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Group theoretical methods are used to obtain the form of the elastic moduli matrices
and the number of independent parameters for various symmetries. Particular attention
is given to symmetry groups for which 3D and 2D isotropy is found for the stress-strain
tensor relation. The number of independent parameters is given by the number of times
the fully symmetric representation is contained in the direct product of the irreducible
representations for two symmetrical second rank tensors. The basis functions for the
lower symmetry groups are found from the compatibility relations and are explicitly
related to the elastic moduli. These types of symmetry arguments should be generally
useful in treating the elastic properties of solids and composites.

I. INTRODUCTION

Christensen has shown1 that the 4th rank symmet-
ric elastic tensor Q« defined by

dFi „
— 2J ^ijklekl (1)

"fj k,l=x,y,z

where Ft is the component of the force in direction r,,
retains its form in three dimensions (3D) in going from
the isotropic full rotational symmetry group to the case
of 6 fivefold axes. Christensen further obtained the cor-
responding result in two dimensions (2D) where the
form of the Cijki is retained in going from the case of
full axial symmetry (in-plane isotropy) to hexagonal
symmetry with a sixfold axis. In his paper Christensen1

emphasizes that the more restricted symmetry of the 6
fivefold axes in the 3D case and the hexagonal axis in
the 2D case is sufficient to yield 3D and 2D isotropy
with regard to the elastic properties, defined by Eq. (1).

Fiber reinforced composites represent an interest-
ing application of these symmetry forms.1 If the fibers
are oriented in three dimensional space in the six direc-
tions prescribed by icosahedral symmetry, then isotropy
of the elastic moduli tensor will be obtained. This pos-
sibility was first suggested by Rosen.2 In the correspond-
ing two dimensional situation, if the fibers are oriented
at 60° intervals, then isotropy is obtained in the plane.
It is standard practice to use fiber composite sheets
stacked at 60° angular intervals to obtain "quasi-
isotropy" in the field of fiber composites. Recent re-
search on quasicrystals3'4 has emphasized the connection
of the icosahedral symmetry to the elastic properties.34

In this note we show a generalization of Chris-
tensen's proof, using group theoretical arguments. From
the group theoretical point of view presented here, the

conditions for retaining isotropy can be clearly defined
and when the symmetry is further lowered to introduce
anisotropy in the elastic properties, the passage from the
isotropic to the anisotropic situations can be followed
adiabatically through use of compatibility relations. For
those with a group theory background, the results of
this note are almost obvious, but for materials scientists
without this background, these results do not seem so
obvious. The objective of this note, then, is to make cer-
tain symmetry results available to materials scientists
for use in their applications.

II. 3D ISOTROPY

For the case of full rotational symmetry, a second
rank tensor T transforms according to the representa-
tion F? where F? can be written as a symmetric and an
antisymmetric part

I> = Tr +Tf (2)

where the symmetric components transform as the irre-
ducible representations

r l ' = r;=0 + r/=2 (3)
and the antisymmetric components transform as

i f = r,=1, (4)
in which the irreducible representations of the full rota-
tion group are denoted by their total angular momen-
tum values /. Since the stress V • F and strain e tensors
are symmetric second rank tensors, both Xa and e,y
transform according to (F/=o + r/=2) in full rotational
symmetry, where Xa denotes a force in the x direction
applied to a plane whose normal is in the a direction.
The fourth rank symmetric C,JH tensor of Eq. (1) trans-
forms according to the symmetric part of the direct
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product of two second rank symmetric tensors F§' ®
T® yielding

(r/ = 0 + r,=2) ®
(r;=0 + r;=2) = (2r;=0 + 2r; = 2 + r;=4)(s)

