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Evolutionary Games and the Replicator Dynamics 1

1 Introduction and Technical Preliminaries
1.1 Introduction

Evolutionary games form a class of noncooperative games in which the inter-
action of strategies is studied using evolutionary ideas from two different
approaches, static and dynamic. The static approach captures evolutionary con-
cepts through defining and studying equilibrium terms. The dynamic approach,
on the other hand, studies the interaction of strategies as a dynamical process
determined by a system of differential equations. This Element concerns the
dynamic approach with a specific dynamical system known as the replicator
dynamics.We are particularly interested in the stability of the replicator dynam-
ics for evolutionary games in which the strategy set is a measurable set or, more
precisely, a separable metric space.
An evolutionary game is said to be symmetric if there are two players only

and, furthermore, they have the same strategy sets and the same payoff func-
tions. This type of game models interactions of strategies of a single population
and forms part of the so-called population games. On the other hand, asym-
metric evolutionary games, also known as multipopulation games, are those
in which there is a finite set of players (or populations), each of which has a
different set of strategies and different payoff functions.
Game models with strategies in general measurable spaces are important

because they include essentially all the models that appear in theory and appli-
cations, from games with finite strategy sets to games with strategies in metric
spaces such as some models in oligopoly theory, international trade theory, war
of attrition, and public goods, among others. With our proposed model we can
introduce evolutionary dynamics in games where the strategy set is a Borel
space (that is, a Borel subset of a complete and separable metric space). We
have, consequently, that the dynamical system lives in a Banach space, which
in our case is a space of finite signed measures. In particular, if the strategy set
is finite, then the dynamical system is in Rm, where m is the number of strate-
gies of a player for symmetric games, or the total number of strategies of all
players for asymmetric games.
Themain objective of this Element is to present a general, unified framework

to study the existence of solutions and the stability of the replicator dynamics
for games with metric strategy sets. This means that, first, we establish condi-
tions for the existence of solutions to the replicator dynamics for asymmetric
games, and also conditions that ensure the stability of the system in this asym-
metric case. Bomze and Pötscher (1989) suggest an approach (similar to that in
Selten (1980) for the case with finite strategy sets) in which asymmetric games
are reduced to the symmetric case; for details, see Section 3.2. This approach,
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2 Evolutionary Economics

however, has some disadvantages. For instance, the relationship between Nash
equilibria and the replicator dynamics is unclear. It is also unclear how to extend
stability concepts and results to the asymmetric case. In contrast, with our pro-
posed model it is easy to see the relationship between a Nash equilibrium and
the replicator dynamics (see Section 3.4) and, in addition, stability concepts
have a natural extension from the symmetric case to the asymmetric situation
(see Section 3.5).
Second, for symmetric games we study stability criteria in a fairly general

context, with respect to different topologies andmetrics on a space of measures.
We can thus, for instance, relate the Nash equilibria of a certain normal-form
game with the stability of the replicator dynamics under different metrics (see
Section 4.4), and similarly for strongly uninvadable strategies (Section 4.3), a
refinement of Nash equilibria.
Third, we can obtain quite general, and at the same time precise results on the

approximation of the replicator dynamics by different approximating models,
which include finite-dimensional dynamic systems. These approximations can
be in a strong form, using the variational norm (Section 5.2), or in a weak form,
using the Kantorovich–Rubinstein norm (Section 5.3).
Fourth, we study the replicator dynamics as a limit of a sequence of Markov

processes (see Section 6), where each Markov process describes a stochastic
interaction among the characteristics (genotypes or actions) of the individuals.
This stochastic interaction can be studied by means of a determinist dynamic
under some hypotheses.
Concerning some related literature, conditions for the existence of solutions

to the replicator dynamics in measure spaces in the symmetric case are given
by several authors, including Bomze (1991), Oechssler and Riedel (2001),
and more generally (including dynamics different from the replicator equa-
tion) by Cleveland and Ackleh (2013). In Section 3.3 we present conditions
for the existence of solutions to the replicator dynamics in measure spaces in
the asymmetric case and some other important results.
Similarly, conditions for stability have been developed with respect to differ-

ent topologies, as in, for instance, Bomze (1990), Oechssler and Riedel (2001,
2002), Eshel and Sansone (2003), Van Veelen and Spreij (2009), and Cressman
and Hofbauer (2005). In Section 3.5, we present stability results for the replica-
tor dynamics in the asymmetric case. In Section 4.3, we present a brief review
of stability results in the symmetric case. Also in Section 4.3 we establish a
result that characterizes the stability of the replicator dynamics with respect to
the Wasserstein metric, which is analogous to theorem 2 of Bomze (1990) and
is also an approximation to answer a conjecture proposed by Oechssler and
Riedel (2002).
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Evolutionary Games and the Replicator Dynamics 3

An important issue in evolutionary games is to study the replicator dynam-
ics as a limit of a sequence of Markov processes describing interactions among
individuals in a population. These stochastic interactions describe the evolution
of the species. There are many references on this issue when the strategy space
is finite; for instance, to name a few, Benaim and Weibull (2003), Corradi and
Sarin (2000), and Sandholm (2003, 2010). However, a more general mathe-
matical structure is needed if the strategy set is a measurable space, which is
what we propose in Section 6.
On the other hand, in the theory of evolutionary games there are sev-

eral interesting dynamics, such as the imitation dynamics, the monotone-
selection dynamics, the best-response dynamics, the Brown–von Neumann–
Nash dynamics, and so forth (see Hofbauer and Sigmund (1998), Hofbauer and
Sigmund (2003), Sandholm (2010), among others). Some of these evolutionary
dynamics have been extended to games with strategies in a space of proba-
bility measures. For instance, Hofbauer et al. (2009) extend the Brown–von
Neumann–Nash dynamics; Lahkar and Riedel (2015) extend the logit dynam-
ics; and Lahkar et al. (2022) develop other related results. Moreover, Cheung
(2014, 2016) proposes a general theory for pairwise comparison dynamics and
for imitative dynamics. Ruijgrok and Ruijgrok (2015) extend the replicator
dynamics with a mutation term. For asymmetric games, Mendoza-Palacios
and Hernández-Lerma (2015) establish conditions of existence; in addition,
Mendoza-Palacios and Hernández-Lerma (2015) and Narang and Shaiju (2019,
2020, 2022) define static equilibria and analyze conditions for the stability of
the replicator dynamics in asymmetric games.
Among all these dynamics, we selected the replicator dynamics partly

because it is the most studied for games with strategies in metric spaces, and
partly because it has many interesting properties, as can be seen in Cressman
(1997), Hofbauer andWeibull (1996), and many other references. In particular,
with the replicator dynamics it is not difficult to construct a proof of the exist-
ence of Nash equilibria and, moreover, when the strategy set is finite, we can
give a geometric characterization of the set of Nash equilibria; see Harsanyi
(1973), Hofbauer and Sigmund (1998), and Ritzberger (1994).
Finally, it is noteworthy that today evolutionary games have many appli-

cations in different areas. For example, genetics and biology, Hofbauer and
Sigmund (1998); modeling cancer, Gatenby and Gillies (2008), Hummert et al.
(2014), Vincent and Gatenby (2005); and spread of epidemics, Bauch (2005),
Yang and Yang (2015). In economics and social sciences, there are applica-
tions in different areas: in criminal behavior, Cressman et al. (1998), Quinteros
and Villena (2022); corruption, Kou et al. (2021), Katsikas et al. (2016); forest
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4 Evolutionary Economics

management and economy of natural resources, Sethi and Somanathan (1996),
Shahi andKant (2007), Lamantia (2017); spatial economy and economic devel-
opment, Fujita et al. (2001), Accinelli and Sánchez Carrera (2012), Araujo and
de Souza (2010); combatting money laundering and finance, Araujo (2010),
Amir et al. (2011), Amir et al. (2013); industrial organization, Bischi et al.
(2015), Almudi et al. (2020c); industrial policy and innovation economics,
Almudi and Fatas-Villafranca (2021), Almudi et al. (2020a),Mendoza-Palacios
et al. (2022), Mendoza-Palacios and Mercado (2021), among others. We
selected the examples in Section 2 because most of them are classical mod-
els in the literature of game theory and, in addition, the corresponding strategy
sets are metric spaces. This allows us to relate some of our main theoretical
results to interesting particular applications.

1.2 Summary
The remainder of this Element is organized as follows. Section 1.3 presents
notation and technical requirements.
Section 2 introduces a normal-form game and presents important related

concepts. We also show examples that will be used in the rest of this Element.
Section 3 introduces an evolutionary dynamics for asymmetric games. Sec-

tion 3.1 shows a heuristic approximation to the replicator dynamics for the
asymmetric case. Section 3.2 describes the asymmetric evolutionary game and
the replicator dynamics. Section 3.3 establishes conditions for the existence of a
solution to the system of differential equations describing the replicator dynam-
ics, and gives some characterizations of the solution. Section 3.4 establishes a
relationship between Nash equilibria and the replicator dynamics. Section 3.5
introduces conditions to establish the stability of the replicator equations. Sec-
tion 3.6 proposes examples to illustrate our results. We conclude the section in
Section 3.7 with some general comments on possible extensions.
Section 4 introduces an evolutionary dynamics for symmetric games. Sec-

tion 4.1 describes the replicator dynamics and its relation to evolutionary
games. Some important technical issues are also summarized. Section 4.2
establishes the relation between the replicator dynamics and a normal-form
game using the concepts of Nash equilibria and strongly uninvadable strate-
gies. Section 4.3 presents a brief review of stability results for the replicator
dynamics. Section 4.4 establishes an important relationship betweenNash equi-
libria and the critical points of the replicator dynamics. Section 4.5 proposes
examples to illustrate our results. Finally, we conclude in Section 4.6 with some
general comments on possible extensions of our results.
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Evolutionary Games and the Replicator Dynamics 5

Section 5 proposes approximation schemes for the replicator dynamics in
measure spaces, including the approximation by dynamical systems in finite-
dimensional spaces (see Section 5.1). Section 5.2 presents an approximation
theorem in the strong form, using the variational norm; and Section 5.3 presents
an approximation theorem in the weak form, using the Kantorovich–Rubinstein
norm. Section 5.4 illustrates with some examples our results. Finally, we
conclude in Section 5.5 with some comments on other possible approximations.
Section 6 studies the replicator dynamics as a limit of a sequence of Markov

processes. Section 6.1 presents notation and technical requirements. Section 6.2
shows a technique proposed by Kolokoltsov (2006, 2010) to approximate a
sequence of pure jump models of binary interaction (in a Banach space), via
a deterministic dynamical system. Section 6.3 uses techniques of Section 6.2
to establish conditions under which the replicator dynamics are the limit of a
sequence of Markov processes.
Section 7 presents a summary of contributions and future perspectives.

Finally, the online appendix (available at www.cambridge.org/evolutionary-
games) contains facts on metrics on spaces of probability measures, and the
proof of some technical results.

1.3 Technical Preliminaries
1.3.1 Spaces of Signed Measures

Consider a separable metric space A and its Borel σ-algebra B(A). LetM(A) be
the Banach space of finite signed measures µ on B(A) endowed with the total
variation norm

‖µ‖ := sup
‖ f ‖≤1

����∫
A
f (a)µ(da)

���� = |µ|(A), (1)

where |µ| = µ+ + µ− denotes the total variation of µ, and µ+, µ− stand for the
positive and negative parts of µ, respectively. The supremum in (1) is taken
over functions in the Banach space B(A) of real-valued bounded measurable
functions on A, endowed with the supremum norm

‖ f ‖ := sup
a∈A

| f (a)|. (2)

Consider the subsetCB(A) ⊂ B(A) of all real-valued continuous and bounded
functions on A, and the dual pair (CB(A),M(A)) given by the bilinear form
〈·, ·〉 : CB(A) ×M(A) → R

〈g, µ〉 :=
∫
A
g(a)µ(da). (3)

We consider the weak topology onM(A) (induced by CB(A)), that is, the topol-
ogy under which the elements of CB(A), when regarded as linear functionals
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6 Evolutionary Economics

〈g, ·〉 on M(A), are continuous. In this topology a neighborhood of a point
µ ∈ M(A) is of the form

VH
ϵ (µ) :=

{
ν ∈ M(A) : |〈g, ν − µ〉| < ϵ ∀g ∈ H

}
(4)

for ϵ > 0 andH a finite subset of CB(A).

Definition 1 A sequence of measures µn ∈M(A) is said to be weakly conver-
gent if there exists µ ∈ M(A) such that

lim
n→∞

∫
A
g(a)µn(da) =

∫
X
g(a)µ(da) (5)

for all g inCB(A). If M(A) is replaced by the space P(A) of probability measures
on A, sometimes we say that µn converges in distribution to µ.

1.3.2 Metrics on P(A)

There are many metrics that metrize the weak topology. The following metrics
are particularly useful. (For details see, for instance, Shiryaev (1996), Billings-
ley (2013), or Villani (2008)). This subsection will be used in Section 4; the
reader can skip it and come back to it later.
Let A be a separable metric space with a metric ϑ, and P(A) the set of prob-

ability measures on A. For any µ, ν ∈ P(A) we define the following metrics on
P(A).
(i) The Prokhorov metric rp, defined as

rp(µ, ν) := inf{α > 0 : µ(E) ≤ ν(Eα) + α and ν(E) ≤ µ(Eα) + α}, (6)

where, for α > 0, Eα := {a ∈ A : ϑ(a,E) < α} if E , ϕ. Here ϕ is the empty
set, and

ϑ(a,E) := inf{ϑ(a,a′) : a′ ∈ E}.

(ii) The bounded Lipschitz metric rbl, defined as

rbl(µ, ν) := sup
f∈LB(A)

{∫
A
f (a)µ(da) −

∫
A
f (a)ν(da) : ‖ f ‖BL ≤ 1

}
, (7)

where (LB(A), ‖ · ‖BL) is the space of bounded, continuous, and real-valued
functions on A that satisfy the Lipschitz condition

‖ f ‖L := sup | f (a) − f (b)|
ϑ(a,b) < ∞, (8)
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Evolutionary Games and the Replicator Dynamics 7

where the supremum is over all a , b. For any f ∈ LB(A), the norm ‖ f ‖BL is
defined as

‖ f ‖BL := ‖ f ‖ + ‖ f ‖L. (9)

(iii) The Kantorovich–Rubinstein metric rkr, defined as

rkr(µ, ν) := sup
f∈L(A)

{∫
A
f (a)µ(da) −

∫
A
f (a)ν(da) : ‖ f ‖L ≤ 1

}
, (10)

where (L(A), ‖ · ‖L) is the space of continuous real-valued functions on A that
satisfy the Lipschitz condition (8). Let a0 be a fixed point in A, and

MK(A) :=
{
µ ∈ M(A) : sup

f∈L(A)

∫
A
| f (a)|µ(da) < ∞

}
.

Then the Kantorovich–Rubinstein metric rkr can be extended as a norm on
MK(A) defined as

‖µ‖kr := |µ(A)| + sup
f∈L(A)

{∫
A
f (a)µ(da) : ‖ f ‖L ≤ 1, f (a0) = 0

}
, (11)

for any µ inMK(A) (see Bogachev (2007), chapter 8). Note that for any µ, ν ∈
P(A) rkr(µ, ν) = ‖µ − ν‖kr, since

sup
f∈L(A)

{∫
A
f (a)µ(da) −

∫
A
f (a)ν(da) : ‖ f ‖L ≤ 1

}
= sup
f∈L(A)

{∫
A

(
f (a) − f (a0)

)
µ(da) −

∫
A

(
f (a) − f (a0)

)
ν(da) : ‖ f ‖L ≤ 1

}
= sup
g∈L(A)

{∫
A
g(a)µ(da) −

∫
A
g(a)ν(da) : ‖g‖L ≤ 1, g(a0) = 0

}
.

(iv) Let us suppose that the separable metric space A is also complete (that
is, a so-called Polish space), and let a0 be a fixed point in A. For each p with
1 ≤ p < ∞, we define the space Pp(A) as

Pp(A) :=
{
µ ∈ P(A) :

∫
A
[ϑ(a,a0)]pµ(da) < ∞

}
.

The Lp-Wasserstein distance rwp between µ and ν in Pp(A) is defined by

rwp (µ, ν) :=
[
inf
π∈Π

∫
A

∫
A
[ϑ(a,b)]pπ(da,db)

] 1
p

, (12)

where Π is the set of probability measures on A×A with marginals µ and ν. In
particular, when p = 1, we write the L1-Wasserstein distance rw1 as rw and in
addition we have that rw = rkr on P(A).
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8 Evolutionary Economics

Remark 2 In the rest of this work we will denote by rw∗ any metric that
metrizes the weak topology on P(A) (not to be confused with the notation
rw of the L1-Wasserstein distance). Moreover, we denote by r any metric on
P(A) that is either the total variation norm (1) or any distance that metrizes
the weak topology. An open ball in the metric space (P(A), r) is defined in the
classical form

Vrα(µ) :=
{
ν ∈ P(A) : r(ν, µ) < α

}
, (13)

where α > 0.

Remark 3 Let A be a separable metric space, and rw∗ any distance that
metrizes the weak topology τw∗ in P(A). Let µ be any measure in P(A), and
consider the family VH(µ) of neighborhoods VH

ϵ (µ) of the form (4). In addi-
tion, consider the family Vrw∗ (µ) of the open balls Vrw∗α (µ) of the form (13).
Both families VH(µ) and Vrw∗ (µ) are neighborhood basis for µ in the space
(P(A), τw∗ ). For details see Pedersen (2012), chapters I–II.
Moreover, a neighborhood VH

ϵ (µ) for µ is contained in some open ball
Vrw∗α (µ) with center µ. The inverse is also true, that is, any open ball Vrw∗α (µ) is
contained in some neighborhood VH

ϵ (µ).

1.3.3 Product Spaces

Consider two separable metric spacesX and Ywith their Borelσ-algebrasB(X )
and B(Y ). We denote by σ[X × Y] the σ-algebra on X × Y generated by the
Cartesian product B(X ) ×B(Y ). For µ ∈ M(X ) and ν ∈ M(Y ), we denote their
product by µ × ν ∈ M(X × Y ).

Proposition 4 For µ ∈ M(X ) and ν ∈ M(Y ), it holds that

‖µ × ν‖ ≤ ‖µ‖‖ν‖. (14)

As a consequence, µ × ν is inM(X × Y ).

Proof See Heidergott and Leahu (2010), lemma 4.2.

