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HIGHER-ORDER OPTIMALITY CONDITIONS FOR A MINIMAX

Do VAN Luu AND W. OETTLI

Higher-order necessary and sufficient optimality conditions for a nonsmooth min-
imax problem with infinitely many constraints of inequality type are established
under suitable basic assumptions and regularity conditions.

1. INTRODUCTION

Let C be a nonempty subset of a normed space X, and let @ and B be nonempty
sets. Let fo (o € @) and gg (B € B) be real-valued functions on X. We consider the

following minimax problem:
(P) min{F(z) | = € C, G(z) < 0},

where F(z) := sup fo(z) and G(z) := sup gg(z).
a€EQ pEB

Our aim here is to develop higher-order optimality conditions for (P) by using
suitable approximations to the functions involved. Thus our results will be formulated
in terms of approximating functions ¢£,’°)(.) and d;g”(.). These may be thought of as
substitutes for the k-th order directional derivatives of f, and gg, but are consid-
erably more general. For instance, ng,k)(.) and 1/:/(3”)(.) do not need to be positively
homogeneous of degree k. The lack of homogeneity forces us to use a particular kind of
regularity condition (namely condition 2.3 below). Qur approach extends the technique
we have used in [6] to derive first-order conditions. Some optimality conditions from

[8] are included as special cases in our results.

2. HIGHER-ORDER NECESSARY OPTIMALITY CONDITIONS

In the following we fix a reference point zo € C which is feasible for problem (P).
We assume that F(z) is finite. Let

Qo :={a € Q| fa(zo) = F(z0)},  Bo:={B € B|gg(z0) = G(0)}.
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We assume that @, B are compact topological spaces, and that the mappings a —
fa(zo) and B +— gg(zg) are upper semicontinuous. Then @y and By are nonempty
and compact. We recall [2, p.55] that the contingent cone to C at z, is the set

Ke(zo):={de€ X |3{da} C X, {t.} CR : d, — d, t, | 0, 29 + tnd, € C}.

To derive necessary optimality conditions for (P), we introduce functions which
play the roles of higher-order generalised directional derivatives of f, and gg. So, for

each a € Q, B € B, let gog), iel:={1,...,k}, and 1/;/(9j), jeJ:={1,...,p}, be
real-valued functions on X satisfying the following:

AssumMpTION 2.1.
(a) ¢2(0)=0, ¥5(0)=0forallaecQ,feB,icl, jel.
(b) The mappings a (,aa)(d) and 8 — 1/;(’)(d) are continuous for all d €

Kc(zo),zEI,]EJ.
(¢) Ifd, —d as n — oo, then, foreachi€ I,

lim inf [cpg)(d,,) - <p§)(d)] £ 0 uniformly in a,
and, for each j € J,
s (7 (J) . :
liminf |5 (da) — ¥4 (d)| <0 uniformly in .
n—oo
(d) The mapping d — maxa,cg, (p( )(d) is upper semicontinuous.

Let us introduce relations between f, and <p( ) gp and 1/)l(gp )

Basic AsSUMPTION 2.2. For all d € Kg(zo) and sequences d, — d,
tn | O satisfying z¢ + tndn € C,

(I:)(d) > hmmf —[fa(zo +tnds) — falzo) — Z t,,cpa n)] uniformly in a,
i=1
and
¢(P)(d) > ].lmlnf - [gp(zo + tndy) — 98(z0) — E I ¢(J)(dn)] uniformly in B.
=1
To proceed further let us introduce the sets

M(20) = {d € Ko(=0) | max o{(d) <OVi€ I\ {k}, maxef(d) <OVj€ 7},

= o 6) . (7 .
M(zo) = {d.€ Kc(zo) | max ¢{(d) <OVie I\ {k}, max () <0Vj € 7}.
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Moreover, for V C @ and W C B let us define
C(V, W) := {d € Ko(zo) | ¢(d) <OVa e V,ie ;45 (d) <OV BeW,j e J}.

Let us introduce a regularity condition of the type used in [3].

REGULARITY CoONDITION 2.3.

(i) For any closed sets V and W satisfying Qo CV C @ and B C W C B
it holds that C(V,W) # 0 implies 0 € cIC(V,W).
(1) M(=zo) CclM(z0).

Note that 2.3(i) holds, if the functions pg), "/’Eaj ) are positively homogeneous.
We are now in a position to formulate a general necessary optimality condition of
order k for (P), which is the main result of the paper.