+ (r/=1 + Tl=2 + Tl=3)
(a\ (5)

so that in general ei; is specified by 6 constants and the
Cijki tensor by 21 constants because it is symmetrical
under the interchange of ij «* kl. The additional 15 con-
stants that specify the antisymmetric off-diagonal irre-
ducible representations are not needed to specify the
Cijki. In the case of full rotational symmetry, Eq. (5)
shows that the totally symmetric representation (F/=o) is
contained only twice in the direct product of the irre-
ducible representations for two second rank symmetric
tensors, indicating that only two independent nonvan-
ishing constants are needed to describe the 21 con-
stants of the djki tensor, a result that is well known in
elasticity theory for isotropic media. In general, the
number of times the totally symmetric representation
(e.g., I/=o for the full rotational group) is contained in
the irreducible representations of a general matrix of
arbitrary rank gives the number of independent non-
vanishing constants needed to specify that matrix.

We denote the two independent nonvanishing con-
stants needed to specify the Cijki tensor by Co for F/=o
and by C2 for F/=2 symmetry. We then use these two
constants to relate symmetrized stresses and strains la-
beled by the irreducible representations Fj=0 and F(=2 in
the full rotation group. The symmetrized stress-strain
equations are first written in full rotational symmetry,
using the partners of the irreducible representations (one
for / = 0 and five for the 1 = 2 partners):

(Xx + Yy + Zz) = C0(exx + eyy

for / = 0, m = 0

ezz)

{Xx -Yy + iYx + iXy) = C2(exx - eyy + iexy

+ ieyx)

for / = 2, m = 2

(Zx + Xz + iYz + iZy) = C2(ezx + exz

+ iezy)
for / = 2, m = 1

iey

\ZZ--(XX + Yy)\ = C2\ezz - -(€„ + eyy)

for / = 2, m = 0

(Zx + Xz - iYz - iZy) = C2(ezx + exz - ieyz

- iezy)

for / = 2, m = - 1

(Xx-Yy- iYx - iXy) = C2(exx - eyy - iexy

- ieyx)

for/ = 2, m = - 2 (6)

From Eq. (6) we solve for the six independent stress
coefficients in terms of the strains, yielding

Co . 2C: Co

3

C 2

3 C7)

for the stress component Xx. Five additional relations are
then written down for the other five stress components.

In the notation that is commonly used, we write
the stress-strain relations

0> = Z, Cij€j,
.7=1,6

(8)

where the six components of the symmetric stress and
strain tensors are written as

=XX

= Yy

03 = Zz

and

CT4 = ~{YZ + Zy)

= ~(ZX + Xz)

a6 = Yx)

ei = exx

e2 = eyy

e3 = ezz

e 4 = (eyz + ezy)

£5 = (ezx + exz)

e6 = (exy + eyx) (9)

and Cy is the 6 x 6 elastic moduli matrix Q . In this
notation the 21 partners that transform as (2Fr=0 +
2F/=2 + F/=4) in Eq. (5) correspond to the symmetric
partners while the 15 partners in (F/=i + F;=2 + F(=3)
correspond to the antisymmetric partners that do not
give rise to any independent elastic components, since
Ctj = Cji. From the six relations for the six stress com-
ponents [one of which is given explicitly by Eq. (7)], the
relations among the Co and C2 and the Q follow:

u = -(Co + 2C2) = C22 = C33

C12 = ir (Co ~ C2) =

C44 = — C2 — C55 — C(,6

= C
23

(10)

from which we construct the C,j matrix for a 3D iso-
tropic medium involving two independent constants Cn

and C\2
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Cu C12

Cu
Cn
C12

Cu

0
0
0

c12)

0
0
0

0

[Cn ~ C12)

0
0

0
0
0

[Cn - Cn)

(11)