Now consider a finite family of metric spaces {Xi}ni=1 and their σ-algebras
B(Xi), as well as the Banach spaces (M(Xi), ‖ · ‖) and (MK(Xi), ‖ · ‖kr). For
i = 1, . . . ,n, let µi ∈ M(Xi). Consider the elements µ = (µ1, µ2, . . . , µn) in the
product spaceM(X1) ×M(X2) × · · · ×M(Xn) for which

‖µ‖∞ = ‖(µ1, . . . , µn)‖∞ := max
1≤i≤n

‖µi‖ < ∞. (15)
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Evolutionary Games and the Replicator Dynamics 9

These elements form a Banach space with ‖ · ‖∞ as a norm. We call it the direct
product of the Banach spacesM(Xi). We can similarly define the Banach space
(MK(X1) × · · · ×MK(Xn), ‖ · ‖kr∞),where

‖µ‖kr∞ := max
1≤i≤n

‖µi‖kr < ∞. (16)

1.3.4 Differentiability

Definition 5 Let A be a separable metric space. We say that a mapping
µ : [0,∞) → M(A) is strongly differentiable if there exists µ′(t) ∈ M(A) such
that, for every t > 0,

lim
ϵ→0

 µ(t + ϵ) − µ(t)ϵ
− µ′(t)

 = 0. (17)

Note that, by (1), the left-hand side in (17) can be expressed as

lim
ϵ→0

sup
‖g‖≤1

����1ϵ [∫A g(a)µ(t + ϵ,da) −
∫
A
g(a)µ(t,da)

]
−
∫
A
g(a)µ′(t,da)

���� .
The signed measure µ′ in (17) is called strong derivative.

For weak differentiability, see Remark 47.

1.4 Comments
This section presented a general introduction and summary of this Element. In
addition, some technical preliminaries to be used in the following sections were
presented. The only remaining information to be included is some references
addressing evolutionary games in an explicit and comprehensive manner. First,
wemention references for evolutionary gameswith finite strategy spaces.Webb
(2007) and Weibull (1997) are two good introductory books; Hofbauer and
Sigmund (1998) and Sandholm (2010) are two books that address a larger num-
ber of topics on evolutionary games; Cressman (2003) uses techniques based
on subgame decompositions of extensive form games to analyze convergence
results for evolutionary dynamics.
Regarding books dealing with evolutionary games with measurable strat-

egy spaces we can only mention Bomze and Pötscher (1989). Nevertheless,
this book was written in 1989 and so it does not address several subsequent
results that have been developed in this theory. Other references on theoretical
advances of this topic are mentioned in the introduction. Most of them, how-
ever, only touch theoretical aspects, and there are few bibliographies about
applications; for example, oligopoly theory, Rabanal (2017), public goods
models, Rabanal (2017), and preferences economic theory, Heifetz et al. (2007)
and Norman (2012).
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10 Evolutionary Economics

2 Normal-Form Games
This section is organized as follows. Section 2.1 presents a normal-form game
and important related concepts. The following sections show examples that
will be used in the rest of this Element. Most of them are classical models in
the literature of game theory and, in addition, the corresponding strategy sets
are metric spaces. This allows us to relate some of our main theoretical results
(in evolutionary games given in the following sections) to interesting particular
applications.
Section 2.2 shows a linear-quadratic model that can be applied in many sit-

uations, such as oligopoly theory, international trade models, or public good
games. Section 2.3 concerns the tragedy of the commons model which is a clas-
sical game used to describe the use of natural resources. Section 2.4 presents
poverty traps that describe the possible causes of economic underdevelop-
ment of a country. Section 2.5 shows the classical Bertrand game. Sections 2.6
and 2.7 present the graduate risk model and the war attrition game, respectively.
These games describe a situation where the players compete for a resource.

2.1 Normal-form games
In this section we introduce normal-form games and define the concept of Nash
equilibrium as a solution of such games.
Consider a set I := {1,2, . . . ,n} of players. For each player i ∈ I, let Ai be the

set of pure strategies, which is a separable metric space. Let B(Ai) be the Borel
σ-algebra of Ai, and P(Ai) the set of probability measures on Ai, also known as
the set of mixed strategies. For every i ∈ I and every vector a := (a1, . . . ,an) in
the Cartesian product A := A1 × · · · × An, we write a as (ai,a−i) where a−i :=
(a1, . . . ,ai−1,ai+1, . . . ,an) is in A−i := A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An. Finally,
for each player i we assign a payoff function Ji : P(A1) × · · · × P(An) → R that
explains the interrelation with other players, and which is defined as

Ji(µ1, . . . , µn) :=
∫
A1
. . .

∫
An
Ui(a1, . . . ,an)µn(dan) . . . µ1(da1), (18)

where Ui : A1 × · · · × An → R is a given measurable function. Sometimes we
call Ui a utility or payoff function.
For every i ∈ I and every vector µ := (µ1, . . . , µn) in P(A1) × · · · × P(An), we

write µ as (µi, µ−i), where µ−i := (µ1, . . . , µi−1, µi+1, . . . , µn) is in

P(A1) × · · · × P(Ai−1) × P(Ai+1) × · · · × P(An).

If δai is a Dirac probability measure concentrated at ai ∈ Ai, the vector (δai, µ−i)
is written as (ai, µ−i), and so
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Evolutionary Games and the Replicator Dynamics 11

Ji(δai, µ−i) = Ji(ai, µ−i). (19)

It is convenient to rewrite (18) as

I(µ1 ,...,µn)Ui :=
∫
A1
. . .

∫
An
Ui(a1, . . . ,an)µn(dan) . . . µ1(da1). (20)

Hence (19) becomes

Ji(ai, µ−i) =
∫
A−i
Ui(ai,a−i)µ−i(da−i) (21)

= I(µ1 ,...,µi−1 ,µi+1 ,...,µn)Ui(ai).

In particular, (18) yields

Ji(µi, µ−i) :=
∫
Ai
Ji(ai, µ−i)µi(dai). (22)

Finally, a normal-form game Γ can be described as

Γ :=
[
I,
{
P(Ai)

}
i∈I
,
{
Ji(·)

}
i∈I

]
, (23)

where

(i) I = {1,2, . . . n} is the set of players,
(ii) for each player i ∈ I we specify a set of actions (or strategies) P(Ai) and a

payoff function Ji : P(A1) × · · · × P(An) → R.

Definition 6 Let Γ be a normal-form game. A vector µ∗ in P(A1) × · · · × P(An)
is called ϵ-equilibrium (ϵ > 0) if, for all i ∈ I,

Ji(µ∗i , µ∗−i) ≥ Ji(µi, µ∗−i) − ϵ ∀µi ∈ P(Ai).

If the inequality is true when ϵ = 0, then µ∗ is called a Nash equilibrium.

We can obtain from (23) a symmetric normal-form game when I = {1,2},
and the sets of actions and payoff functions are the same for both players, that
is, P(A) = P(A1) = P(A2) and J(µ1, µ2) = J1(µ1, µ2) = J2(µ2, µ1) for all µ1, µ2 ∈
P(A). Hence, we can describe a two-player symmetric normal-form game as

Γs :=
[
I = {1,2}, P(A), J(·)

]
. (24)

For symmetric normal-form games Γs we can express a symmetric Nash
equilibrium (µ∗, µ∗) in terms of the strategy µ∗ ∈ P(A), as follows.
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12 Evolutionary Economics

Definition 7 We say that µ∗ ∈ P(A) is aNash equilibrium strategy (NES) if the
pair (µ∗, µ∗) is a Nash equilibrium for Γs. That is,

J(µ∗, µ∗) ≥ J(µ, µ∗) ∀µ ∈ P(A). (25)

2.2 A Linear-Quadratic Model
In this subsection we consider games in which we have two players with the
following payoff functions:

U1(x,y) = −a1x2 − b1xy + c1x + d1y, (26)

U2(x,y) = −a2y2 − b2yx + c2y + d2x, (27)

with a1,a2,b1,b2,c1,c2 > 0 and d1,d2 any real numbers. Consider the strategy
sets A1 = [0,M1] and A2 = [0,M2] for M1,M2 > 0 and large enough.
This class of games could represent a Cournot duopoly or models of

international trade with linear demand and linear cost (see, for example, Var-
ian (1992)). It can also represent some models of public good games (see
Mas-Colell et al. (1995)).
If the numbers

(2a2c1 − b1c2), (2a1c2 − b2c1), (4a1a2 − b1b2)

are all positive, then we have an interior Nash equilibrium

(x∗,y∗) =
(
2a2c1 − b1c2
4a1a2 − b1b2

,
2a1c2 − b2c1
4a1a2 − b1b2

)
. (28)

2.3 The Tragedy of the Commons
The tragedy of the commons is a game where the payoff of each player depends
on the use of a unique resource that must be shared. There are a variety of appli-
cations of this model, for example: (a) overfishing, the population of fish in the
ocean is a shared resource; (b) the expansion of the tree population in a forest
area; (c) car traffic congestion, public roads are an example of common prop-
erty shared bymany people; (d) use of groundwater, many cities and companies
share a groundwater aquifer that is regional; (e) atmospheric pollution of a city
or between cities, the atmosphere is another resource that everyone uses. In the
following example the common good is a network bandwidth.
Consider a set of firms I := {1,2, . . . ,n} and suppose that each firm i ∈ I

wants to send and share xi amount of data, for example audiovisual content
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Evolutionary Games and the Replicator Dynamics 13

in an internet network (as the social media firms). Assume that the network
bandwidth, or the maximum capacity of the network to transmit data in a given
mount of time is x̄. Since the firm gets a payment to share its data, ideally, each
of them would like to submit as much data as possible. The problem is that the
quality of the network deteriorates as it is used, and if the network is overused
the firms can no longer transmit data. Let x̂ := x1 + · · · + xn, and assume that
the value of the submitted data is given by a function v : [0, x̄] → R such that

(i) v(x̂) > 0 for 0 ≤ x̂ < x̄ and v(x̂) = 0 for x̄ ≤ x̂;
(ii) v(·) is a concave function with the following property: v′(x̂) < 0 and

v′′(x̂) < 0 for x̂ ∈ [0, x̄].

Let Ai := [0, x̄] be the space of pure strategies of firm i. The cost of the firm i
to share a unit of data is ci, and the payoff, or benefit, of firm i is given by

Ui(xi,x−i) = xiv(x1 + · · · + xi + · · · + xn) − cixi, (29)

where x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn).
Note, that v(·) is strictly concave (since v′′ < 0). Then for each i in I and fixed

x′−i, the map xi 7→ v(x′1+ · · ·+xi+ · · ·+x′n) is strictly concave. Consequently, the
map xi 7→ Ui(xi,x′−i) is also strictly concave. Since for each i in I, Ai is convex
and compact, then there exists a unique Nash equilibrium (x∗1, . . . ,x∗n) for the
game (see Rosen (1965)).
This Nash equilibrium maximizes Ui(·,x∗−i) for each i in I and satisfies the

first-order condition

v(x∗1 + · · · + xi + · · · + x∗n) + xiv′(x∗1 + · · · + xi + · · · + x∗n) − ci = 0. (30)

On the other hand, the so-called social optimum, denoted by x̂∗∗, solves

max
x̂∈[0,x̄]

{x̂v(x̂) − x̂k},

where k = min{c1, . . . ,cn}. Then the social optimum x̂∗∗ satisfies the first-order
condition

v(x̂) + x̂v′(x̂) − k = 0. (31)

Let x̂∗ = x∗1 + · · · + x∗n. If x̂∗ ≤ x̂∗∗ and since v′ < 0 and v′′ < 0, then
0 < v(x̂∗∗) ≤ v(x̂∗) and v′(x̂∗∗) ≤ v′(x̂∗) < 0. Since x∗i ≤ x̂∗∗, then the left-
hand side of (30) is strictly greater than the left-hand side of (31), which is a
contradiction. Therefore, comparing (30) to (31) shows that x̂∗ > x̂∗∗, that is,
the common resource is overutilized in the Nash equilibrium. This motivates
the name tragedy of the commons.
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14 Evolutionary Economics

Table 1 A poverty trap game

Worker\Firm m τ

s wm + p − e, Is,m − wm − p wτ − e, Is,τ − wτ

a wm, Ia,m − wm wτ, Ia,τ − wτ

2.4 A Poverty Trap Model
This section is an abbreviated version of the model proposed by Accinelli and
Sánchez Carrera (2012). For related works on industrialization and poverty
traps with evolutionary dynamics, see, for example, Mendoza-Palacios et al.
(2022) andMendoza-Palacios andMercado (2021). Consider an economy with
two populations, workers and firms. Each firm has two possible strategies: to
be a modern firm (m) or a traditional firm (τ). A modern firm is a technological
company that needs specialist workers to work in optimal conditions.
Similarly, each worker has two possible strategies: to be a specialist worker

(s) or to be an artisan worker (a). A specialist worker has to spend e > 0 by
concept of education.
Themodern company payswm > 0 by finished product to any type of worker

and a premium p > e to specialist workers. On the other hand, a traditional firm
pays wτ < wm by finished product. The income of each firm is determined
by the workers’ productivity. We will denote by If,w, the income of firm type
f ∈ {m, τ} that employs workers type w ∈ {s,a}. Assume that Is,m − Is,τ >
wm + p − wτ and wm − wτ > Ia,m − Ia,τ .
In addition, suppose that each company uses a unique type of worker and

each worker is employed in one type of firm only. The payoffs for the game are
in Table 1.
Under the preceding hypotheses we have two pure Nash equilibria (s,m),

(a, τ) and one Nash equilibrium in mixed strategies (µ∗, ν∗) where

µ∗(s) = e
p

(32)

and

ν∗(m) = (wm − wτ) − (Ia,τ − Ia,m)
(Is,m − Is,τ) − (wm + p − wτ)

. (33)

2.5 A Sales Model as a Bertrand Game
This example is a Bertrand-duopoly model of sales (proposed by Varian
(1980)), where each firm (or store) has zero marginal costs and a fixed cost
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Evolutionary Games and the Replicator Dynamics 15

k > 0.Wewill suppose that each consumer desires to purchase, at most, one unit
of the homogeneous good produced by the duopoly market and the maximum
price that any consumer will pay for the good (consumer’s price reservation) is
γ > 0.
We suppose that there are two types of consumers: the uninformed consumers

which choose any store randomly, and the informed consumerswhich know the
whole distribution of prices, that is, they know the lowest available price. Let I
be the number of informed consumers, V the number of uninformed consumers,
and T the total number of consumers so T = I+ V. We assume that the demand
curve facing each firm is given by

q( p, z) =
I +

V
2 if p < z,

V
2 if z ≤ p,

(34)

where p is the price of the firm and z is the price of the opponent firm.
Given the demand curve (34), each firm maximizes its payoff function

U( p, z) =
p

[
I + V

2
]
− k if 0 ≤ p < z ≤ γ,

pV2 − k if 0 ≤ z ≤ p ≤ γ.
(35)

Varian (1980, 1992) shows that this game does not have a Nash equilibrium
in pure strategies, and that there exists a symmetric Nash equilibrium in mixed
strategies given by the density function

dµ∗(p)
dp

=


[
γV
2I

]
p−2 if p̄ ≤ p ≤ γ,

0 otherwise,
(36)

where p̄ = γV
2I+V .

2.6 Graduated Risk Game
The graduated risk game is a symmetric game (proposed byMaynard Smith and
Parker (1976)), where two players compete for a resource of value v > 0. Each
player selects the “level of aggression” for the game. This “level of aggression”
is captured by a probability distribution x ∈ [0,1], where x is the probability
that neither player is injured, and 1

2 (1 − x) is the probability that player one (or
player two) is injured. If the player is injured, its payoff is v − c (with c > 0),
and hence the expected payoff for the player is

U(x,y) =
vy +

v−c
2 (1 − y) if y > x,

v−c
2 (1 − x) if y ≤ x,

(37)

where x and y are the “level of aggression” selected by the player and her
opponent, respectively.
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16 Evolutionary Economics

If v < c, this game has the NES (seeMaynard Smith and Parker (1976), page
163) with the density function,

dµ∗(x)
dx

=
α − 1
2

x
α−3
2 , (38)

where α = c
v . Moreover, if c ≤ v, this game has the NES (see Maynard Smith

and Parker (1976) and Bishop and Cannings (1978))

µ∗ = δ0. (39)

2.7 War of Attrition Game
The war of attrition game was proposed by Maynard Smith (1974). In this two-
player symmetric game, each player competes for a reward of value v > 0.
Each player has a number m > v of resources for the war and decides how
much resources to spend to win this reward v. If a player is willing to risk more
resources than the other player, then he wins the reward v and pays only the
resources that the other player spends. Otherwise, the player loses the resources
used during the war.
For x,y in the strategy set A = [0,m] (with v ≤ m), the payoff function is

U(x,y) =


v − y if y < x,
v
2 − y if y = x,

−x if y > x,

(40)

where x and y are the number of resources spent by the player and her opponent,
respectively.
Using theorems 7–9 in Bishop and Cannings (1978), this game has a NES
µ∗ with the density function

dµ∗(x)
dx

=


1
v e

−x/v if x ∈
[
0,m − v

2
]
,

0, if x ∈
(
m − v

2 ,m
)
,

a weight δm · e1/2−m/v at the atom {m}.
(41)

2.8 Comments
This section introduced a normal-form game and important related concepts.
It also showed examples that will be used in the rest of this work to relate our
theoretical results on evolutionary games to some applications. It remains to
give information about references of normal-form games.
There exist several books that introduce normal-form games, for instance,

Kolokoltsov and Malafeyev (2010), Myerson (1997), Osborne and Rubinstein
(1994), Gibbons (1992), and Fudenberg and Tirole (1991).
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Evolutionary Games and the Replicator Dynamics 17

Other references on theoretical advances dealing with normal-form games
with measurable strategy spaces and discontinuous payoff functions are, for
instance, Glicksberg (1952), Dasgupta and Maskin (1986a), Dasgupta and
Maskin (1986b), Simon (1987), and Reny (1999). Some recent references on
the subject are Carmona and Podczeck (2014), Prokopovych and Yannelis
(2014), Barelli and Meneghel (2013), Carbonell-Nicolau (2011), McLennan
et al. (2011), and Carmona (2009).

3 Evolutionary Games: The Asymmetric Case
The theory of evolutionary dynamics in asymmetric games (or of several pop-
ulations) has been developed for games where the strategy set of each player
is finite, as in Balkenborg and Schlag (2007), Ritzberger and Weibull (1995),
Samuelson and Zhang (1992), and Selten (1980). Nevertheless, there are well-
known cases where the sets of strategies are metric spaces, such as oligopoly
models and Nash bargaining games (see Cressman (2009)).
In this section we introduce an evolutionary dynamic model for asymmetric

games where the strategy sets are measurable spaces (in fact, separable met-
ric spaces). Under this hypothesis the replicator dynamics evolves in a Banach
Space. We specify conditions under which the replicator dynamics have a solu-
tion. Furthermore, under suitable assumptions, a critical point of the system is
stable. Some of the results of this section can be seen in Mendoza-Palacios and
Hernández-Lerma (2015). Finally, some examples illustrate our results.
Section 3.1 presents a heuristic approach to the replicator dynamics in the

asymmetric case. Section 3.2 describes the asymmetric evolutionary game and
the replicator dynamics. Section 3.3 establishes conditions for the existence
of a solution to the system of differential equations that define the replicator
dynamics, and gives some characterizations of the solution (see Theorems 12
and 13, respectively). Section 3.4 establishes a relationship between the replica-
tor dynamics and a normal-form game using the concepts of Nash equilibrium
and strong uninvadable profile (see Theorems 16 and 19). Section 3.5 intro-
duces conditions to establish the stability of the replicator dynamics (see
Theorem 21). Section 3.6 proposes examples to illustrate our results. We con-
clude the section in Section 3.7 with some general comments on possible
extensions.

