed their direct product H = S; X S, acts on
this game. There are two orbits for the coder, namely I', = {RR, BB, GG} and
I, = {RB, RG, BR, BG, GR, GB}.

The decoder has a large number of different pure strategies. A strategy for him
consists of an initial guess then, for each possible signal, a second guess etc. For
example, if he picks RB as his first guess there are only two signals (0, 1) and (1, 0)
which leave him in any doubt as to the code. Let §, denote the strategy where he
picks BG if the signal is (0, 1) and RG if it is (1, 0) (after which he knows the code
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and proceeds accordingly); we picture this as

(0,1) _BG
5, = RB—
kG

guess 1 guess 2

A detailed analysis of the decoder’s pure strategies shows that there are 168
undominated ones. Thus the matrix 4 is 9 X 168 and it would be a long and
tedious task to write out 4 in full, let alone use it to find the value of the game.
The decoder’s 168 undominated strategies are of one of five types:

(i) several yielding the same reduced column as §, (indeed there are 24 in two
orbits, but it is not necessary to know this in order to solve the game),

(it) several (indeed 24 in two orbits) yielding the same reduced column as

(y BG
52 - \
(1,0) B
RR ©,0) BB

guess 1 guess 2 guess 3
(iii) several (24 in two orbits) yielding the same reduced column as

©,1) 56
5, =RB

A

(1,0)
RR ©.0) GB

(iv) 48 in four orbits yielding the same reduced column as

(1,0 RB

\

5, = RR

/

0.0) ~~pp BG

(1,0)
(v) 48 in four orbits yielding the same reduced column as

1,0) RB

\

85 = RR

/

0,0) BG BB

(1,0
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The corresponding columns in the matrix B obtained by a first player reduction
are

5 & & & &

r,(8/3 7/3 8/3 2 8/3
T,|13/6 5,2 1/3 3 8/3|

Thus &5 and §, are weakly dominated by &, and we can ignore these columns.
Thus, using Theorem 5, we are led to consider the matrix

8/3 1/3 2
[ 13/6 5/2 3 ] )
(Actually D is obtained from this matrix by repeating the first and second
columns twice for the two orbits in each of (i) and (ii) above and by repeating the
third column four times.) This 2 X 3 game is easy to solve and we find it has
value 29/12 and (unique) optimal strategies (1/2, 1/2) and (1/4, 3/4, 0). Thus
the value of this form of Mastermind is 29 /12 and we can read off homogeneous
optimal strategies. The coder uses each of his strategies in I'; with probability 1/6
and each strategy in I', with probability 1/12. (Indeed it is not difficult to see by
a separate calculation that this is the only optimal strategy for the coder.) The
decoder has infinitely many homogeneous optimal strategies because of the
different orbits giving rise to equal columns. For example, one is where he uses
each of the twelve strategies in the orbit of 8, with probability 1,/48 and each of
the twelve in the orbit of §, with probability 1/16.
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