Any subgroup of the full rotation group for which
the fivefold F/=2 level degeneracy is not lifted will leave
the form of the Cy matrix invariant, thus giving a more
general proof of Christensen's arguments.1 The icosahe-
dral group with inversion symmetry Ih, which is a sub-
group of the full rotation group, and the icosahedral
group without inversion /, which is a subgroup of both
the full rotation group and the group Ih, are two exam-
ples of groups which preserve the fivefold degenerate
level and hence retain the form of the Cy matrix given
by Eq. (11). This result follows from at least two related
arguments. Firstly, from the pertinent compatibility
relations between the full rotation group5'6 and the
lh group (see Table I for the character table; note that
since Refs. 5 and 6 and other standard references do
not list the character tables for the icosahedral groups
/ and Ih, we have included a character table for the
group Ih)

r/=0 - » (A g ) .e)h

F/=2 —» (Hg)ih

we show that

I f = (Ag\ + (Hg).g)h-

(12)

(13)

From Eq. (13) we see that no lifting of degeneracy oc-
curs in going from full rotational symmetry to Ih

symmetry from which it follows that the number of
nonvanishing independent constants in the C,y matrix
remains at 2 for Ih (and /) symmetry.

The same conclusion follows from the fact that the
basis functions for r/=0 and F/=2 for the full rotation
group can also be used as basis functions for t h e ^ and
Hg irreducible representations of Ih. Therefore the same
stress-strain relations are obtained in Ih symmetry as
are given in Eq. (6). It therefore follows that the form of
the Cy matrix will also be the same for //, and full rota-
tional symmetry, thereby completing the proof.

Clearly, the direct product r(~> <g) F - given by
Eq. (5) is not invariant as the symmetry is reduced from
full rotational symmetry to Ih symmetry since the nine-
fold representation F/=4 in Eq. (5) splits into the irre-
ducible representations (Gg + Hg) in going to the lower
symmetry group Ih. But this is not of importance to the
linear stress-strain equations which are invariant to this
lowering of symmetry. It might be worth mentioning
here that when nonlinear effects are taken into account

and perturbations from Eq. (1) are needed to specify the
stress-strain relations (for example, terms in the strain
squared), different mechanical behavior would be ex-
pected to occur in Ih symmetry in comparison with the
full rotation group. In such a case, the compatibility rela-
tions between the full rotation group and the Ih group
[e.g., Eq. (12)] can be used to relate the terms in the gen-
eralized elastic moduli matrix for the two symmetries.

It should be noted that all symmetry groups form-
ing Bravais lattices in solid state physics have too few
symmetry operations to preserve the fivefold degener-
acy of the 1 = 2 level; for example, in cubic Oh sym-
metry, the cubic group with the highest symmetry, the
1 = 2 level corresponds to a reducible representation
of group Oh, which splits into a threefold and a two-
fold level (the T2g and Eg levels), so that in this case [see
Eq. (6)], three elastic constants are needed to specify
the 6 x 6 matrix for Cy

Cu
Cn
Cn
C u

0
0

0
C44

0
0

0
0

C44

0
0

0
0
0

C44

(14)

as is described in many solid state physics books.7'8

III. 2D ISOTROPY

A similar situation applies in 2D. Here the full
axial symmetry is described by the group /)„/,. The
irreducible representations of £>„/, that are contained in
the symmetric second rank tensor are

r — 0 4̂ -4- F -u F (A ^~\

so that the symmetric part of the direct product
becomes

5Alg + 3Elg + 3E2g

+ E3g + E4g, (16)

indicating that the Q matrix can be described in terms
of five independent constants for full axial symmetry.
The stress-strain relations for D^h symmetry are writ-
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TABLE I. Character table for Ih.

h

A

F2g

Gs

Hg

Au

Fiu

Fiu

Gu

Hu

E

1
3
3
4

5

1
3
3

4

5

12C5

1
T

1 - T
1

0

1
T

1 - T

- 1

0

12C|

1
1 — T

T

- 1

0

1
1 — T

T

- 1

0

2OC3

1
0
0
1

- 1

1
0
0

1

- 1

15C2

1
- 1
- 1

0

1

1
- 1
- 1

0

1

i

1
3
3
4

5

- 1
- 3
- 3

- 4

- 5

12S10

1
1 - T

T

- 1

0

- 1
T - 1

—r

1

0

125i3,,

1
T

1 - T
- 1

0

- 1
— T

T ~ 1

1

0

205 1 0

1
0
0
1

- 1

- 1
0
0

1

15<T

1
- 1
- 1

0

1

- 1
1
1

0

- 1

Basis functions

x1 + y2 + z2

Rx, Ry, Rz

'lz2 -x2-y2

x2-y2

xy

xz

yz

(x,y,z)
(x\y\z3)