3.1 A Heuristic Approach to the Replicator Dynamics
Let I := {1,2, . . . ,n} be the set of different species (or players). Each individual
of the species i ∈ I can choose a single element ai in a set of characteristics
(strategies or actions) Ai, which is a separable metric space. For every i ∈ I and
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18 Evolutionary Economics

every vector a := (a1, . . . ,an) in the Cartesian product A := A1 × · · · × An, we
write a as (ai,a−i) where a−i := (a1, . . . ,ai−1,ai+1, . . . ,an) is in

A−i := A1 × · · · × Ai−1 × Ai+1 × · · · × An.

For each i ∈ I, let B(Ai) be the Borel σ-algebra of Ai, and P(Ai) the set of
probability measures on Ai, also known as the set of mixed strategies. For each
i ∈ I, let Ni ∈ M(Ai) be a positive measure such that for each Ei in B(Ai),
Ni(Ei) assigns the “number” (or mass) of individuals using pure strategies ai
in Ei. Then the total population of the species i is Ni(Ai) and the proportion of
individuals using strategies in Ei is

µi(Ei) := Ni(Ei)
Ni(Ai)

. (42)

Indeed, when the set Ai of characteristics of the species i is not finite, it is
convenient to consider the population size not as a “number of individuals”
but as a measure Ni ∈ M(Ai). Then, for i ∈ I, we can introduce a probability
measure µi ∈ P(Ai) as in (42) that assigns a population distribution over the
action set Ai.
For each species i we assign a payoff function Ji : P(A1) × · · · × P(An) → R

that explains the interrelation with the population of other species, and which
is defined as in (18).
In the dynamic case, for each i in I, the measure-valued process Ni (and con-

sequently µi) depends on a time parameter t ≥ 0. For each i in I, let γ1i , γ
2
i be

the background per capita birth and death rates in the population i. We assume
that in any time t, the background per capita net birth rate γi := γ1i − γ2i
is modified by the payoff Ji(ai, µ−i(t)) for using strategy ai ∈ Ai and where
µ−i(t) := (µ1(t), . . . , µi−1(t), µi+1(t), . . . , µn(t)) is in

P(A1) × · · · × P(Ai−1) × P(Ai+1) × · · · × P(An).

The dynamic of measure-valued process Ni(t) is determined by the rate of
change of the number of individuals of the species i for every Ei ∈ B(Ai),
that is

N′
i (t,Ei) = γiNi(t,Ei) + Ni(t,Ai)

∫
Ei
Ji(ai, µ−i(t))µi(t,dai) (43)

with some initial positive measure Ni(0) inM(Ai). The notation N′
i (t,Ei) repre-

sents the strong derivative ofNi(t) in the Banach spaceM(Ai) (see Definition 5)
valued at Ei ∈ B(Ai), and µi is a probability measure defined as in (42).
For each t in [0,∞) and i in I, the term

∫
Ei
Ji(ai, µ−i(t))µi(t,dai) in (43) values

the efficiency of the strategies ai in the set Ei of the species i when the other
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Evolutionary Games and the Replicator Dynamics 19

species have a distribution µ−i(t). Note that if Ji(·, ·) ≡ 0, the solution of (43)
is Ni(t,Ei) = Ni(0,Ei)eγit for all Ei ∈ B(Ai) and t ≥ 0.
Using (42), we have that

N′
i (t,Ei) = Ni(t,Ai)µ′i (t,Ei) + N′

i (t,Ai)µi(t,Ei)

for every Ei ∈ B(Ai) and t ≥ 0. Then for each species i

µ′i (t,Ei) =
N′
i (t,Ei)
Ni(t,Ai)

−
N′
i (t,Ai)µi(t,Ei)
Ni(t,Ai)

(44)

for every Ei ∈ B(Ai) and t ≥ 0. Hence, using (43) in (44), for each i in I, we
obtain

µ′i (t,Ei) =
∫
Ei

[
Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t))

]
µi(t,dai) (45)

for each Ei in B(Ai) and t ≥ 0. The system of equations (45) is known as the
replicator dynamics for the asymmetric case.

3.2 Asymmetric Evolutionary Games
In an evolutionary game, the dynamics of the strategies is determined by the
solution of a system of differential equations of the form

µ′i (t) = Fi(µ1(t), . . . , µn(t)) ∀ i ∈ I, t ≥ 0, (46)

with some initial condition µi(0) = µi,0 for each i ∈ I. The notation µ′i (t) repre-
sents the strong derivative of µi(t) in the Banach spaceM(Ai) (see Definition 5).
For each i ∈ I, Fi(·) is a mapping

Fi : P(A1) × · · · × P(An) → M(Ai).

Let

F : P(A1) × · · · × P(An) → M(A1) × · · · ×M(An),

where F(µ) := (F1(µ), . . . ,Fn(µ)), and consider the vector

µ′(t) := (µ′1(t), . . . , µ′n(t)).

Then the system (46) can be expressed as

µ′(t) = F(µ(t)), (47)

and we can see that the system lives in the Cartesian product of signedmeasures

M(A1) × · · · ×M(An),
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20 Evolutionary Economics

which is a Banach space with norm as in (15), that is,

‖µ‖∞ = ‖(µ1, . . . , µn)‖∞ := max
i∈I

‖µi‖.

More explicitly, we may write (46) as

µ′i (t,Ei) = Fi(µ(t),Ei) ∀ i ∈ I, Ei ∈ B(Ai), t ≥ 0, (48)

where µ′i (t,Ei) and Fi(µ(t),Ei) are the signed-measures µ′i (t) and Fi(µ(t)) valued
at Ei ∈ B(Ai).
We shall be working with a special class of asymmetric evolutionary games,

which can be described as[
I,
{
P(Ai)

}
i∈I
,
{
Ji(·)

}
i∈I
,
{
µ′i (t) = Fi(µ(t))

}
i∈I

]
, (49)

where

(i) I = {1, . . . ,n} is the set of players;
(ii) for each player i ∈ I we have a set of mixed strategies P(Ai) and a payoff

function Ji : P(A1) × · · · × P(An) → R (as in (18)); and
(iii) the replicator dynamics Fi(µ(t)), where

Fi(µ(t),Ei) :=
∫
Ei

[
Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t))

]
µi(t,dai). (50)

3.2.1 The Symmetric Case

We can obtain from (49) a symmetric evolutionary game (see Section 4)
when I := {1,2} and the sets of actions and payoff functions are the same
for both players, that is, A=A1 =A2 and U(a,b)=U1(a,b)=U2(b,a), for all
a,b ∈ A. As a consequence, the sets of mixed actions and the expected pay-
off functions are the same for both players, that is, P(A) = P(A1)=P(A2) and
J(µ, ν)= J1(µ, ν)= J2(ν, µ), for all µ, ν ∈ P(A). This kind of model determines
the dynamic interaction of strategies of a unique species through the replicator
dynamics µ′(t) = F(µ(t)), where F : P(A) → M(A) is given by

F(µ(t),E) :=
∫
E

[
J(a, µ(t)) − J(µ(t), µ(t))

]
µ(t,da) ∀E ∈ B(A). (51)

Finally, as in (49), we can describe a symmetric evolutionary game as

[I = {1,2}, P(A), J(·), µ′(t) = F(µ(t))] . (52)
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Evolutionary Games and the Replicator Dynamics 21

3.2.2 Another Approach to Asymmetric Games

Bomze and Pötscher (1989) suggest an approach in which asymmetric games
are reduced to symmetric ones. They construct a new strategy set Ā and a new
payoff function J : Ā × Ā → R. The strategy set Ā decomposes into mutually
disjoint sets Ai, that is, Ā := ∪i∈IAi, where Ai is the set of strategies of the
species i ∈ I. Then any measurable set E ⊂ Ā may be expressed as a union
of mutually disjoint sets Ei, that is, E = ∪i∈IEi, where Ei = E ∩ Ai. Hence
µ(E) = ∑

i∈I µ(Ei) =
∑
i∈I µi(E)µ(Ai), where

µi(E) := µ(E|Ai) =
µ(E ∩ Ai)
µ(Ai)

. (53)

The new payoff function is given by

J(µ, ν) =
∑
i∈I
µ(Ai)Ji(µi, ν−i),

where ν−i := (ν1, . . . , νi−1, νi+1, . . . , νn) with µi (and each νj in ν−i) as in (53)
and Ji(µi, ν−i) as in (18).
The replicator dynamics is constructed as in the symmetric case (51), with

F(µ(t),E) :=
∑
i∈I
µ(Ai)

∫
Ei

[
Ji(ai, µ−i(t)) − µ(Ai)Ji(µi(t), µ−i(t))

]
µi(t,dai).

3.3 Existence
In this section we introduce conditions for the existence and uniqueness of solu-
tions to the differential system (45). For this purpose we give conditions under
which the operator F in (46)–(47) is Lipschitz, when this operator is defined as
in (50).
For each i ∈ I and t ≥ 0, let

βi(ai |µ(t)) := Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t)). (54)

Hence, by (50), βi(·|µ(t)) is the Radon–Nikodym density of Fi(µ(t)) with
respect to µi(t), that is,

Fi(µ(t),Ei) =
∫
Ei
βi(ai |µ(t))µi(t,dai) ∀Ei ∈ B(Ai). (55)

Remark 8 (i) We will use the usual notation µ � ν to indicate that µ is abso-
lutely continuous respect to ν (i.e. for every set E ∈ B(A) with ν(E) = 0 we
have µ(E) = 0).
(ii) Let A be a separable metric space with Borel σ-algebra B(A). Suppose

that ν,η ∈ M(A) and c1,c2 ≥ 0, and let µ = c1η + c2ν. If there exists a positive
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22 Evolutionary Economics

measure κ ∈ M(A) such that ν � κ and η � κ , then also µ � κ. Moreover,
the Radon–Nikodym densities

φνκ =
dν
dκ

and φηκ =
dη
dκ
,

are such that

φµκ =
dµ
dκ
= c1φηκ + c2φνκ .

Lemma 9 Let ν,η, µ, κ, and φµκ be as in Remark 8. Then the total variation
norm of µ is given by

‖µ‖ =
∫
A
|φµκ(a)|κ(da).

In particular, the distance between the signed measures ν and η is given by

‖ν − η‖ =
∫
A
|(φνκ − φηκ)(a)|κ(da).

The following proposition extends to our context some results by Bomze
(1991) (lemma 1) and Oechssler and Riedel (2001) (lemma 3) in the case of
symmetric evolutionary games.

Theorem 10 Suppose that, for each i ∈ I, the function βi(·|µ) in (54) satisfies:

(i) there exists Ci ≥ 0 such that |βi(ai |µ)| ≤ Ci for each ai ∈ Ai and ‖µ‖∞ ≤ 2;
(ii) there is a constant Di > 0 such that

sup
ai∈Ai

|βi(ai |η) − βi(ai |ν)| ≤ Di‖η − ν‖∞

for each ν,η with ‖η‖∞, ‖ν‖∞ ≤ 2.

Then there exists a bounded Lipschitz map

G : M(A1) × · · · ×M(An) → M(A1) × · · · ×M(An),

which coincides with F on P(A1) × · · · × P(An).

Proof For each i ∈ I and ν,η with ‖η‖∞, ‖ν‖∞ ≤ 2, let µi = |ηi |+ |νi |
2 . Then

‖µi‖ ≤ 2, ηi � µi and νi � µi. Whence there exist the Radon–Nikodym
densities dηi

dµi = φηiµi and
dνi
dµi = φνiµi . Using (55) and Lemma 9, we have that

‖Fi(η) − Fi(ν)‖

=

∫
Ai

���βi(ai |η)φηiµi(ai) − βi(ai |ν)φνiµi (ai)��� µi(dai)
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Evolutionary Games and the Replicator Dynamics 23

≤
∫
Ai

���βi(ai |η) − βi(ai |ν)������φηiµi(ai)���µi(dai)
+

∫
Ai

���βi(ai |ν)������φηiµi(ai) − φνiµi(ai)���µi(dai)
≤
∫
Ai

���βi(ai |η) − βi(ai |ν)���|ηi |(dai)
+

∫
Ai

���βi(ai |ν)������φηiµi(ai) − φνiµi(ai)���µi(dai)
≤ 2Di max

j∈I
‖ηj − νj‖ + Ci‖ηi − νi‖

≤ Ki‖η − ν‖∞,

where Ki := max{2Di,Ci}. Therefore

‖F(η) − F(ν)‖ = max
i∈I

‖Fi(η) − Fi(ν)‖ ≤ K‖η − ν‖∞,

for all η, ν with ‖η‖∞, ‖ν‖∞ ≤ 2, with K := max{Ki : i ∈ I}. Hence, F is
Lipschitz continuous on the subset ofM(A1)×· · ·×M(An)with norm ‖ · ‖∞ ≤ 2.
Let us now consider the function

G(µ) := (2 − ‖µ‖∞)+F(µ), (56)

with (2 − ‖µ‖∞)+ := max{0, 2 − ‖µ‖∞}. It is clear that G(·) is bounded and
coincides with F(·) on P(A1) × · · · × P(An). It remains to show that G(·) is
Lipschitz.
Consider η and ν inM(A1)×· · ·×M(An). If ‖η‖∞, ‖ν‖∞ ≥ 2, then (56) yields

G(η) = G(ν) = 0 and there is nothing to prove. Now, if ‖η‖∞ > 2 ≥ ‖ν‖∞,
then

‖G(η) − G(ν)‖∞ = (2 − ‖ν‖∞)‖F(ν)‖∞,

and

‖F(ν)‖∞ = max
j∈I

∫
Aj

���βj(aj |ν)���|νj |(daj) ≤ max
j∈I

Cj‖νj‖ ≤ C‖ν‖∞,

where C = maxj∈I{Cj}. Hence

‖G(η) − G(ν)‖∞ ≤ (2 − ‖ν‖∞)C‖ν‖∞
≤ 2C(‖η‖∞ − ‖ν‖∞) ≤ 2C‖η − ν‖∞. (57)

Finally, if ‖η‖∞, ‖ν‖∞ ≤ 2, then

‖G(η) − G(ν)‖∞
= ‖(2 − ‖η‖∞)F(η) − (2 − ‖ν‖∞)F(ν)‖∞
≤ (2 − ‖η‖∞)‖F(η) − F(ν)‖∞ + ‖F(ν)‖∞ |‖ν‖∞ − ‖η‖∞ |
≤ 2K‖η − ν‖∞ + 2C‖ν − η‖∞. (58)
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24 Evolutionary Economics

Using (57) and (58) we see that, for any η, ν ∈ M(A1) × · · · ×M(An), we have

‖G(η) − G(ν)‖∞ ≤ 2(K + C)‖η − ν‖∞.

The following proposition is an extension to our asymmetric games of lemma
4 of Oechssler and Riedel (2001) for symmetric games.

Proposition 11 Let i ∈ I. If the payoff function Ui(·) is bounded, then βi(·|µ)
satisfies the conditions (i) and (ii) of Theorem 10.

Proof Suppose that ‖µ‖∞ ≤ 2 and let i ∈ I. Since Ui(·) is bounded, there exists
C′
i > 0 such that |Ui(a)| ≤ C′

i for all a ∈ A. Then, by Proposition 4,

|βi(ai |µ)| =
����∫
A−i
Ui(ai,a−i)µ−i(da−i) −

∫
A
Ui(a)µ(da)

����
≤
����∫
A−i
Ui(ai,a−i)µ−i(da−i)

���� + ����∫
A
Ui(a)µ(da)

����
≤ C′

i ‖µ1 × · · · × µi−1 × µi+1 · · · × µn‖ + C′
i ‖µ1 × · · · × µn‖

≤ 2n−1C′
i + 2

nC′
i .

Letting Ci := C′
i (2n−1 + 2n), the condition (i) in Theorem 10 follows.

To prove the condition (ii) in Theorem 10, note that for any η and ν with
‖η‖∞, ‖ν‖∞ ≤ 2, using the notation in (20), and substracting and adding terms,
we obtain, for every i ∈ I,����∫
A
Ui(a)η(da) −

∫
A
Ui(a)ν(da)

����
≤ |I(η1 ,η2 ,...,ηn)Ui − I(ν1 ,η2 ,...,ηn)Ui |
+ |I(ν1 ,η2 ,η3 ,...,ηn)Ui − I(ν1 ,ν2 ,η3 ,...,ηn)Ui |
+ . . .

+ |I(ν1 ,...,νn−2 ,ηn−1 ,ηn)Ui − I(ν1 ,...,νn−2 ,νn−1 ,ηn)Ui |
+ |I(ν1 ,...,νn−1 ,ηn)Ui − I(ν1 ,...,νn−1 ,νn)Ui |

≤ ‖Ui‖‖η2 × · · · × ηn‖‖η1 − ν1‖
+ ‖Ui‖‖ν1 × η3 × · · · × ηn‖‖η2 − ν2‖
+ . . .

+ ‖Ui‖‖ν1 × · · · × νn−2 × ηn‖‖ηn−1 − νn−1‖
+ ‖Ui‖‖ν1 × · · · × νn−1‖‖ηn − νn‖

≤ n2n−1‖Ui‖ max
j∈I

‖ηj − νj‖. (59)
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Similarly, for every i ∈ I,����∫
A−i
Ui(a)ν−i(da−i) −

∫
A−i
Ui(a)η−i(da−i)

���� ≤ (n − 1)2n−2‖Ui‖ max
j,i

‖ηj − νj‖.

(60)

Then by (59) and (60)

|βi(ai |η) − βi(ai |ν)| =
����∫
A−i
Ui(a)η−i(da−i) −

∫
A
Ui(a)η(da)

−
∫
A−i
Ui(a)ν−i(da−i) +

∫
A
Ui(a)ν(da)

����
≤
����∫
A−i
Ui(a)η−i(da−i) −

∫
A−i
Ui(a)ν−i(da−i)

����
+

����∫
A
Ui(a)ν(da) −

∫
A
Ui(a)η(da)

����
≤ n2n‖Ui‖ max

j∈I
‖ηj − νj‖.

To conclude, the latter inequality yields

sup
ai∈Ai

|βi(ai |η) − βi(ai |ν)| ≤ Di‖η − ν‖∞,

with Di = n2n‖Ui‖.

By Theorem 10, the differential equation

µ′(t) = G(µ(t)), (61)

with G as in (56) has a unique solution in the spaceM(A1) × · · · ×M(An) (see
Lang (1995), chapter IV). If µ(t) is a solution to (61) and

µ(t) ∈ P(A1) × · · · × P(An) ∀t ≥ 0,

then µ(t) is also a solution of the differential equation (47), and it is unique
since F(·) is Lipschitz in the open ball

V2(0) = {µ ∈ M(A1) × · · · ×M(An) : ‖µ‖∞ < 2}.

Let µ(·) be a solution of (61) (or (47)). We say that a set C ⊂ M(A1) × · · · ×
M(An) is an invariant set for (61) (or (47)), if µ(t) is in C for all t > 0 when
µ(0) is in C.
The following proposition ensures that the set P(A1) × · · · × P(A2) is an

invariant set for (61). Therefore the replicator dynamics has a solution.