THEOREM 2.4. Let zo be a local minimiser for (P). Assume that assumption
2.1, the basic assumption 2.2, and the regularity condition 2.3 hold. Then

(1) max oF)(d) >0 Vde M(zo).
a€Qo

PROOF: Suppose that (1) is not true. By 2.3.(ii), there exists d € cl M(zo) such
that

(®)(d) < 0.
max o) (d)

By 2.1.(d), d — Héa_Qx so&")(d) is upper semicontinuous. So we can assume that d €
a 0

M(zo), that is, d € K¢(zo) and
max p{)(@) <0 Viel, [%%:;ng)(z) <0 Vjeld.
We choose 6§ > 0 such that cpg)@ -2 forall a € @, it €1, and ¢éj)(a) € =26
for all B € By, j € J. We define
Uii={acQ|eP@) <-6Vicl}, U={BeB|¢§ (d)<-6VjeJ}.
Then Qo C Uy, By CU,. By 2.1.(b), U, and U, are open, and
¢P(@) <6 VeedU,iel, ¥§@)<—6 VBedUs,jel

So d € C(clU,,clUz) and, by 2.3.(i), 0 € c1C(clUy,cl Uz). Hence there exists a sequence
{hn} € C(clUy,clUs) converging to 0.

https://doi.org/10.1017/50004972700021924 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021924

512 D.V. Luu and W. Qetth (4]

We assert that there exist d € K¢(zo) and ¢ > 0 satisfying

P (d) + € < F(zo) — falzo) Viel,
(2) ¥5)(d) + e < Glzo) — ga(zo) Vi€ J

for every a € Q, B € B. To prove this, observe that f,(zo) < F(zy) forall a € Q\U;
and gg(zo) < G(zo) for all 8 € B\ U,. Since @\ Uy, B\ U, are compact and
a— fo(zo), B — ga(zo) are upper semicontinuous, there exists €; > 0 such that

fa(mo)SF(Ibo)—2€1 VQEQ\Ul, gﬁ(ZO)SG(Eo)—2€1 VﬂEB\Uz
Since h, — 0, by 2.1.(a) and (c) there exists m € N with
e (hm) <er Va€Q,icl, $J(hn)<er VBEB,jEJ.

Let d := hy,. Then (2) holds for all a € @\ U, 8 € B\U,, and every ¢ € €;. On the
other hand, d € C(clUy,clU;). Hence by 2.1.(b) and the compactness of clU;, clU,
there exists g5 > 0 such that

e () +e2<0 VaedUy,iel, $$(d)+e2<0 VBedlsjel

This implies {2) for all a € clU,, B € clU;, and every € < &3

Now we use (2) to find a sequence {z,} of feasible points for problem (P) converging
to zg such that F(z,) < F(zo) for all n, which contradicts the hypothesis that z, is
a local minimiser.

Since d € Kc(zg), there exist sequences {d,} C X, {t,} C R such that d, — d,
tn | 0,and z,:= zo+tnd, € C for all n. Replacing these by appropriate subsequences

we can assume that, for every n,
- — S tipd (k) £
5 [fotzn) = falzo) Zt,.w., D] <P +2 Vaeq,

[yﬂ(zn) 98(z0) — Et’ ¢(’)(dn)] <YP(d) + g VBeB
j=1

by 2.2,

e O(d,) < p¥(d)+e VaeQ,iel,
$(dn) <) +¢ VBEB,jel
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L P .
by 2.1.(c), and 3} <1, 3 tJ <1. Then,forall a €@,
p F=1

fa(za) < th(oP(d) + £) +zt,.905,‘) dn) + fa(20)
< (p(d) +¢) +Zt'( D(d) + ) + falzo) — the

Zt (F(z0) — fa(20)) + falzo) — tﬁ%

(A
< F(:co) - tfuia

and similarly gg(zn) < G(zo) — tke/2 for all B € B. Hence F(zn) < F(z) and
G(2n) < G(z0) £ 0.

In what follows, we give an application of Theorem 2.4.

EXAMPLE 2.5: Recall that ?E,k)(zo;d), the upper Dini directional derivative of
order k of f, at zo in the direction d, is defined recursively as follows (see for example,
(4, 5, 8]):

7(,, (z0;d) _k'hmsup m fa(zo +th) — fa(l‘o)—zt'fa( 05 )]’

h—d,tjo t =

provided that each ?E:) is real-valued.