'xiz2 - r )

y(z2 - x2)

z(x2 - y2)
xyz

where T = (1 + V5)/2 and is often referred to as the "golden mean".

ten in symmetrized form using the basis functions

(Xx + Yy + Zz) and (exx + eyy + ezz)

for / = 0, m = 0 and symmetry AXg

(Xx - Yy + iYx + iXy) and (exx - eyy + iexy + ieyx)

for / = 2, m = 2 and symmetry E2g

(Xx - Yy - iYx - iXy) and (exx - eyy - iexy - ieyx)

for / = 2, m = - 2 and symmetry £2 g

(Z* + X2 + iYz + iZy) and (ezx + exz + j'eyz + iezy)

for / = 2, m = 1 and symmetry Elg

(Zx + Xz — iYz — iZy) and (ezx + exz — ieyz — iezy)

for I = 2, m = —1 and symmetry Eig

Zz - ~(XX + Yy) and ezz - -{exx + eyy)

for / = 2, m = 0 and symmetry ^4^

yielding

In the case of £>„/,, the requirement that C31 = C u =
C32 = C23 yields the additional constraint CAlgy3 =
2CAlgA which is needed to obtain the five independent
symmetry coefficients as required by Eq. (16): CAU,U

CAls,2, CAig,3, CElg, and CE2g. The relations between
these symmetry coefficients and the C,y coefficients are:

C n = C22

1 | 2

= 2" k

u — C21

(17)

- 1 [ 2 r
~ 2 3 "• '

- C23 - —

- r 2r - r
3 lg>2 3 ls'3 2(

ezz)

eyy)

•Zz - — (-X, + Yy) = CA 2 ezz - — (e^ + eyy)
1 L 2

+ CA Iexx + e + e,z]

Xx-Yy = CE2g(exx - eyy) (18)
and corresponding equations for Xy, Yz, and Zx. We then
solve Eqs. (18) for Xx, Yy, and Zz and require Q = Cp

C33 = j [

C44 — C55 —

C66 = ~^CE1S — y ( ^ 2 2 - C2i) - ~ ( C n - C12).

(19)

Combining the nonvanishing Cy coefficients then yields
the Cy matrix for full axial symmetry Dmh
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Cn Cyi

Cn
C13 0

c1 3 o
c3 3 0

C44

0
0
0
0

C44

0
0
0
0
0

Once again, the basis functions used to obtain the
stress-strain relations also serve as a basis functions for
the irreducible representations A\g, E\g, and E2g in the
hexagonal group D6h, although D6h is not a subgroup of
Dmh. Thus the stress-strain relations for D6h symmetry
are identical to Dah and the same form of the 6 x 6 Cy
matrix follows, completing a generalization of the result
proven by Christensen in 2D.1

If we consider the axial group with the next highest
symmetry (D4f,), we immediately see that there is only
one 2-dimensional irreducible representation5'6 in DAh

so that the irreducible representations contained in sec-
ond rank tensor IV are not invariant as the symmetry is
reduced from full axial symmetry to D4/!.

It must be emphasized that in going from full rota-
tional symmetry to Ih symmetry or in going from Dah to
Deh, the number of symmetry operations goes from 00
to a relatively small number (120 for Ih and 24 for D6h),
so that some relations involving tensors of rank higher
than 2 (such as the electrooptic coefficients) are no

longer invariant under this lowering of symmetry both
in 3D and in 2D.
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