Theorem 12 If µ(t) is a solution to (61), with initial condition µ(0) in P(A1) ×
· · · × P(An), then µ(t) remains in P(A1) × · · · × P(An) for all t > 0. Moreover,
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µ(t) is also the unique solution to the replicator dynamics (47) with F(·) as in
(50).

Proof First, note that

dµi(t,Ei)
dt

= µ′(t,Ei) ∀i ∈ I, Ei ∈ B(Ai), t ≥ 0. (62)

Indeed,����dµi(t,Ei)dt
− µ′i (t,Ei)

����
= lim

ϵ→0

���� µi(t + ϵ,Ei) − µi(t,Ei)ϵ
− µ′i (t,Ei)

����
= lim

ϵ→0

����1ϵ [∫Ai 1Ei(ai)µi(t + ϵ,dai) −
∫
Ai
1Ei (ai)µi(t,dai)

]
−
∫
Ai
1Ei(ai)µ′i (t,dai)

����
≤ lim

ϵ→0

 µi(t + ϵ) − µi(t)ϵ
− µ′i (t)

 = 0.

Now, if µ(t) is a solution to (61), then by (62) and (56), for each i ∈ I,
Ei ∈ B(Ai), and t ≥ 0, we have

dµi(t,Ei)
dt

= (2−‖µ(t)‖∞)+
[ ∫

Ei
Ji(ai, µ−i(t))µi(t,dai)−Ji(µi(t), µ−i(t))µi(t,Ei)

]
.

In particular, for every i ∈ I,

dµi(t,Ai)
dt

= (2 − ‖µ(t)‖∞)+[1 − µi(t,Ai)]Ji(µi(t), µ−i(t)). (63)

We can express (63) as a system of differential equations in Rn, say

dµi(t,Ai)
dt

= fi(t, µi(t,Ai)) for i = 1, . . . ,n,

where we can see the vector [fi(t, µi(t,Ai))]i∈I as a function f : [0,∞)×Rn → Rn
with

f (t, µ1(t,A1), . . . , µn(t,An)) = [fi(t, µi(t,Ai))]i∈I.

The system (63) has a critical point if µi(t,Ai) = 1 for i = 1, . . . ,n (i.e.,
f (t, µ1(t,A1), . . . , µn(t,An)) = 0). Then, if µi(0,Ai) = 1, we have that µi(t,Ai) = 1
for all t ≥ 0 and i ∈ I. Hence the set

B := {µ ∈ M1 × · · · ×Mn : µi(Ai) = 1 ∀i ∈ I}
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is an invariant set for (61). Moreover, if Ei ∈ B(Ai), t′ ≥ 0, and µi(t′,Ei) = 0,
then by (64), µi(t,Ei) = 0 for all t ≥ t′. In particular for each Ei ∈ B(Ai) and
i ∈ I,

|µi(t,Ei) − µi(s,Ei)| ≤ ‖µi(t) − µi(s)‖ ∀t, s ≥ 0. (64)

Since for each i in I the map t 7→ µi(t) is continuous, then by (64) so is the
map t 7→ µi(t,Ei) for each Ei ∈ B(Ai). Therefore, if µi(0,Ei) ≥ 0, then we have
µi(t,Ei) ≥ 0 for all t > 0 and Ei ∈ B(Ai). It follows that

P(A1) × · · · × P(An) ⊂ B

is an invariant set for the system of differential equations (61).
Finally, if µ(t) is a solution to (61) and µ(0) is in P(A1) × · · · × P(An), then
µ(t) is a solution to (47) and, since F is Lipschitz for all µ with ‖µ‖∞ ≤ 2, this
solution is unique.

Theorem 13 Suppose that the conditions (i) and (ii) of Theorem 10 are satis-
fied. If µ(t) is a solution to (47) with the initial condition µ(0) in P(A1) × · · · ×
P(A1), then:

(i) for every i ∈ I and t > 0, if µi is in P(Ai), then µi(0) � µi(t) and µi(t) �
µi(0), with Radon–Nikodym density

dµi(t)
dµi(0)

(ai) = e
∫ t
0 βi(ai |µ(s))ds. (65)

(ii) In particular, for every i ∈ I and t > 0, if νi is a probability measure
satisfying that νi � µi(t) whenever νi � µi(0), then

log dνi
dµi(t)

(ai) = log dνi
dµi(0)

(ai) −
∫ t

0
βi(ai |µ(s))ds. (66)

Proof The following proof is an adaptation of Ritzberger (1994) (lemma 2) and
Bomze (1991) (lemma 2). Let µ(t) be the solution to (47), with µ(0) ∈ P(Ai)
and

φi(t,ai) := e
∫ t
0 βi(ai |µ(s))ds ≥ 0 ∀i ∈ I. (67)

In addition, let

µ̃i(t,Ei) :=
∫
Ei
φi(t,ai)µi(0,dai) ∀Ei ∈ B(Ai),

and, by (55),

Fi(µ̃i(t),Ei) =
∫
Ei
βi(ai |µ(t))µ̃i(t,dai).
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28 Evolutionary Economics

We will prove that

‖ µ̃′(t) − F(µ̃(t))‖∞ = 0,

where µ̃′(t) = (µ̃′1(t), . . . , µ̃′n(t)) and F(µ̃(t)) = (F1(µ̃(t)), . . . ,Fn(µ̃(t)).

Let i ∈ I and fix t > 0. Then

‖ µ̃′i (t) − Fi(µ̃(t))‖

= lim
h→0

sup
‖g‖≤1

����1h ∫Ai g(ai)[φi(t + h,ai) − φi(t,ai)]µ(0,dai)
−
∫
Ai
g(ai)βi(ai |µ(t))φ(t,ai)µi(0,dai)

����
≤ lim
h→0

∫
Ai

����1h [φi(t + h,ai) − φi(t,ai)] − βi(ai |µ(t))φi(t,ai)���� µi(0,dai)
which, by (67),

≤ sup
ai∈Ai

���e∫ t0 βi(ai |µ(s))ds
��� lim
h→0

∫
Ai

�����e
∫ t+h
t βi(ai |µ(s))ds − 1

h
− βi(ai |µ(t))

����� µi(0,dai)
≤ sup
ai∈Ai

��etCi �� ∫
Ai

�����limh→0

e
∫ t+h
t βi(ai |µ(s))ds − 1

h
− βi(ai |µ(t))

����� µi(0,dai) = 0,

where the latter equality follows from the conditions (i) and (ii) of Theorem 10
together with the dominated convergence theorem. To conclude:

‖ µ̃′(t) − F(µ̃(t))‖∞ = 0 ∀t > 0.

By the uniqueness in corollary 1.7, page 72 of Lang (1995) we thus get (65),
and therefore

µi(t) � µi(0) ∀i ∈ I.

By the condition (ii) of Theorem 10, for each i ∈ I and t > 0, there existsCi ≥ 0
such that −tCi ≤

∫ t
0 βi(ai |µ(s)) ≤ tCi. Consequently,

0 < e−tCi ≤ e
∫ t
0 βi(ai |µ(s)) ≤ etCi .

Hence, by (65),∫
Ei
e−tCi µi(0,dai) ≤

∫
Ei

[
e
∫ t
0 βi(ai |µ(s))

]
µi(0,dai) = µi(t,Ei);

thus µi(0) � µi(t).
The assertion (ii) follows from (i) and an application of the chain rule for

Radon–Nikodym densities (see Bartle (1995), chapter 8).
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3.4 Nash Equilibria and the Replicator Equation
In this section we consider a normal-form game Γ as in (23), and an asym-
metric evolutionary game as in (49). We wish to study the relation between
a Nash equilibrium of the normal-form game Γ and the replicator equation
(see Theorem 16). We also introduce the concept of strong uninvadable profile
(Definition 17), and its relation with ϵ-equilibrium (Definition 6).
The following proposition states an important fact about probability mea-

sures on separable metric spaces.

Proposition 14 Let A be a separable metric space and µ in P(A). Then there is
a unique closed set S ⊂ A (called the support of µ, in symbols S=Supp(µ)) such
that µ(A − S) = 0 and µ(O ∩ S) > 0 for every open set O for which O ∩ S , ∅.

Proof See Royden (1988), page 408.

Lemma 15 Suppose that µ∗ = (µ∗1, . . . , µ∗n) is a Nash equilibrium of Γ, and
let Si be the support of µ∗i for some i ∈ I. Then Ji(ai, µ∗−i) = Ji(µ∗, µ∗−i) for all
ai ∈ Si.

Proof Using Proposition 14, the proof is similar to the case when the strategy
sets are finite (see, e.g., Webb (2007)).

The following theorem gives an important property, namely the relation
between a Nash equilibrium of a normal-form game and the replicator equation.

Theorem 16 Suppose that µ∗ = (µ∗1, . . . , µ∗n) is a Nash equilibrium of Γ. Then
µ∗ is a critical point of (47), that is, F(µ∗) = 0, when F(·) is described by the
replicator dynamics (50).

Proof First note that any vector of Dirac measures δa′ = (δa′1, . . . , δa′n ) (some-
times called a profile of pure strategies) is a critical point of (47), since for
every Ei ∈ B(Ai) and i ∈ I:

Fi(δa′,Ei) =
∫
Ei

[
Ji(ai, δa′−i) − Ji(δa′i, δa′−i)

]
δa′i (dai) = 0.

Then, if µ∗ is a pure Nash equilibrium, that is, µ∗ = δa∗ , the theorem holds.
Suppose now that the Nash equilibrium µ∗ is not pure, and let S∗i be the

support of µ∗i for i ∈ I. By Lemma 15

Ji(ai, µ∗−i) = Ji(µ∗i , µ∗−i) ∀ ai ∈ S∗i .
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30 Evolutionary Economics

Therefore, for any Ei ∈ B(Ai),

Fi(µ∗,Ei) =
∫
Ei

[
Ji(ai, µ∗−i) − J(µ∗i , µ∗−i)

]
µ∗i (dai)

=

∫
Ei∩S∗i

[
Ji(ai, µ∗−i) − J(µ∗i , µ∗−i)

]
µ∗i (dai) = 0.

The following definition is an extended version of strongly uninvadable
strategies of symmetric games (for details see Bomze (1991)).

Definition 17 A vector µ∗ ∈ P(A1) × P(A2) × · · · × P(An) is called a strong
uninvadable profile (SUP) in a set C if µ∗ is in C and the following holds. There
exists ϵ > 0 such that for any µ ∈ C with ‖µ − µ∗‖∞ < ϵ, and every i ∈ I,
Ji(µ∗i , µ−i) > Ji(µi, µ−i) if µi , µ∗i . In particular if

C = P(A1) × P(A2) × · · · × P(An),

then µ∗ is simply called a strong uninvadable profile (SUP). In either case, we
call ϵ the global invasion barrier.

Lemma 18 Let µ, ν ∈ P1(A) × · · · × P(An) and δ > 0. Then there exists α in
(0,1) such that ‖γ − µ‖∞ ≤ δ if γ = αν + (1 − α)µ.

Proof Let 0 < α < δ
‖ν−µ ‖∞ . Then ‖γ − µ‖∞ = ‖αν + (1 − α)µ − µ‖∞ =

α‖ν − µ‖∞ < δ.

As usual, the open neighborhood with center µ∗ and radius ε > 0 is defined
as

Vε(µ∗) := {µ ∈ P(A1) × · · · × P(An) : ‖µ − µ∗‖∞ < ε}. (68)

The following theorem gives the relation between an ϵ-equilibrium (or Nash
equilibrium) and strong uninvadable profiles.

Theorem 19 Suppose that the payoff function Ui(·) in (18) is bounded for all
i ∈ I. Let µ∗ be a SUP in a set C with global invasion barrier ϵ1 > 0. If the set
C ∩ Vϵ1 (µ∗) has a convex and nonempty interior, then µ∗ is an ϵ2-equilibrium
of Γ, where ϵ2(·) > 0 is a function of ϵ1. Moreover, if µ∗ is a SUP, then µ∗ is a
Nash equilibrium and the boundedness hypothesis on Ui is not required.

Proof Suppose that µ∗ is not an ϵ2-equilibrium of Γ for any ϵ2 > 0. Then for
ϵ2 > 0, there exists i ∈ I and ν ∈ P(A1) × · · · × P(An) such that

Ji(νi, µ∗−i) − ϵ2 > J(µ∗i , µ∗−i). (69)
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By hypothesis, C ∩ Vϵ1 (µ∗) has a convex and nonempty interior. Hence, by
Lemma 18, there exist α1, α2 ∈ [0,1] such that ‖η − µ∗‖ < ϵ1, where η ∈ C and
η := (1− α1)µ∗ + α1[(1− α2)ν + α2κ] for some κ in the interior of C ∩Vϵ1 (µ∗).
Since µ∗ is a SUP in the set C, Ji(µ∗i , η−i) > Ji(ηi, η−i), which implies (see
Section 1 of the online appendix).

(1 − α2)(1 − α1)n−1Ji(µ∗i , µ∗−i) + [(1 − α2)α1]n−1Ji(µ∗i , ν−i)
+ [α2α1]n−1Ji(µ∗i , κ−i)]
> (1 − α2)(1 − α1)n−1Ji(νi, µ∗−i)
− α2(1 − α1)n−1

[
Ji(µ∗i , µ∗−i) − Ji(κi, µ∗−i)

]
+ O(α1). (70)

Let ϵ∗2 =
(

α2
1−α2

)
Lϵ1, where L = 2n−1 max

i∈I
‖Ui‖. By (59)

|Ji(µ∗i , µ∗−i) − Ji(κi, µ∗−i)| < Lϵ1 ≤ ϵ2
(
1 − α2
α2

)
∀ ϵ2 ≥ ϵ∗2 .

Then

(1 − α2)(1 − α1)n−1Ji(µ∗i , µ∗−i)
+ [(1 − α2)α1]n−1Ji(µ∗i , ν−i) + [α2α1]n−1Ji(µ∗i , κ−i)]
> (1 − α2)(1 − α1)n−1[Ji(νi, µ∗−i) − ϵ2] + O(α1). (71)

If (69) is true, there exists α1 in (0,1) sufficiently close to 0, such that
equation (71) is violated. So we have that µ∗ is an ϵ2-equilibrium (for ϵ2 ≥ ϵ∗2 ).
Now, suppose that µ∗ is a SUP and not a Nash equilibrium of Γ. Then there

exists i ∈ I and ν ∈ P(A1) × · · · × P(An) such that (69) is true with ϵ2 = 0. By
Lemma 18 there exist α ∈ [0,1] such that ‖η− µ∗‖ < ϵ1 where η = (1−α)µ∗ +
αν. Since µ∗ is a SUP, Ji(µ∗i , η−i) > Ji(ηi, η−i). Then (see Section 1 of the online
appendix)

(1 − α)n−1Ji(µ∗i , µ∗−i) + (α)n−1 [Ji(µ∗i , ν−i)]
> (1 − α)n−1

[
Ji(νi, µ∗−i)]

]
+ O(α). (72)

If µ∗ is not a Nash equilibrium, then for α in (0,1) sufficiently small (72) is
violated. So we have that µ∗ is a Nash equilibrium.

3.5 Stability
In this section we are interested in the stability (in the sense of Definition 20) of
the differential system (47). To this end, we establish that strong uninvadable
profiles (Definition 17) have some type of stability.

Definition 20 Let µ∗ be a critical point of (13), that is, F(µ∗) = 0.
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(i) µ∗ is called Lyapunov stable if, for every ϵ > 0, there exists δ > 0 such that
if ‖µ(0) − µ∗‖∞ < δ, then ‖µ(t) − µ∗‖∞ < ϵ for all t > 0.

(ii) µ∗ is called weakly attracting if it is Lyapunov stable and, in addition, there
exists δ > 0 such that if ‖µ(0) − µ∗‖∞ < δ, then as t → ∞, µi(t) → µ∗i
weakly for all i ∈ I.

The following proposition is an extension to asymmetric evolutionary games
of theorem 3 in Oechssler and Riedel (2001).

Theorem 21 Suppose that the conditions (i) and (ii) of Theorem 10 hold. Let
δa∗ = (δa∗1, . . . , δa∗n ) be a vector of Dirac measures, and C an invariant set for
the differential equation (47). If δa∗ is a SUP in the set C, then there exists ϵ > 0
such that the set

C ∩ Vϵ (δa∗ )

is invariant for (47). Moreover, suppose that for all i in I, the map µ 7→ βi(a∗i |µ)
is weakly continuous and the set of strategies Ai is a compact set. If C is a
closed set and µ(0) is in C ∩Vϵ (δa∗ ), then as t→ ∞, µ(t) → δa∗ in distribution
(Definition 1).

Proof First note that the vector of Dirac measures δa∗ = (δa∗1, . . . , δa∗n ) is a crit-
ical point of (47) (see the proof of Theorem 16). Then, if µ(0) = δa∗ , we have
that µ(t) = δa∗ for all t > 0 and the theorem holds.
Since δa∗ is a SUP in the set C, there exists ϵ > 0 such that for every µ ∈ C

with ‖µ − δa∗ ‖∞ < ϵ and every i ∈ I, Ji(δa∗i , µ−i) > Ji(µi, µ−i) if µi , δa∗i .
Suppose that µ(0) , δa∗ and that µ(0) is in C ∩ Vϵ (δa∗ ). By (55), for each

i ∈ I and t ≥ 0,

µ′i (t, {a∗i }) =
∫
Ai
1{a∗ }(ai)β(ai |µ(t))µi(t,dai) = β(a∗i |µ(t))µi(t, {a∗i }). (73)

Assume that, for each i in I,

µ′i (0, {a∗i }) = β(a∗i |µ(0))µi(0, {a∗i }) > 0,

and define

ti,0 := inf{t ≥ 0 : µ′i (t, {a∗i }) = 0}. (74)

For each i in I, the function βi(a∗i |µ(t)) is Lipschitz in µ(t), and µ(t) is continuous
in t; hence the map t→ βi(a∗i |µ(t)) is continuous. Also µi(t, {a∗i }) is continuous
in t. Then by (73) the map t 7→ µ′i (t, {a∗i }) is continuous. So for each i ∈ I
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the set {t ≥ 0 : µ′i (t, {a∗i }) = 0} is closed and µ′i (ti,0, {a∗i }) = 0. By (74), for any
i in I

µ′i (s, {a∗i }) = βi(a∗i |µ(s))µi(s, {a∗i }) > 0 ∀ 0 ≤ s < t0, (75)

where t0 := min{t1,0, . . . , tn,0}. As a consequence of (75) we obtain

µi(s, {a∗i }) > µi(0, {a∗i }) > 0 ∀ 0 ≤ s < t0, i ∈ I. (76)

Note that for any µi ∈ P(Ai)

‖µi − δa∗i ‖ = 2(1 − µi({a∗i })) ∀ i ∈ I. (77)

If ‖µ(0) − δa∗ ‖∞ < ϵ, then by (76) and (77) we have

‖µ(s) − δa∗ ‖∞ < ϵ ∀ 0 ≤ s < t0.