Note that the mapping d — ?f:)(zo;d) is upper semicontinuous. By applying
Theorem 2.4 to the upper Dini directional derivatives we obtain:

COROLLARY 2.6. Let zo be a local minimiser for (P). Assume that for
I(d) := “‘)(zo, d) Viel, $(d):= ’)(zo,d) Vjeld,

assumptions 2.1.(b)—(d) and 2.3.(ii) hold. Suppose, in addition, that the limits in the
definitions of f,, and gp at zo are uniformly in a and 3, respectively. Then

(k)
zo;d) >0
max f,"(20;d)
holds for every d € Kc(zo) with

né%x?g)(zo;d)so Vie I\ {k}, guaxg’)(zo,d) 0 Vied
a€Qo
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PROOF: It is easy to see that assumption 2.1.(a) and the basic assumption 2.2 are
satisfied. Moreover, 2.3.(i) holds since fa , !7%7) are positively homogeneous. So the

conclusion follows from Theorem 2.4. a

EXAMPLE 2.7: If f, is (k — 1) times Fréchet differentiable on X (k > 1) and the
Fréchet derivative of order k of f, at zp, ft(,k)(:co), exists, then (see for example, [7])
fP(20)d* =7 (e0;d) Ve X,

where d* := (d,...,d) € X*. Similarly as in Example 2.5, we get the necessary

condition for a local minimiser in this case:

B (z9)d* >
max fo(2o)d” > 0

for every d € K¢(zo) with
max F)(zo)d* <0 VieI\{k}, éna.xgg)( 0)d <0 Vjeld

3. HIGHER-ORDER SUFFICIENT OPTIMALITY CONDITIONS

In this section we assume that X = R™.

DEFINITION 3.1: [10] The point 2y € D is said to be a strict local minimiser of
order k for the mathematical program min{F(z) | ¢ € D} if there exist o > 0 and a
neighbourhood U of zy such that

F(z) > F(zo) + oz —z||* VYzeUND.

Let z¢ be a feasible point for (P). As in the previous section, we consider real-
valued functions cp@, a € @, 1¢€l,and 1/:("), B € B, j€eJ,on R™, and we
define

M(zo) := {d € Ko(zo) | sup ¢{P(d) < 0Vie I\ {k}, sup 4(d) <OVje T}
€Qo BEBy "

Let us introduce relations between f, and cp( 2 gp and 1,[)[(,j).

Basic ASSUMPTION 3.2. Forall d € Kc(zo) and sequences d,, — d, t, | 0
satisfying z¢ + tnd, € C we have

#9(d) < hm 0 sup - [fa(z:o +tndn) — fa(zo)] Va€Q,i€l,
. 1 ]
¢,(37)(d) <€ lim sup F[gﬂ(zo +indy) — gp(a:o)] VBeB,jecJ

A higher-order sufficient optimality condition for (P) can be stated as follows.
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THEOREM 3.3. Let G(z¢) = 0 and let the basic assumption 3.2 be satisfied.

Assume that

(3) sup o )(d) >0 Vde M(zo))\ {0}
a€Qo
Then zo is a strict local minimiser of order k for (P).

PROOF: Assume that z, is not a strict local minimiser of order k for (P). Then
there exists a sequence {z,} C C \ {zo} such that G(z,) <0, ||zn — z¢|| < 1/n, and
F(zn) < F(zo) + |l2n — zo||* /n for every n. Since fa(zo) = F(zo) for a € @, we
obtain

(4) : fa(zn) < fa(30)+||3n—zo"k /n Vae Qp,ne N

Let i, := ||#n — 2o]| and dp, := (zn — z9)/tn. Then ||d,|| = 1, so by the compactness of
the unit sphere in R™ there exists a subsequence {d,,} converging to d with ||d|| = 1.
Since tn, | 0 and zo + t,d, =z, € C, it {ollows that d € K¢(zo).

Using G(z¢) = 0 we have gg(z») — gg(zo) = ga(zn) < G(zn) < 0 for all B € By,
n € N. Thus

#§(D) <limsup Em) 2 9820) <o vp ey, je

by 3.2. By combining (4) and 3.2 we obtain

‘PE:)(d) < lim sup fa(Zn,) — fa(2o)

v—soo th,
In, = 2ol* n
L lmsup —*—— = lim =% =0 Va€Qp,icl.
v—o00 Tl:yt:,‘v v—oo 7,
Hence d € M(zo) \ {0} and sup <p£,k)(d) £ 0, which contradicts (3). 0
«€Qo

Theorem 3.3 includes [8] Corollary 2.1 as a special case.
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