By continuity of µ(t) and (76) we obtain

µi(t0, {a∗i }) ≥ µi(0, {a∗i }) > 0 ∀ 0 ≤ s < t0, i ∈ I, (78)

and by (77) and (78)

‖µi(t0) − δa∗i ‖∞ ≤ ‖µ(0) − δa∗ ‖∞ < ϵ ∀ i ∈ I. (79)

Since C is an invariant set, by (79) we see that µ(t0) ∈ C ∩ Vϵ (δa∗ ) and so
βi(a∗i |µ(t0)) > 0 because δa∗ is a SUP in the set C. Then by (78)

µ′i (t0, {a∗i }) = βi(a∗i |µ(t0))µi(t0, {a∗i }) > 0 ∀i ∈ I,

so t 7→ µi(t, {a∗i }) is increasing for each i in I and, moreover,

µ(t) ∈ C ∩ Vϵ (δa∗ ) ∀ t ≥ 0. (80)

By hypothesis, Ai is compact for each i ∈ I, so P(Ai) is compact in the weak
topology (see page 186, corollary 5.7.6 in Bobrowski (2005)) for all i ∈ I. Then
C ∩ P(A1) × · · · × P(An) is compact in the product topology.
On the other hand, δa∗ is a SUP in the set C and, by (80), βi(a∗i |µ(t)) > 0 for

all t > 0 and i in I. Moreover, by Theorem 13,

µi(t, {a∗i }) = µi(0, {a∗i })e
∫ t
0 βi(a∗i |µ(s))ds ≤ 1 ∀ i ∈ I, t ≥ 0;

hence

lim
t→∞
βi(a∗i |µ(t)) = 0 ∀ i ∈ I.

Finally, let v = (v1, . . . ,vn) ∈ C ∩ P(A1) × · · · × P(An) be an accumulation
point of the trajectory µ(t) = (µ1(t), . . . , µn(t)). By (80) the distance from v to
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δa∗ is at most ϵ . Since δa∗ is a SUP in C and the map µ 7→ βi(a∗i |µ) is weakly
continuous, if v is such that

βi(a∗i |v) = Ji(a∗i ,v−i) − Ji(vi,v−i) = 0 ∀ i ∈ I

yields that δa∗ = v, which proves that µi(t) → δa∗i in distribution for all i in
I.

If the vector δa∗ in Theorem 21 is a SUP, then we obtain the following
corollary, taking C = P(A1) × · · · × P(An).

Corollary 22 Suppose that the conditions (i) and (ii) of Theorem 10 hold. Let
δa∗ = (δa∗1, . . . , δa∗n ) be a vector of Dirac measures, and suppose that it is a SUP.
Then δa∗ is Lyapunov stable for the replicator dynamics. Moreover, if the map
µ 7→ βi(a∗i |µ) is weakly continuous and the set of strategies Ai is compact for
all i ∈ I, then δa∗ is weakly attracting.

Remark 23 Note that if, for each i in I, the payoff function Ui(·) in (18) is
continuous, then the map µ 7→ βi(a∗i |µ) is weakly continuous. This fact is of
relevance because many games satisfy that Ui(·) in (18) is continuous.

3.6 Examples
In evolutionary games (49) we assume that the players choose their strategies
through an evolutionary dynamics (46)–(47) which explains the interaction
among them. Therefore, the solution of the game is given by a trajectory µ(t)
(solution of (46)–(47)) which depends on an initial profile µ0. Under some
conditions (see Theorem 21), the trajectory µ(t) is very close to a “special”
NE (solution of the normal-form game Γ in (23)). In this “special” NE the
strategy of each player satisfies certain conditions of dominance, and this
NE is called a SUP (see Definition 17 and Theorem 19). Therefore, for each
player, the replicator dynamics is searching and selecting strategies with certain
dominance.
In this section we consider the examples in Sections 2.2, 2.3, and 2.4. In each

case we prove that the NE of the game is also a SUP. Thus, under the replicator
dynamics if the initial profile µ0 is close to the NE (which is a SUP), then the
players select a profile µ(t) very close to the NE for every t > 0.

3.6.1 A Linear-Quadratic Model

Consider the game in Section 2.2. We will prove that the Nash equilibrium
(28) is a SUP for the game. Let U1(x,y) and U2(x,y) be as in (26) and (27),
respectively.Let
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C1 := {(µ, ν) ∈ P(A1) × P(A2) : µ(x∗,M1] = ν( y∗,M2] = 0} ,
C2 := {(µ, ν) ∈ P(A1) × P(A2) : µ[0,x∗) = ν[0,y∗) = 0} ,

and C = C1 ∪ C2. The set C is invariant for the replicator dynamics (47) and
(δx∗, δy∗ ) is in C. On the other hand, let

x̄µ :=
∫
A1
xµ(dx), ȳν :=

∫
A2
yν(dy).

If (µ, ν) is in C1, then by Jensen’s inequality

J1(δx∗, ν) =
∫
A2
U1(x∗,y)ν(dy) = U1(x∗, ȳν) > U1(x̄µ, ȳν) ≥ J1(µ, ν),

J2(µ, δy∗ ) =
∫
A1
U2(x,y∗)µ(dx) = U2(x̄µ,y∗) > U2(x̄µ, ȳν) ≥ J2(µ, ν).

This is also true if (µ, ν) is in C2. Hence, for any ϵ > 0, the vector δ(x∗ ,y∗) =
(δx∗, δy∗ ) is a SUP in the set C. Therefore, by Theorem 21, for ϵ > 0 the set
C∩Vϵ (δ(x∗ ,y∗)) is invariant for (47). Moreover, since, for every i in I, the payoff
functionsUi(·) are continuous and the sets of strategies Ai are compact sets, we
conclude by Theorem 21 and Remark 23 that if µ(0) ∈ C ∩ Vϵ (δ(x∗ ,y∗)), then
µ(t) → δ(x∗ ,y∗) in distribution.

3.6.2 The Tragedy of the Commons

In Section 2.3, we saw that there is a unique Nash equilibrium (x∗1, . . . ,x∗n) for
the “tragedy of the commons.” We will prove that it is also a SUP for the game.
For each player i in I, we define the following sets:

H1
i := {xi ∈ Ai : xi ≤ x∗i }, H2

i := {xi ∈ Ai : xi ≥ x∗i },
C1 := {(µ1, . . . , µn) ∈ P(A1) × · · · × P(An) : µi(H1

i ) = 1 ∀i ∈ I},
C2 := {(µ1, . . . , µn) ∈ P(A1) × · · · × P(An) : µi(H2

i ) = 1 ∀i ∈ I}.

Let (x1, . . . ,xn) be a profile such that xi ≤ x∗i for all i in Iwith strict inequality
for some player i. Let x̂ := x1 + · · · + xn, and x̂∗ := x∗1 + · · · + x∗j + · · · + x∗n, so
x̂ < x̂∗.
For all i in I, letUi be as in (29) and consider the left-hand side of (30). Since

v′ < 0 and v′′ < 0, then we have 0 < v(x̂∗) < v(x̂) and v′(x̂∗) < v′(x̂) < 0.
Therefore, for each i in I

∂Ui(xi,x−i)
∂xi

= v(x̂) + xiv′(x̂) − ci > v(x̂∗) + x∗i v′(x̂∗) − ci = 0.

Thus the map xi 7→ Ui(xi,x−i) is increasing in [0,x∗i ], and

Ui(x∗i ,x−i) > Ui(xi,x−i) ∀xi ∈ H1
i , x−i ∈ H1

−i, (81)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
47

23
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009472319


36 Evolutionary Economics

where H1
−i = H

1
1 × · · · × H1

i−1 × H1
i+1 × · · · × H1

n.
Similarly, if (x1, . . . ,xn) is a profile such that xi ≥ x∗i for all i in I with strict

inequality for some player i, then the map xi 7→ Ui(xi,x−i) is decreasing in
[x∗i , x̄], where x̄ is the maximum capacity of the network to transmit data in a
given amount of time. Hence

Ui(x∗i ,x−i) > Ui(xi,x−i) ∀xi ∈ H2
i , x−i ∈ H2

−i, (82)

where H2
−i = H

2
1 × · · · × H2

i−1 × H2
i+1 × · · · × H2

n.
Let C = C1 ∪ C2. If µ ∈ C, then by (81) and (82)

Ji(δx∗, µ−i) > Ji(µi, µ−i) ∀i ∈ I.

Hence, for any ϵ > 0, the vector δx∗ = (δx∗1, . . . , δx∗n ) is a SUP in the set C.
By Theorem 21, the set C ∩ Vϵ (δx∗ ) is invariant for (47). Moreover, since, for
every i in I, the payoff functions Ui(·) are continuous and the sets of strategies
Ai are compact sets, we conclude by Remark 23 that if µ(0) ∈ C ∩Vϵ (δx∗ ), then
µ(t) → δx∗ in distribution.

3.6.3 A Poverty Trap Model

In Section 2.4, we saw that there are three Nash equilibria for the game
described by Table 1. We will prove that the pure Nash equibribria δ(s,m) =
(δs, δm) and δ(a,τ) = (δa, δτ) are SUPs. To this end, consider theNash equilibrium
(µ∗, ν∗) described by (32) and (33), respectively.
Let k1 = max{µ∗(s), ν∗(m)} and k2 = max{1 − µ∗(s),1 − ν∗(m)}. Note that

the sets of pure strategies for workers and firms areAw = {s,a} andAf = {m, τ},
respectively. Consider the sets

C1 := {(µ, ν) ∈ P(Aw) × P(Af) : k1 < µ(s),k1 < ν(m)},
C2 := {(µ, ν) ∈ P(Aw) × P(Af) : k2 < µ(a),k2 < ν(τ)}.

It is easy to check that for any (µ, ν) ∈ C1,

Jw(δs, ν) > Jw(µ, ν) and Jf (µ, δm) > Jf (µ, ν),

where Jw and Jf are the expected payoffs described by (18) of the workers and
firms, respectively. Similarly, if (µ, ν) ∈ C2, then

Jw(δa, ν) > Jw(µ, ν) and Jf (µ, δτ) > Jf (µ, ν).

Let ϵ1 = 1 − k1 and ϵ2 = 1 − k2. Note that ‖δw − µ‖ = 1 − µ(w) and ‖δf −
ν‖ = 1−ν(f) for anyw ∈ Aw and f ∈ Af. The open balls Vϵ1 (δ(s,m)) and Vϵ2 (δ(s,m))
(introduced in (68)) satisfy that Vϵ1 (δ(s,m)) = C1 and Vϵ2 (δ(s,m)) = C2. This
proves that δ(s,m) and δ(a,τ) are SUPs with barriers ϵ1 and ϵ2 respectively.
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Hence, the conditions of Corollary 22 are satisfied, and so δ(s,m) and δ(a,τ) are
Lyapunov stable for the replicator dynamics. Moreover, since the action spaces
Aw and Af are finite sets, then the replicator dynamics are in Rn (n = 4 in this
case), and the maps (µi, µ−i) 7→ Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t)) are continuous
for i = w, f. Therefore, δ(s,m) and δ(a,τ) are weakly attracting.

3.7 Comments
In this section, we introduced a model of asymmetric evolutionary games with
strategies in metric spaces. The model can be reduced, of course, to the par-
ticular case of evolutionary games with finite strategy sets. We established
conditions under which the replicator dynamics has a solution and we also
characterized that solution (Theorem 13). Then stability conditions were estab-
lished, and finally we gave three examples. The first one may be applicable to
oligopoly models, theory of international trade, and public good models. The
second and third examples deal with the tragedy of commons game and amodel
of poverty traps.
There are many questions, however, that remain open. For instance, in sym-

metric evolutionary games with continuous strategy spaces, there are stability
conditions with different metrics and topologies. Are these conditions satisfied
in the asymmetric case? Narang and Shaiju (2019, 2020, 2022) analyze, define
new static equilibria, and establish conditions for the stability of the replicator
dynamics in asymmetric games where special Nash equilibria are vectors of
atomic probability measures. Are there conditions for the stability when the
Nash equilibria are vectors of nonatomic measures? Mendoza-Palacios and
Hernández-Lerma (2019) present a survey about stability for the replicator
dynamics in symmetric and asymmetric games with strategies in metric spaces.
On the other hand, normal-form games with continuous strategies can be

approximated by games with discrete strategies. Hence, it would be interest-
ing to investigate if the replicator dynamics with continuous strategies in the
asymmetric case can be approximated, in some sense, by games with discrete
strategies; see Section 5.

4 Evolutionary Games: Symmetric Case
In Section 3.2.1 we saw how to obtain a symmetric evolutionary game (52)
from an asymmetric one (49). In this section we provide a general framework
to study the replicator dynamics for symmetric evolutionary games in which
the strategy set is a separable metric space. In this case, the replicator dynamics
evolve in a space of signed measures, which is well known (in particular, the
space of probability measures). This allows us to study stability criteria with
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respect to different topologies and metrics on a space of probability measures,
and to establish a relation between symmetric Nash equilibria (of a two-player
normal-form game (24)) and the stability of the replicator dynamics in different
metrics.
In a two-player normal-form game a symmetric Nash equilibrium can be

expressed in terms of a NES (see Definition 7). Similarly, a symmetric SUP
can be written in terms of a strongly uninvadable strategy (Definition 26). This
fact allows us to obtain more stability criteria than in the asymmetric case.
This section is organized as follows. Section 4.1 describes the replicator

dynamics and their relation to evolutionary games (compare with sections 3.1–
3.2). Some important technical issues are also summarized. Section 4.2 estab-
lishes the relation between the replicator dynamics and a normal-form game
using the concepts of Nash equilibria and strongly uninvadable strategies.
Section 4.3 presents a brief review of results on the stability of the replica-
tor dynamics. Different stability criteria with respect to various metrics and
topologies are standardized in the sense that the results (see Theorem 33, Con-
jecture 34, and Remark 35) are expressed in terms of a suitable general metric
on a space of probability measures. (For instance, in some cases the metric is
required to metrize the weak topology.)
Section 4.4 establishes an important relationship between Nash equilibria

and the critical points of the replicator dynamics (Theorem 38 and Remarks 39
and 40). Section 4.5 proposes examples to illustrate our results. Finally, we
conclude in Section 4.6 with some general comments on possible extensions
of our results.
In this section we use the technical preliminaries in Section 1, in particular,

Section 1.3.2.

4.1 The Model
4.1.1 Symmetric Evolutionary Games

Consider a population of individuals of a single species. Each individual of this
species can choose a single element a in a set of characteristics (the set of pure
strategies or pure actions) A, which is a separable metric space. Let B(A) be
the Borel σ-algebra of A, and P(A) the set of probability measures on A, also
known as the set of mixed strategies.
Moreover, consider a payoff function J : P(A) × P(A) → R that explains the

interrelation between the population, and which is defined as

J(µ, ν) :=
∫
A

∫
A
U(a,b)ν(db)µ(da), (83)
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where U : A × A → R is a given measurable function. If δa is a probability
measure concentrated at a ∈ A, the vector (δa, µ) is written as (a, µ), and then

J(δa, µ) = J(a, µ).

In particular, (83) yields

J(µ, ν) :=
∫
A
J(a, ν)µ(da). (84)

In an evolutionary game, the strategies’ dynamics is determined by a
differential equation of the form

µ′(t) = F(µ(t)) t ≥ 0, (85)

with some initial condition µ(0) = µ0. The notation µ′(t) represents the strong
derivative of µ(t) (see Definition 5), and F(·) is a mapping F : P(A) → M(A).
More explicitly we write (85) as

µ′(t,E) = F(µ(t),E) ∀E ∈ B(A), (86)

where µ′(t,E) and F(µ(t),E) are the measures µ′(t) and F(µ(t)) valued at E ∈
B(A).
We shall be working with a special class of symmetric evolutionary games

that can be described as a quadruple (compare with (52))[
I, P(A), J(·), µ′(t) = F(µ(t))

]
, (87)

where

(i) I = {1,2} is the set of players;
(ii) for each player i = 1,2 we have a set P(A) of mixed actions and a payoff

function J : P(A) × P(A) → R (as in (83)); and
(iii) the dynamics (85) are described by the replicator equation in (51), that is,

for each E in B(A),

F(µ(t),E) :=
∫
E

[
J(a, µ(t)) − J(µ(t), µ(t))

]
µ(t,da). (88)

To obtain a heuristic approach to the replicator dynamics (85), with F(·) as
in (88), one can proceed, of course, as in Section 3.2.

4.1.2 Technical Issues on the Replicator Dynamics

For a better understanding of this section, Theorem 24 summarizes conditions
for the existence of a unique solution to the differential equation (85) (with
F(·) as in (88)), and important properties of this solution; see also Theorems 12
and 13.
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For each t ≥ 0, let

β(a|µ(t)) := J(a, µ(t)) − J(µ(t), µ(t)), (89)

which is the integrand of (88). Hence, by (89), β(·|µ(t)) is the Radon–Nikodym
density of F(µ(t)) with respect to µ(t), that is,

F(µ(t),E) =
∫
E
β(a|µ(t))µ(t,da) ∀E ∈ B(A).

Theorem 24 Suppose that the function β(·|µ) in (89) satisfies:

(i) there exists C ≥ 0 such that

|β(a|µ)| ≤ C ∀a ∈ A and ‖µ‖ ≤ 2,

(ii) there is a constant D > 0 such that

sup
a∈A

|β(a|η) − β(a|ν)| ≤ D‖η − ν‖ ∀ν,η with ‖η‖, ‖ν‖ ≤ 2.

Then there exists a unique solution to the replicator dynamics (85). Moreover,
if µ(t) is a solution of (85) with initial condition µ(0) in P(A), then µ(0) � µ(t)
and µ(t) � µ(0) for all t > 0, with Radon–Nikodym density

dµ(t)
dµ(0) (a) = e

∫ t
0 β(a |µ(s))ds. (90)

In particular, for every t > 0, if ν is a probability measure satisfying that ν �
µ(t) whenever ν � µ(0), then

log dν
dµ(t) (a) = log dν

dµ(0) (a) −
∫ t

0
β(a|µ(s))ds. (91)

4.2 The Replicator Dynamics, NESs and SUSs
In this section we consider symmetric evolutionary games as in (87) and com-
pare them with two-player symmetric normal-form games (24). We wish to
study the relation between a Nash equilibrium of a normal-form game and the
replicator dynamics (Proposition 25). We also define the important concept of
strongly uninvadable strategy (Definition 26) and analyze its relation to a Nash
equilibrium (Proposition 29).
In the rest of the section, we consider the two-player symmetric normal-

form game Γs in (24), and the concept of Nash equilibrium strategy (NES) in
Definition 7.
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Proposition 25 Let µ∗ be aNES for Γs. Then µ∗ is a critical point of (85) (i.e.,
F(µ∗) = 0) when F(·) is described by the replicator dynamics (88).

Proof See Theorem 16. (See also Mendoza-Palacios and Hernández-Lerma
(2015), theorem 5.4.)

The following definition is a slightly modified version of the strongly
uninvadable strategies used in Bomze (1991).

Definition 26 Let r be a metric on P(A) as in Remark 2. A measure µ∗ ∈ P(A)
is called an r- strongly uninvadable strategy (r-SUS) if there exists ϵ > 0 such
that for any µ with r(µ, µ∗) < ϵ, it follows that J(µ∗, µ) > J(µ, µ). We call ϵ the
global invasion barrier.

When r is the Prokhorov metric rp, Oechssler and Riedel (2002) name a
rp-SUS as an evolutionary robust strategy. If rw∗ is any metric that metrizes
the weak topology (recall Remark 2), Cressman and Hofbauer (2005) call a
rw∗ -SUS a locally superior strategy.
We use the notation ‖ · ‖-SUS when the metric on P(A) is given by the total

variation norm (1).

Proposition 27 Let rw∗ be a distance that metrizes the weak convergence on
P(A). If a measure µ∗ ∈ P(A) is rw∗ -SUS, then it is ‖ · ‖-SUS.

Proof Let µ be in the open ball V‖ · ‖
ϵ (µ∗) defined in (13). Then there is some

open neighborhood VH
ϵ (µ∗) of the form (4) such that µ ∈ VH

ϵ (µ∗) and, by
Remark 3, there is some open ball Vrw∗α (µ∗) such that µ ∈ Vrw∗α (µ∗). Thus the
proposition follows.

The next lemma is a key fact to provide a general framework to the different
stability criteria.

Lemma 28 Let rw∗ be a distance that metrizes the weak convergence on P(A).
For every µ, ν ∈ P(A) and ϵ > 0, there exist α and α′ in (0,1) and η, γ ∈ P(A)
such that

(i) rw∗ (η, µ) < ϵ if η = αν + (1 − α)µ,
(ii) ‖γ − µ‖ < ϵ if γ = α′ν + (1 − α′)µ.

Proof Let αn be a sequence in (0,1) such that αn → 0, and let ηn := αnν
+(1 − αn)µ. If f ∈ CB(A), then

lim
n→∞

∫
A
f (a)ηn(da) = lim

n→∞
αn

∫
A
f (a)ν(da) + lim

n→∞
(1 − αn)

∫
A
f (a)µ(da)

=

∫
A
f (a)µ(da).
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Hence, by Propositions 1 and 2 in section 2 of the online appendix, part (i)
follows.
On the other hand, let 0 < α′ < ϵ

‖ν−µ ‖ . Then

‖γ − µ‖ = ‖α′ν + (1 − α′)µ − µ‖ = α′‖ν − µ‖ < ϵ,

and (ii) holds.

The following proposition shows that a strongly uninvadable strategy is also
a Nash equilibrum strategy. In other words, the concept of SUS is a refinement
of NES.

Proposition 29 Let r be a metric on P(A) as in Remark 2. If µ∗ is a r-SUS, then
µ∗ is a NES of Γs.

Proof Suppose that µ∗ is not a NES of Γs. Then there exists ν ∈ P(A) such that

J(ν, µ∗) > J(µ∗, µ∗). (92)

By Lemma 28, there exists η := αν + (1 − α)µ∗ for some α ∈ (0,1), with
r(η, µ∗) < ϵ . Since µ∗ is r-SUS, J(µ∗, η) > J(η,η) and so

αJ(µ∗, ν) + (1 − α)J(µ∗, µ∗) > ααJ(ν, ν) + (1 − α)αJ(ν, µ∗)
+ (1 − α)αJ(µ∗, ν)
+ (1 − α)(1 − α)J(µ∗, µ∗).

Hence

αJ(µ∗, ν) + (1 − α)J(µ∗, µ∗) > αJ(ν, ν) + (1 − α)J(ν, µ∗). (93)

If (92) is true, then there exists α > 0 sufficiently small such that (93) is
violated. Thus µ∗ is a NES for Γs.

Now, we define the following sets:

(i) N := {µ∗ ∈ P(A) : µ∗ is a NES of Γs},
C := {µ∗ ∈ P(A) : µ∗ is a critical point of (85)}.

(ii) If r is a metric on P(A) as in Remark 2,

r-SUS := {µ∗ ∈ P(A) : µ∗ is r-SUS }

We can summarize Propositions 25 and 29 as follows:

Corollary 30 Let A be a separable metric space and assume the conditions (i)
and (ii) of Theorem 24. If r is a metric on P(A) as in Remark 2, then we have

r-SUS ⊂ N ⊂ C.
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An improvement of this result is presented in Section 4.4 (see Theorem 38).

4.3 Stability of SUSs
This section presents a review of results on the stability of a SUS in the
replicator dynamics. These results include different stability criteria with
respect to various metrics and topologies in the space of probability mea-
sures. For some references on the results of this section, see Bomze (1990)
and Mendoza-Palacios and Hernández-Lerma (2017, 2019).

4.3.1 The Kullback–Leibler Distance

Assume that ν � µ. We define the cross entropy or Kullback–Leibler distance
of ν with respect to µ as

K(µ, ν) :=
∫
A

log
[
dν
dµ

(a)
]
ν(da). (94)

From Jensen’s inequality it follows that 0 ≤ K(µ, ν) ≤ ∞ and K(µ, ν) = 0 if
and only if µ = ν. The Kullback–Leibler distance is not a metric, since it is not
symmetric, that is, K(µ, ν) , K(ν, µ).
Given µ∗ ∈ P(A), ϵ > 0, and a strictly increasing function φ : [0,∞) →

[0,∞), we define the set

Wφ(ϵ )(µ∗) :=
{
µ ∈ P(A) : K(µ, µ∗) < φ(ϵ)

}
. (95)

Theorem 31 Suppose that A is a separable metric space, and that the con-
ditions (i) and (ii) of Remark 8 hold. Let µ∗ be a ‖ · ‖-SUS with global
invasion barrier ϵ > 0, and µ(·) the solution of the replicator dynamics. If
µ(0) ∈ Wφ(ϵ )(µ∗) with φ(ϵ) =

[
ϵ
2
]2, then:

(i) µ(t) ∈ Wφ(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ for all t ≥ 0;
(iii) for all t ≥ 0, µ(t) is in some open ball Vrw∗α (µ∗) as in (13), where rw∗ is any

distance that metrizes the weak topology.
(iv) Moreover, if A is compact and the map µ→ J(µ∗, µ)−J(µ, µ) is continuous

in the weak topology, then rw∗ (µ(t), µ∗) → 0 as t→ ∞.
(v) Furthermore, parts (i) to (iv) are also true with the hypothesis that µ∗ is

rw∗ -SUS.
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Proof Parts (i), (ii), and (iv) are proved in Bomze (1990)1. Part (iii) is a conse-
quence of (ii) and Remark 3. Finally, (v) follows from Proposition 27.

4.3.2 The L1-Wasserstein Metric

The following theorem characterizes the stability of the replicator dynamics
with respect to the L1-Wasserstein metric rw in (12). This distance metrizes
the weak topology and has important relationships with other distances that
also metrize the weak topology (see Proposition 2). Furthermore, the L1-
Wassersteinmetric is closely related to the variation norm (1) and theKullback–
Leibler distance (94); see Propositions 3 and 4. The following two theorems
give better approximations to parts (iii) and (iv) of Theorem 31.

Theorem 32 Suppose that A is a compact Polish space (with diameter C > 0),
and the conditions (i) and (ii) of Theorem 24 hold. Let µ∗ be a rw-SUS with
global invasion barrier ϵ > 0, and µ(·) the solution of the replicator dynamics.
If µ(0) ∈ Wφ′(ϵ )(µ∗) with φ′(ϵ) =

[
ϵ
2C
]2
, then

(i) µ(t) ∈ Wφ′(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ

C for all t ≥ 0;
(iii) rw(µ(t), µ∗) < ϵ for all t ≥ 0.
(iv) Moreover, if the map µ → J(µ∗, µ) − J(µ, µ) is continuous in the weak

topology, then rw(µ(t), µ∗) → 0.
(v) Furthermore, parts (i) to (iv) are also true with the hypothesis that µ∗ is

‖ · ‖-SUS with barrier ϵ
C .

Proof (i) If µ(0) is inWφ′(ϵ )(µ∗), then by Theorem 24 we know that µ∗ � µ(t)
and so K(µ(t), µ∗) is well-defined for all t ≥ 0. Using Theorem 24 and Fubini’s
theorem,

K(µ(t), µ∗) − K(µ(0), µ∗) = −
∫
A

[∫ t

0
β(a|µ(s))ds

]
µ∗(da)

= −
∫ t

0
J(µ∗, µ(s)) − J(µ(s), µ(s))ds. (96)

By the condition (ii) of Theorem 24 there exists D > 0 such that, for any
a ∈ A and µ,η ∈ P(A),

|β(a|η) − β(a|ν)| ≤ D‖η − ν‖.

1 Bomze (1990) proves a more general case for part (iv), where any topology τ on P(A) is con-
sidered. He only requires that P(A) be a τ-compact set and the map µ → J(µ∗, µ) − J(µ, µ) be
τ-continuous.
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So,���[J(µ∗, η) − J(η,η)] − [J(µ∗, ν) − J(ν, ν)]
��� = ����∫

A
[β(a|η) − β(a|ν)]µ∗(da)

����
≤ D‖η − ν‖. (97)

By (97) and since µ(s) is continuous in s, the map s → [J(µ∗, µ(s)) −
J(µ(s), µ(s))] is continuous. Therefore, the time derivative of K(µ(t), µ∗) exists
and since µ∗ is a rw-SUS,

dK(µ(t), µ∗)
dt

= −[J(µ∗, µ(t)) − J(µ(t), µ(t))] ≤ 0. (98)

Hence K(µ(t), µ∗) is nonincreasing in t, and (i) holds.
Proof of (ii), (iii). By Proposition 3 and (96),

rw(µ(t), µ∗) ≤ C‖µ(t) − µ∗‖ ≤ 2C[K(µ(0), µ∗)] 12 < ϵ. (99)

Therefore (ii) and (iii) hold.
iv) Since K(µ(t), µ∗) is a nonincreasing function in t and, by (96), the map

t→
∫ t

0

[
J(µ∗, µ(s)) − J(µ(s), µ(s))

]
ds

is increasing and

lim
t→∞

∫ t

0

[
J(µ∗, µ(s)) − J(µ(s), µ(s))

]
ds < ∞.

Moreover, since the map s → [J(µ∗, µ(s)) − J(µ(s), µ(s))] is continuous, we
have lim

s→∞
[J(µ∗, µ(s)) − J(µ(s), µ(s))] = 0.

Since A is compact, the space P(A) is compact in the weak topology (see
Bobrowski (2005)), and the distance rw metrizes this topology (Proposition 2).
Suppose now that µ̂ is an accumulation point of the trajectory µ(·). By (99),
the rw-distance from µ̂ to µ∗ is at most ϵ , and since µ∗ is rw-SUS, J(µ∗, µ̂) >
J(µ̂, µ̂) if µ̂ , µ∗. By hypothesis, the map µ → J(µ∗, µ) − J(µ, µ) is weakly
continuous. If µ̂ is such that J(µ∗, µ̂) − J(µ̂, µ̂) = 0, then µ̂ = µ∗, which proves
that rw(µ(t), µ∗) → 0.
(v) Finally if µ∗ is ‖ · ‖-SUS with barrier ϵ

C then, by (99), parts (i) to (iv)
follow.

4.3.3 Stability of a Pure-SUS

The next theorem characterizes the stability of the replicator dynamics for a
SUS that is also a Dirac measure. Some parts of the theorem require the set of
actions A to be Polish space, that is, a complete and separable metric space.
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Theorem 33 Let A be a separable metric space and suppose that the conditions
(i) and (ii) of Theorem 24 hold. Let δa∗ be a Dirac measure and r any metric on
P(A) as in Remark 2. Let us suppose that δa∗ is r-SUS , µ(·) is a solution of the
replicator dynamics, and ‖µ0 − δa∗ ‖ < ϵ for some small ϵ > 0. Then

(i) ‖µ(t) − δa∗ ‖ < ϵ for all t ≥ 0;
(ii) for all t ≥ 0, µ(t) is in some open ball Vrw∗α (µ∗) as in (13), where rw∗ is any

distance that metrizes the weak topology;
(iii) if A is a compact Polish space (with diameter C > 0), then for all t ≥ 0,

rw(µ(t), δa∗ ) < Cϵ ;
(iv) if A is a compact metric space (not necessarly a Polish space) and the

map µ → J(δa∗, µ) − J(µ, µ) is continuous in the weak topology, then
rw∗ (µ(t), µ∗) → 0, where rw∗ is any distance that metrizes the weak
topology.

Proof Parts (i) and (iv) follow from Theorem 21 and Corollary 22. (See
also Mendoza-Palacios and Hernández-Lerma (2015) Theorem 6.2.) Part (ii)
follows for Proposition 27. Finally, part (iii) follows from Proposition 2.

Theorem 33 is also proved by Oechssler and Riedel (2001) with slight
changes in the definition of ‖ ‖-SUS.

4.3.4 Related Stability Results

The following conjecture was proposed by Oechssler and Riedel (2002), when
rw∗ is a distance that metrizes the weak topology.

Conjecture 34 Let r be any metric on P(A) and rw∗ any distance that metrizes
the weak topology. Suppose that A is a separable metric space, and that the
conditions (i) and (ii) of Theorem 24 hold. Let µ∗ be a r-SUS and µ(·) the
solution of the replicator dynamics. Then

(i) for ϵ > 0 there exist δ > 0 such that if r(µ(0), µ∗) < δ, we have that
r(µ(t), µ∗) < ϵ for all t ≥ 0;

(ii) moreover, if part (i) is satisfied, and the map µ → J(µ∗, µ) − J(µ, µ) is
continuous in the weak topology and µ∗ � µ(0), then rw∗ (µ(t), µ∗) → 0.

Remark 35 A double symmetric game (named a potential game by Cressman
and Hofbauer (2005)) is a game where J(µ, ν) = J(ν, µ) for any µ, ν ∈ P(A).
Let rw∗ be any distance that metrizes the weak topology. Oechssler and Riedel
(2002) prove that if A is a compact set and µ∗ is rw∗ - SUS, then for double sym-
metric games, µ∗ satisfies part (i) of Conjecture 34. Cressman and Hofbauer
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(2005) prove that if part (i) is satisfied, then (ii) follows for any symmetric
game.

Oechssler and Riedel (2002) prove that a rw∗ -SUS satisfies other static evo-
lutionary concepts such as evolutionary stable strategy (ESS), continuously
stable strategy (CSS), and neighborhood invader strategy (NIS), which char-
acterize dynamic stability in the weak topology for the replicator dynamics.
Eshel and Sansone (2003), Cressman (2005), and Cressman et al. (2006) use
these evolutionary concepts and different hypotheses on the payoff function
(83) to guarantee dynamic stability. Norman (2008) establishes the dynamic
stability in terms of strategy sets.

4.4 NESs and Stability
In this section we introduce a general definition of dynamic stability for the
replicator dynamics (see Definition 36), and prove that any stable critical point
of the replicator dynamics is a NES of Γs (see Proposition 37). Moreover, in
Theorem 38 and Remarks 39 and 40 we relate the stability of the differential
equation (85), and the static evolutionary concepts NES and SUS.
Consider µ, ν ∈ P(A). By Propositions 2, 3, and 4 in section 2 of the online

appendix, we know that if µ and ν are close with respect to the Kullback–
Leibler distance K, then they are close in the total variation norm ‖ · ‖, and
consequently they are close in the weak topology. This argument is not true
in the opposite direction. Hence we say that the Kullback–Leibler distance
is “stronger than” the total variation norm, and the total variation norm is
“stronger than” any distance that metrizes the weak topology. Some of the
results in this section can be seen in Mendoza-Palacios and Hernández-Lerma
(2017, 2019).

Definition 36 Let A be a separable metric space, and r1 and r2 the Kullback–
Leibler distance or some metric in P(A) where r1 is equal to or “stronger than”
r2. A critical point µ∗ of the replicator dynamics (85) is said to be

(i) [r1, r2]-stable (in symbols: [r1, r2]-S) if, for any ϵ > 0, there exists δ > 0
such that if r1(µ(0), µ∗) < δ, then r2(µ(t), µ∗) < ϵ for all t > 0. If r1 = r2 =
r∗, then we only say that µ∗ is r∗-stable (in symbols: r∗-S).

(ii) [r1, r2]-asymptotically weakly stable if it is [r1, r2]-stable and lim
t→∞
µ(t) = µ∗

in the weak topology.

Consider the Kullback–Leibler distance K, the total variation norm ‖ · ‖, and
any distance rw∗ that metrizes the weak topology. The following diagram gives
the natural implications between the different concepts of stability.
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K-S ⇒ [K, ‖ · ‖]-S ⇒ [K, rw∗ ]-S
⇑ ⇑

‖ · ‖-S ⇒ [‖ · ‖, rw∗ ]-S
⇑

rw∗ -S

(100)

These implications are easy to deduce. For example, if the critical point µ∗

is ‖ · ‖-S, and the initial condition µ0 satisfies that K(µ0, µ∗) <
(
ϵ
2
)2 for a small

ϵ > 0, then by Proposition 3 ‖µ0− µ∗‖ < ϵ , hence µ∗ is also [K, ‖ · ‖]-S. On the
other hand, µ∗ is ‖ · ‖-S, and the initial condition µ0 is such that ‖µ(t)− µ∗‖ < δ
for all t > 0 and some δ > 0, then by Remark 3 for any rw∗ -metric, µ(t) ∈ Vrw∗α

for some small α > 0. Hence µ∗ is also [‖ · ‖, rw∗ ]-S.
Van Veelen and Spreij (2009) study other relationships among the different

concepts of stability in diagram (100). They also study relationships between
static evolutionary concepts and asymptotic evolutionary stability.
The proof of the following proposition uses the support of a probability

measure; see Proposition 14.

Proposition 37 Let A be a separable metric space, and r1, r2 the Kullback–
Leibler distance or some metric in P(A) where r1 is equal to or “stronger than”
r2. Suppose that the conditions (i) and (ii) of Theorem 24 are satisfied, and let
µ∗ be a critical point of (85) with F(·) as (88). If µ∗ is [r1, r2]-stable, then µ∗ is
a Nash equilibrium strategy (NES) of Γs.

Proof If µ∗ is a critical point of (85) with F(·) as (88), then
J(a, µ∗) − J(µ∗, µ∗) = 0 µ∗-a.s.

Suppose that µ∗ is not a NES of Γs. Then there exist a′ in A such that a′ is not
in the support of µ∗ and

J(a′, µ∗) − J(µ∗, µ∗) > κ > 0 (101)

for some κ. By the condition (ii) of Theorem 24we have that for any µ,η ∈ P(A)

|β(a′ |η) − β(a′ |ν)| ≤ D‖η − ν‖,

and so the map µ → J(a′, µ) − J(µ, µ) is continuous. Hence, by (101), for any
µ ∈ P(A) near µ∗ in some r1 distance

J(a′, µ) − J(µ, µ) > κ. (102)

Let ϵ > 0 and µ0 := λϵ δa′+(1−λϵ )µ∗ be the initial condition, where λϵ ∈ (0,1)
and µ0 ∈ Wφ(ϵ )(µ∗) with φ(ϵ) = ϵ2. The number λϵ indeed exists since

K(µ0, µ∗) =
∫
Supp(µ∗)

log
[
dµ∗

dµ0
(a)

]
µ∗(da) = log

(
1

1 − λϵ

)
,
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and the logarithmic function is continuous, and by Propositions 3 and 4, µ0 is
near µ∗ in the r1-distance.
By (102) and Theorem 24 we have

µ(0, {a′})eκt ≤ µ(0, {a′})e
∫ t
0 β(a′ |µ(s))ds = µ(t, {a′}),

for all t > 0. Thus µ(t, {a′}) is increasing if the initial condition is µ0 and
the trajectory µ(t) is not close to µ∗ in the r2-distance. So µ∗ is not [r1, r2]-
stable.

Now, let r1 and r2 be the Kullback–Leibler distance or some metric on P(A),
where r1 is equal to or “stronger than” r2. We define the following set:

[r1, r2]-S := {µ∗ ∈ P(A) : µ∗ is [r1, r2]-S}.

Theorem 38 Let A be a separable metric space, and consider the condi-
tions (i) and (ii) of Theorem 24. Let r1 be a metric on P(A), and let r2 be the
Kullback–Leibler distance or some metric on P(A) equal to or “stronger than”
r1. Consider the sets r1-SUS , N and C as in Corollary 30. Then we have:

r1-SUS ⊂ [K, r2]-S ⊂ N ⊂ C.

Proof This is a consequence of Theorem 31 and Propositions 25 and 37.

Remark 39 Suppose the hypotheses of Theorem 38 and let A be a compact
Polish space. Then by Theorem 32 and Propositions 2 and 3, we can obtain the
implications in Theorem 38 with a specific value for the barrier ϵ > 0, for the
metrics ‖ · ‖, rp, rbl, rw, rkr.

Remark 40 Let r1 and r2 be the total variation norm (1) or some metric that
metrizes the weak topology on P(A). By Theorem 33 and Propositions 25, 37,
we have the following implications if a Dirac measure δa∗ is a r1-SUS.

δa∗ ∈ r1-SUS ⇒ δa∗ ∈ [‖ ‖, r2]-S ⇒ δa∗ ∈ N ⇒ δa∗ ∈ C.

4.5 Examples
In this section we consider the examples in Sections 2.2, 2.6, and 2.7. In each
example we prove that the NES of the game is also a SUS. Thus, under the
replicator dynamics if the initial strategy µ0 is close to the NES (which is a
SUS), then the player selects a strategy µ(t) very close to the NES for every
t > 0. In other words, under the replicator dynamics the player is searching and
selecting strategies that have certain dominance, such as the SUSs.
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4.5.1 A Linear-Quadratic Model

In this section we consider the symmetric form of the game in Section 2.2.
Thus, we can rewrite the payoff functions (26) and (27) as

U(x,y) = −ax2 − bxy + cx + dy,

with a,b,c > 0 and d any real number.
Let A = [0,M], forM > 0, be the strategy set. If 2c(a−b) > 0 and 4a2−b2 >

0, then we have an interior NES

x∗ =
2c(a − b)
4a2 − b2

.

For a fixed y the functionU(x,y) is concave in x and has the partial derivative
Ux(x,y) = −2ax − by + c. Let x(y) := argmaxU(x,y) = (c−by)

2a and note that
x′(y) = −(b/2a) < 0. Then if y < x∗ or x∗ < y,

U(x(y),y) > U(x∗,y) ≥ U(y,y).

On the other hand, let ȳµ :=
∫
A yµ(dy). If µ is such that ȳµ < x∗, then by

Jensen’s inequality

J(δx∗, µ) =
∫
A2
U(x∗,y)µ(dy) = U(x∗, ȳµ) > U(ȳµ, ȳµ) ≥ J(µ, µ).

This is also true if ȳµ > x∗. Hence, for any metric r on P(A), the strategy δx∗
is r-SUS. Therefore, by Theorem 33, if ‖µ0 − δx∗ ‖ = 2(1− µ0({x∗})) < ϵ , then

‖µ(t) − δx∗ ‖ = 2(1 − µ(t, {x∗})) < ϵ, rw(µ(t), δx∗ ) < Mϵ ∀t ≥ 0.

Moreover, since the payoff function U(·) is continuous and the set A of
strategies is compact, we conclude that µ(t) → δx∗ in distribution.

4.5.2 Graduated Risk Game

Consider the game in Section 2.6. Theorems 6–10, 13 and page 120 in Bishop
and Cannings (1978) show that if v < c in the payoff function (37), then

U(x,y) =
vy +

v−c
2 (1 − y) if y > x,

v−c
2 (1 − x) if y ≤ x.

Hence the NES (38),

dµ∗(x)
dx

=
α − 1
2

x
α−3
2 ,

satisfies that

J(µ∗, µ) − J(µ, µ) > 0 ∀µ ∈ P(A),
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that is, µ∗ is a r-SUS for any metric r in P(A), with A = [0,1].
Hence, by Theorem 32, if K(µ0, µ∗) < φ′(ϵ) =

(
ϵ
2
)2
, then

(i) µ(t) ∈ Wφ′(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ for all t ≥ 0;
(iii) rw(µ(t), µ∗) < ϵ for all t ≥ 0.

4.5.3 War of Attrition Game

Consider the game in Section 2.7. Theorems 6–11 in Bishop and Cannings
(1978) show that if v ≤ m in the payoff function (40), then

U(x,y) =


v − y if y < x,
v
2 − y if y = x,

−x if y > x,

and the NES (41),

dµ∗(x)
dx

=


1
v e

−x/v if x ∈
[
0,m − v

2
]
,

0 if x ∈
(
m − v

2 ,m
)
,

a weight δm · e1/2−m/v at the atom {m},

are such that

J(µ∗, µ) − J(µ, µ) > 0 ∀µ ∈ P(A).

Hence µ∗ is a r-SUS for any metric r in P(A), with A = [0,m]. Therefore, by
Theorem 32, if K(µ0, µ∗) < φ′(ϵ) =

(
ϵ
2m

)2 then
(i) µ(t) ∈ Wφ′(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ

m for all t ≥ 0;
(iii) rw(µ(t), µ∗) < ϵ for all t ≥ 0.

4.6 Comments
In this section, we introduced a model of symmetric evolutionary games with
strategies in measurable spaces. The model can be reduced, of course, to the
particular case of evolutionary games with finite strategy sets. We provided a
general framework to the replicator dynamics that allows us to analyze differ-
ent stability criteria and also presented three examples. The first one may be
applicable to oligopoly models, theory of international trade, and public good
models. The second and third examples deal with a graduated risk game and a
war of attrition game, respectively.
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The replicator dynamics has been studied in other general spaces without
direct applications to game theory. For instance, Kravvaritis et al. (2008, 2010,
2011); Kravvaritis and Papanicolaou (2011), and Papanicolaou and Smyrlis
(2009) studied conditions for stability and examples for these general cases.
These extensions may be applicable in areas such as migration, regional sci-
ences, and spatial economics (see Fujita et al. (2001), chapters 5 and 6); or
in industrial policy and innovation economics and development (see Almudi
and Fatas-Villafranca (2021), Almudi et al. (2020a), Mendoza-Palacios et al.
(2022), Mendoza-Palacios and Mercado (2021)).
There are still, however, many open issues. For instance, when the set of

pure strategies is finite, Cressman (1997) shows that under some conditions the
stability of monotone selection dynamics is locally determined by the replicator
dynamics. Is this true for games with strategies in the space P(A) of probability
measures? Another important issue would be to obtain a stability theorem for
several evolutionary dynamics of games with continuous strategies similar to
the result byHofbauer and Sigmund (2003) (theorem 14) for gameswith a finite
strategy set A.

5 Finite-Dimensional Approximations
In Sections 3 and 4 we see that for games with strategies in metric spaces,
the replicator dynamics live in a space of measures. In this section we approxi-
mate this replicator dynamics (on infinite-dimensional spaces) by a sequence of
dynamical systems on finite-dimensional spaces. Oechssler and Riedel (2002)
propose two approximation theorems. The first one establishes the proximity
of two paths generated by two different dynamical systems (the original model
and a discrete approximation of the model) with the same initial condition. The
second theorem establishes the proximity of two paths, each with different ini-
tial conditions, and these paths satisfy the same differential equation (85) with
F(·) as (88).
In our development, there are two approximation results with hypotheses less

restrictive than those by Oechssler and Riedel (2002) and extend their results.
First, in our case, the approximation theorems are for symmetric and asymmet-
ric games. Second, our two theorems provide conditions for the proximity of
two paths generated by two different dynamical systems (the original model
and a discrete approximation model) with different initial conditions. Moreo-
ver, our approximation results are presented using the total variational norm,
for conditions studied in the strong topology, and also using the Kantorovich–
Rubinstein metric, for conditions in the weak topology. Some of the results of
this section can be seen in Mendoza-Palacios and Hernández-Lerma (2020).
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This section is organized as follows. Section 5.1 presents a finite-
dimensional technique for the approximation of static games in metric spaces;
also, it proposes a finite-dimensional dynamical system to approximate the rep-
licator dynamics in a Banach space. Sections 5.2 and 5.3 present approximation
theorems for the replicator dynamics onmeasurable spaces bymeans of a finite-
dimensional dynamical system (whichmay be the one proposed in Section 5.1).
In Section 5.2 we use the total variation norm for the approximation, and in
Section 5.3 we use the Kantorovich–Rubinstein metric. Section 5.4 proposes
examples to illustrate our results. Finally, we conclude in section 5.5 with some
general comments.

5.1 Discrete Approximations to the Replicator Dynamics
In order to obtain a finite-dimensional approximation of the replicator dynam-
ics (46)–(47) (with Fi(·) as in (50)), for an asymmetric (49) (or symmetric
(52)–(87)) game, we can apply Theorems 43 and 50 to a discrete approxima-
tion of the payoff functions Ui in (18) and the initial probability measures µi,0,
for i in I. For some approximation techniques for the payoff function in games,
see Bishop and Cannings (1978), Simon (1987).

5.1.1 Games with Strategies in Intervals

Following Oechssler and Riedel (2002) (who propose a finite approximation
for a symmetric game), consider an asymmetric game (49) where, for every i
in I, Ai = [ci,1,ci,2] (for some real numbers ci,1 < ci,2), and Ui (as in (18)) is
a real-valued bounded function. For every i in I, consider the partition Pi,ki :=
{ξi,m}2

ki−1
m=0 over Ai, where

ξi,m := [ai,m,ai,m+1), ai,m = ci,1 +
m[ci,2 − ci,1]

2ki
,

form = 0,1, . . . ,2ki−1 and ξi,2ki−1 := [ai,2ki−1,ci,2]. For every i in I, the discrete
approximation to Ui is given by the function

Uki (x1, . . . ,xi, . . . ,xn) := Ui(a1,m, . . . ,ai,m′, . . . ,an,m′′),

if (x1, . . . ,xi, . . . ,xn) is in ξ1,m × · · · × ξi,m′ × · · · × ξn,m′′ . Also, for each i in
I we approximate a probability measure µi ∈ P(Ai) by a discrete probability
distribution µki on the partition set Pi,ki . Then we can write the approximation
to the payoff function (18) as
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Jki (µk1, . . . , µkn )

:=
∑

ξ1,m∈P1,k1

· · ·
∑

ξn,m′ ∈Pn,kn

Ui(a1,m, . . . ,an,m′)µkn (ξn,m′) · · · µk1 (ξ1,m).

(103)

For every i ∈ I and every vector µk := (µk1, . . . , µkn ) in

P(P1,k1 ) × · · · × P(Pn,kn ),

we write µk as (µki, µ−ki), where µ−ki := (µk1, . . . , µki−1, µki+1, . . . , µkn ) is in

P(P1,k1 ) × · · · × P(Pi−1,ki−1 ) × P(Pi+1,ki+1) × · · · × P(Pn,kn ).

If δ{ξi,m } is a probability measure concentrated at ξi,m ∈ Pi,ki , the vector
(δ{ξi,m }, µ−ki) is written as (ai,m, µ−ki ), and so

Jki (δ{ξi,m }, µ−ki ) = Jki (ai,m, µ−ki ). (104)

In particular, (103) yields

Jki (µki, µ−ki) :=
∑

ξi,m∈Pi,ki

Jki (ai,m, µ−ki )µki (ξi,m). (105)

Note that µk := (µk1, . . . , µkn ) in P(P1,k1 ) × · · · × P(Pn,kn ) is a vector of mea-
sures in P(A1) × · · · × P(An). Then for any i ∈ I and Ei ∈ B(Ai) ∩ Pi,ki , the
replicator induced by {Uki }i∈I has the form,

µ′ki (t,Ei) =
∑

ξi,mi ∈Ei∩Pi,ki

[
Jki(ai,m, µ−ki (t)) − Jki (µki(t), µ−ki (t))

]
µki (t, ξi,m),

(106)

which is equivalent to the system of differential equations in R2k1+· · ·+2kn of the
form

µ′ki (t, ξi,m) =
[
Jki (ai,m, µ−ki (t)) − Jki (µki (t), µ−ki(t))

]
µki (t, ξi,m), (107)

for i= 1,2, . . . ,n andm= 0,1, . . . ,2ki−1, with initial condition {µki ,0(ξi,m)}2
ki−1
m=0 .

Hence, using Theorem 43 or Theorem 50, we can approximate (46)–(47),
with Fi(·) as in (50), by a system of differential equations in R2k1+· · ·+2kn of the
form (107); see Remarks 46 and 52.

5.1.2 Games with Strategies in Compact Metric Spaces

As in Section 5.1.1, consider an asymmetric game (49) where, for every i in I,Ai
is a compact metric space, andUi (as in (18)) is a real-valued bounded function.
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For every i in I, consider the partition Pi,ki := {Ai,m}2
ki−1
m=0 over Ai, where m =

0,1, . . . ,2ki − 1. For any i in I and a fixed profile (a1,m, . . . ,ai,m′, . . . ,an,m′′) ∈
A1,m × · · · ×Ai,m′ × · · · ×An,m′′ the discrete approximation to Ui is given by the
function

Uki (x1, . . . ,xi, . . . ,xn) := Ui(a1,m, . . . ,ai,m′, . . . ,an,m′′),

if (x1, . . . ,xi, . . . ,xn) is in A1,m × · · · × Ai,m′ × · · · × An,m′′ . Let us suppose that
for each i in I we can approximate a probability measure µi ∈ P(Ai) by a dis-
crete probability distribution µki on the partition set Pi,ki . Then we can write
the approximation to the payoff function (18) as

Jki (µk1, . . . , µkn )

:=
∑

A1,m∈P1,k1

. . .
∑

An,m′ ∈Pn,kn

Ui(a1,m, . . . ,an,m′)µkn (An,m′) · · · µk1 (A1,m).

(108)

For every i ∈ I and every vector µk := (µk1, . . . , µkn ) in

P(P1,k1 ) × · · · × P(Pn,kn ),

we write µk as (µki, µ−ki),where µ−ki := (µk1, . . . , µki−1, µki+1, . . . , µkn ) is in

P(P1,k1 ) × · · · × P(Pi−1,ki−1 ) × P(Pi+1,ki+1 ) × · · · × P(Pn,kn ).

Note that µk := (µk1, . . . , µkn ) in P(P1,k1 )× · · ·×P(Pn,kn ) is a vector of measures
in P(A1) × · · · × P(An). Then for any i ∈ I and Ei ∈ B(Ai) ∩ Pi,ki , the replicator
induced by {Uki }i∈I has the form

µ′ki(t,Ei) =
∑

Ai,m∈Ei∩Pi,ki

[
Jki (ai,m, µ−ki (t)) − Jki(µki (t), µ−ki(t))

]
µki(t,Ai,m),

(109)

which is equivalent to the system of differential equations in R2k1+· · ·+2kn of the
form:

µ′ki(t,Ai,m) =
[
Jki(ai,m, µ−ki (t)) − Jki (µki(t), µ−ki (t))

]
µki (t,Ai,m), (110)

for i = 1,2, . . . ,n and m = 0,1, . . . ,2ki − 1, with initial condition
{µki ,0(Ai,m)}2

ki−1
m=0 .

As in Section 5.1.1, using Theorem 43 or Theorem 50, we can approxi-
mate (46)–(47), with Fi(·) as in (50), by a system of differential equations in
R2

k1+· · ·+2kn ; see Remarks 46 and 52.
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5.2 An Approximation Theorem in the Strong Form
In this section we provide an approximation theorem that gives conditions
under which we can approximate (46)–(47) (with Fi(·) as in (50)) by a finite-
dimensional dynamical system of the form (107) under the total variation
norm (1)
The proof of this theorem uses the following two lemmas, which are proved

in the online appendix.

Lemma 41 For each i in I, let Ai be a separable metric space. If each map
µi : [0,∞) → M(Ai) is strongly differentiable, then
d‖µ(t)‖∞

dt
≤ ‖µ′(t)‖∞.

Proof See Section 3.1 of the online appendix.

Lemma 42 For each i in I, let Ai be a separable metric space and let F(·) be
as in (46)–(47) (with Fi(·) as in (50)). Suppose that for each i in I the payoff
function Ui(·) in (18) is bounded. Then

‖F(ν) − F(µ)‖∞ ≤ Q‖ν − µ‖∞ ∀µ, ν ∈ P(A1) × · · · × P(An), (111)

where Q := (2n + 1)H and H := max
i∈I

‖Ui‖.

Proof See Section 3.2 of the online appendix.

Theorem 43 For each i in I, let Ai be a separable metric space and let
Ui,Uϵ

i : A1× · · ·×An → R be bounded functions such thatmax
i∈I

‖Ui−Uϵ
i ‖ < ϵ ,

where ‖ · ‖ is the sup norm in (2). Consider the replicator dynamics induced by
{Ui}ni=1 and {U

ϵ
i }ni=1, that is,

µ′i (t,Ei) =
∫
Ei

[
Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t))

]
µi(t,dai), (112)

ν′i (t,Ei) =
∫
Ei

[
Jϵi (ai, ν−i(t)) − Jϵi (νi(t), ν−i(t))

]
νi(t,dai), (113)

for each i ∈ I, Ei ∈ B(Ai), and t ≥ 0. If µ(·) and ν(·) are solutions of (112)
and (113), respectively, with initial conditions µ(0) = µ0 and ν(0) = ν0, then
for T < ∞

sup
t∈[0,T]

‖µ(t) − ν(t)‖∞ < ‖µ0 − ν0‖∞eQT + 2ϵ
(
eQT − 1
Q

)
. (114)

where Q := (2n + 1)H and H := max
i∈I

‖Ui‖.
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Proof For each i in I and t ≥ 0, let

βi(ai |µ) := Ji(ai, µ−i) − Ji(µi, µ−i), βϵi (ai |νi) := Jϵi (ai, ν−i) − Jϵi (νi, ν−i),

and

Fi(µ,Ei) :=
∫
Ei
βi(ai |µ)µi(dai), Fϵi (ν,Ei) :=

∫
Ei
βϵi (ai |ν)νi(dai).

Since Ui is bounded, by Lemma 42 there exists Q > 0 such that

‖F(ν) − F(µ)‖∞ ≤ Q‖ν − µ‖∞ ∀µ, ν ∈ P(A1) × · · · × P(An). (115)

Actually, Q := (2n + 1)H and H := max
i∈I

‖Ui‖. We also have that, for all i ∈ I
and ν ∈ P(A1) × · · · × P(An),

‖Fi(ν) − Fϵi (ν)‖ ≤
∫
Ai
|βi(ai |ν) − βϵi (ai |ν)|νi(dai) ≤ 2‖Ui − Uϵ

i ‖ ≤ 2ϵ,

so

‖F(ν) − Fϵ (ν)‖∞ ≤ 2ϵ . (116)

By Lemma 41 and (115)–(116) we have

d‖µ(t) − ν(t)‖∞
dt

≤ ‖µ′(t) − ν′(t)‖∞

= ‖F(µ(t)) − Fϵ (ν(t))‖∞
≤ ‖F(µ(t)) − F(ν(t))‖∞ + ‖F(ν(t)) − Fϵ (ν(t))‖∞
≤ Q‖µ(t) − ν(t)‖∞ + 2ϵ .

Then
d‖µ(t) − ν(t)‖∞

dt
− Q‖µ(t) − ν(t)‖∞ ≤ 2ϵ .

Multiplying by e−Qt we get

d‖µ(t) − ν(t)‖∞e−Qt
dt

− Q‖µ(t) − ν(t)‖∞e−Qt ≤ 2ϵe−Qt,

and integrating in the interval [0, t], where t ≤ T, we get

‖µ(t) − ν(t)‖∞e−Qt − ‖µ0 − ν0‖∞ ≤ 2ϵ
(
1 − e−Qt
Q

)
.

Then for all t ∈ [0,T]

‖µ(t) − ν(t)‖∞ = ‖µ0 − ν0‖∞eQt + 2ϵ
(
eQt − 1
Q

)
≤ ‖µ0 − ν0‖∞eQT + 2ϵ

(
eQT − 1
Q

)
,

which yields (114).
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Remark 44 The last argument in the proof of Theorem 43 is a particular case of
the well-known Gronwall–Bellman inequality: If f (·) is nonnegative and f′(t) ≤
Qf (t) + c for all t ≥ 0, where Q and c are nonnegative constants, then

f (t) ≤ f (0)eQt + cQ−1(eQt − 1) for all t ≥ 0.

For the reader’s convenience, we include the proof here.

From Theorem 43 we obtain the following corollary.

Corollary 45 Let us assume the hypotheses of Theorem 43. Suppose that for
each i in I, there exists a sequence of functions {Uϵn

i }∞n=1 and vectors of probabil-
ity measures {νn}∞n=1 such thatmax

i∈I
‖Ui−Uϵn

i ‖ → 0 and ‖µ0−νn0 ‖∞ → 0. If µ(·)
and νn(·) are solutions of (112) and (113), respectively, with initial conditions
µ(0) = µ0 and νn(0) = νn0 , then for T < ∞

lim
n→∞

sup
t∈[0,T]

‖µ(t) − νn(t)‖∞ = 0.

To end this section, we highlight the following two comments that are
considered relevant for the application of Theorem 43.

Remark 46 (i) As in Sections 5.1.1 and 5.1.2, consider a game with strategies
in compact metric spaces. For each player i ∈ I consider a partition Pi,ki
of Ai, and suppose that the initial condition µi,0 ∈ P(Ai) of (112) can be
approximated in the variation norm by a discrete probability distribution
µki ,0 ∈ P(Pi,ki). Then for any i ∈ I and Ei ∈ B(Ai)∩Pi,ki , (113) can bewritten
as in (109) (or (106)), with Uϵ

i as in (108) (or (103)). So, in this particular
case, (112) can be approximated by a system of differential equations in
R2

k1+· · ·+2kn of the form (110).
(ii) For the existence of the replicator dynamics, only the boundedness of the

payoff functions is necessary (see Proposition 11 in Section 3.3). So, the
hypothesis of compactness on the set of strategies is not necessary in The-
orem 43. Hence, the hypothesis of compactness on the set of strategies is
also not necessary to approximate (112) by a finite dimensional dynamical
system. For example, it is sufficient that there exists a discrete probability
distribution with finite values for any probability distribution over the set
of strategies. For this latter case, it is enough that for each i ∈ I, Ai be a
separable metric space; see theorem 6.3, page 44 in Parthasarathy (1967).
However, the compactness of the set of strategies ensures the existence of
a Nash equilibrium.
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5.3 An Approximation Theorem in the Weak Form
The next approximation result, Theorem 50, establishes the proximity of two
paths generated by two different dynamical systems (the original model and a
discrete approximating model) with different initial conditions, under the weak
topology. To this end we use the Kantorovich–Rubinstein norm ‖ · ‖kr (see (11))
onM(A), which metrizes the weak topology.

Remark 47 Let A be a separable metric space. We say that a mapping
µ : [0,∞) → M(A) is weakly differentiable if there exists µ′(t) ∈ M(A) such
that, for every t > 0 and g ∈ CB(A)

lim
ϵ→0

1
ϵ

[∫
A
g(a)µ(t + ϵ,da) −

∫
A
g(a)µ(t,da)

]
=

∫
A
g(a)µ′(t,da). (117)

If ‖ · ‖kr is the Kantorovich–Rubinstein metric in (11), then (117) is equivalent
to

lim
ϵ→0

 µ(t + ϵ) − µ(t)ϵ
− µ′(t)


kr
= 0. (118)

Moreover if µ′(t) is the strong derivative of µ(t), then it is also the weak deriv-
ative of µ(t). Conversely, if µ′(t) is the weak derivative of µ(t) and µ(t) is
continuous in t with the total variation norm (1), then it is the strong derivative
of µ(t). (See Heidergott and Leahu (2010).)

Lemma 48 For each i in I, let Ai be a separable metric space. If each map
µi : [0,∞) → M(Ai) is strongly differentiable, then

d‖µ(t)‖kr∞
dt

≤ ‖µ′(t)‖kr∞ .

Proof The proof is similar to that of Lemma 41.

Lemma 49 For each i in I, consider a bounded separable metric space (Ai, ϑi)
(with diameter Ci > 0), and the metric space (A1×· · ·×An, ϑ∗), where ϑ∗(a,b) =
max
i∈I

{ϑi(ai,bi)} for any a,b in A1 × · · · × An. Let F(·) be as in (46)–(47) (with
Fi(·) as in (50)). For each i in I, suppose that the payoff function Ui(·) in (18)
is bounded and satisfies that ‖Ui‖L < ∞, where ‖ · ‖L is defined in (8). Then
there exists Q > 0 such that

‖F(ν) − F(µ)‖kr∞ ≤ Q‖ν − µ‖kr∞ (119)

for all µ, ν ∈ P(A1) × · · · × P(An) ∩ MK(A1) × · · · × MK(An), where Q :=
[2H + (2n − 1)CHL], H := max

i∈I
‖Ui‖, HL := max

i∈I
‖Ui‖L, and C := max

i∈I
Ci.
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Proof See Section 3.3 of the online appendix.

Theorem 50 For each i in I, let (Ai, ϑi) be a bounded separable metric space
(with diameter Ci > 0), andUi,Uϵ

i : A1×· · ·×An → R be two bounded functions
such thatmax

i∈I
‖Ui −Uϵ

i ‖ < ϵ . For each i in I, suppose that ‖Ui‖L < ∞ (where
‖ · ‖L is defined in (8)) and consider the replicator dynamics induced by {Ui}ni=1
and {Uϵ

i }ni=1, as in (112) and (113). If µ(·) and ν(·) are solutions of (112) and
(113), respectively, with initial conditions µ(0) = µ0 and ν(0) = ν0, then for
T < ∞

sup
t∈[0,T]

‖µ(t) − ν(t)‖kr∞ < ‖µ0 − ν0‖kr∞eQT + 2ϵ
(
eQT − 1
Q

)
. (120)

where Q := [2H + (2n − 1)CHL], H := max
i∈I

‖Ui‖, HL := max
i∈I

‖Ui‖L, and
C := max

i∈I
Ci.

Proof For each i in I and t ≥ 0, let

βi(ai |µ) := Ji(ai, µi) − Ji(µi, µ−i), βϵi (ai |νi) := Jϵi (ai, ν−i) − Jϵi (νi, ν−i),

and

Fi(µ,Ei) :=
∫
Ei
βi(ai |µ)µi(dai), Fϵi (ν,Ei) :=

∫
Ei
βϵi (ai |ν)νi(dai).

By Lemma 49 there exists Q > 0 such that

‖F(ν) − F(µ)‖kr∞ ≤ Q‖ν − µ‖kr∞ (121)

for all µ, ν ∈ P(A1) × · · · × P(An) ∩ MK(A1) × · · · × MK(An). Actually, Q :=
[2H + (2n − 1)CHL], H := max

i∈I
‖Ui‖, HL := max

i∈I
‖Ui‖L, and C := max

i∈I
Ci.

We also have that, for all i in I and

ν ∈ P(A1) × · · · × P(An) ∩MK(A1) × · · · ×MK(An),

‖Fi(ν) − Fϵi (ν)‖kr ≤ sup
‖ f ‖L≤1
f (a0i )=0

∫
Ai
f (ai)|βi(ai |ν) − βϵi (ai |ν)|νi(dai)

≤ 2‖Ui − Uϵ
i ‖ sup

‖ f ‖L≤1
f (a0i )=0

∫
Ai
f (ai)νi(dai)

≤ 2Cϵ .
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Then2

‖F(ν) − Fϵ (ν)‖kr∞ ≤ 2Cϵ (122)

By Lemma 48 and (121)–(122) we have

d‖µ(t) − ν(t)‖kr∞
dt

≤ ‖µ′(t) − ν′(t)‖kr∞

= ‖F(µ(t)) − Fϵ (ν(t))‖kr∞
≤ ‖F(µ(t)) − F(ν(t))‖kr∞ + ‖F(ν(t)) − Fϵ (ν(t))‖kr∞
≤ Q‖µ(t) − ν(t)‖kr∞ + 2Cϵ .

(See the Remark 44 after Theorem 43.) The rest of the proof is similar to that
done in Theorem 43.

Corollary 51 Let us assume the hypotheses of Theorem 50. Suppose that for
each i in I, there exist sequences of functions {Uϵn

i }∞n=1 and of vectors of prob-
ability measures {νn}∞n=1 such thatmax

i∈I
‖Ui −Uϵn

i ‖ → 0 and ‖µ0 − νn0 ‖
kr
∞ → 0.

If µ(·) and νn(·) are solutions of (112) and (113), respectively, with initial
conditions µ(0) = µ0 and νn(0) = νn0 , then, for T < ∞,

lim
n→∞

sup
t∈[0,T]

‖µ(t) − νn(t)‖kr∞ = 0.

To end this section, we highlight the following note that is considered
relevant for the application of Theorem 50.

Remark 52 As in Sections 5.1.1 and 5.1.2, consider a game with strategies
in compact metric spaces. For each player i ∈ I, let ‖Ui‖L < ∞ and consider
a partition Pki of Ai. Suppose that the initial condition µi,0 ∈ P(Ai) of (112)
can be approximated in the weak form by a discrete probability distribution
µki ,0 ∈ P(Pki ). Then for any i ∈ I and Ei ∈ B(Ai) ∩ Pki , (113) can be written as
in (109) (or (106)), with Uϵ

i as in (108) (or (103)). So, in this particular case,
(112) can be approximated by a system of differential equations in R2k1+· · ·+2kn

of the form (110).

2 Note that if f satisfies that ‖ f ‖L ≤ 1 and f (a0i ) = 0, then f (ai) ≤ ϑi(ai, a0i ) ≤ Ci for all ai ∈ Ai.

Therefore sup
‖ f ‖L≤1
f (a0i )=0

∫
Ai
f (ai)νi(dai) ≤ C.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t = 0

t = 1,000

t = 2,000

0

Figure 1 Linear-quadratic model: symmetric case.

5.4 Examples
5.4.1 A Linear-Quadratic Model: Symmetric Case

Consider the symmetric form of the game in Section 2.2, as was done in Sec-
tion 4.5.1. Let A = [0,M], for M > 0, be the strategy set and we rewrite the
payoff functions (26) and (27) as

U(x,y) = −ax2 − bxy + cx + dy,

with a,b,c > 0 and d any real number. If 2c(a − b) > 0 and 4a2 − b2 > 0, then
we have an interior NES

x∗ =
2c(a − b)
4a2 − b2

.

In Section 4.5.1 it is proved that this NES x∗ ≡ δx∗ is r-SUS. Moreover, we
have that µ(t) → δx∗ in distribution.
Consider a game where a = 2, b = 1, c = 5, d = 1, M = 2. For this

game the payoff function U(·, ·) is bounded Lipschitz and by Theorem 50 we
can approximate the replicator dynamics by a finite-dimensional dynamical
system of the form (107) under the Kantorovich–Rubinstein norm. Figure 1
shows a numerical approximation for this game where the Nash equilibrium
is x∗ = 1. For this numerical approximation we consider a partition with 100
elements with the same size, and use the forward Euler method for solving
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ordinary differential equations. We consider the uniform distribution as initial
condition. We show the distribution at times 0, 1000, and 2000.
Note that, under the strong norm (1), the Nash equilibrium x∗ = 1 cannot be

approximated by any probability measure with continuous density function.

5.4.2 Graduated Risk Game

As in Section 4.5.2, consider the game in Section 2.6. Section 4.5.2 shows that
if v < c in the payoff function (37), that is,

U(x,y) =
vy +

v−c
2 (1 − y) if y > x,

v−c
2 (1 − x) if y ≤ x,

then the NES µ∗ in (38) with density function
dµ∗(x)
dx

=
α − 1
2

x
α−3
2

is a r-SUS for any metric r in P(A), with A = [0,1].
Let µ(t) be the solution of the symmetric replicator dynamics induced by

U(·, ·) in (37). Then, as in Section 4.5.2, for any initial condition µ0 with support
[0,1], we have that if K(µ0, µ∗) < φ′(ϵ) =

(
ϵ
2
)2
, then

(i) µ(t) ∈ Wφ′(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ for all t ≥ 0;
(iii) rw(µ(t), µ∗) < ϵ for all t ≥ 0.

Consider a game where c = 10, v = 6.5. For this game, the payoff function
U(·, ·) in (37) is bounded, and by Theorem 43 we can approximate the replica-
tor dynamics by a finite-dimensional dynamical system of the form (107) under
the strong norm (1). Figure 2 shows a numerical approximation for this game.
For this approximation we consider a partition with 100 elements with the same
size and use the forward Euler method for solving ordinary differential equa-
tions. We consider the uniform distribution as initial condition. We show the
distribution at times 0, 500, and 1000.
In the same way, Figure 3 shows a numerical approximation for a game

where c = 10, v = 0.5. For this approximation we consider a partition with
100 elements with the same size, and use the forward Euler method for solving
ordinary differential equations. We consider the uniform distribution as initial
condition. We show the distribution at times 0, 500, and 1000.

5.4.3 War of Attrition Game

Consider the game in Section 2.7. Section 4.5.3 shows that if v ≤ m in the
payoff function (40), that is,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

t = 0

t = 500

t = 1,000

Figure 2 Graduated risk game with c = 10, v = 6.5.

t = 0

t = 500

t = 1,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3 Graduated risk game with c = 10, v = 0.5.
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U(x,y) =


v − y if y < x,
v
2 − y if y = x,

−x if y > x,

then the NES µ∗ with density function (41), namely,

dµ∗(x)
dx

=


1
v e

−x/v if x ∈
[
0,m − v

2
]
,

0 if x ∈
(
m − v

2 ,m
)
,

a weight δm · e1/2−m/v at the atom {m},

is a r-SUS for any metric r in P(A), with A = [0,m].
Let µ(t) be the solution of the symmetric replicator dynamics induced by

U(·, ·) in (40). Section 4.5.3 shows that for any initial condition µ0 with support
[0,1] we have that, if K(µ0, µ∗) < φ′(ϵ) =

(
ϵ
2
)2
, then

(i) µ(t) ∈ Wφ′(ϵ )(µ∗) for all t ≥ 0;
(ii) ‖µ(t) − µ∗‖ < ϵ

m for all t ≥ 0;
(iii) rw(µ(t), µ∗) < ϵ for all t ≥ 0.

Consider a game where m = 10, v = 4. For this game the payoff function
U(·, ·) in (40) is bounded and the NES µ∗ is given by the density function

dµ∗(x)
dx

=


e−x/4
4 if x ∈ [0,8],

0 if x ∈ (8,10),
a weight δ10 · e−2 at the atom {10}.

Using Theorem 43, we can approximate the replicator dynamics by a finite-
dimensional dynamical system of the form (107) under the strong norm (1).
Figure 4 shows a numerical approximation for this game. For this numeri-
cal approximation we consider a partition with 100 elements with the same
size, and use the forward Euler method for solving ordinary differential equa-
tions. We consider the uniform distribution as initial condition. We show the
distribution at times 0, 100, and 600.

5.5 Comments
In this section, we established conditions to approximate the replicator dynam-
ics in a measure space by a sequence of dynamical systems on finite-
dimensional spaces. We also presented three examples. The first one may be
applicable to oligopoly models, theory of international trade, and public good
models. The second and third examples deal with a graduated risk game and a
war of attrition game, respectively.
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0
0 1 2 3 4 5 6 7 8

t = 0

t = 100

t = 600

9 10

Figure 4 War of attrition game m = 10, v = 4.

There are many questions, however, that remain open. For instance, the
replicator dynamics has been studied in other general spaces without direct
applications in game theory such as Kravvaritis et al. (2008, 2010, 2011) and
Kravvaritis and Papanicolaou (2011). Papanicolaou and Smyrlis (2009) studied
conditions for stability and examples for these general cases. These extensions
may be applicable in areas such asmigration, regional sciences, and spatial eco-
nomics (see Fujita et al. (2001), chapters 5 and 6). An open question: Can we
establish conditions to approximate the replicator dynamics for general spaces
by a sequence of dynamical systems on finite-dimensional spaces?
In the theory of evolutionary games there are several interesting dynam-

ics, for instance, the imitation dynamics, the monotone-selection dynamics,
the best-response dynamics, the Brown–von Neumann–Nash dynamics, and
so forth (see, for instance, Hofbauer and Sigmund (1998, 2003), Sandholm
(2010)). Some of these evolutionary dynamics have been extended to games
with strategies in spaces of probability measures. For instance, Hofbauer et al.
(2009) extend the Brown–von Neumann–Nash dynamics; Lahkar and Riedel
(2015) extend the logit dynamics. These publications establish conditions for
the existence of solutions and the stability of the corresponding dynamical
systems. Cheung (2014) proposes a general theory for pairwise comparison
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dynamics, and for imitative dynamics in Cheung (2016). Ruijgrok and Ruijgrok
(2015) extend the replicator dynamics with a mutation term. An open question:
Can we establish conditions to approximate other evolutionary dynamics for
measurable spaces by a sequence of finite-dimensional dynamical systems?

6 The Replicator Dynamics as a Deterministic Approximation
In this section we study the replicator dynamics as the limit of a sequence of
Markov processes. There are many references (mentioned in Section 1.1) on
this issue when the strategy space is finite. However, a more general math-
ematical structure is needed if the strategy set is a measurable space, which
we consider in this section. We use a general theorem (Kolokoltsov (2006))
in which an infinite-dimensional kinetic equation (a differential equation on a
space of measures) is a limit of a sequence of jump Markov process.
Section 6.1 presents notation and technical requirements. Section 6.2 shows

a technique proposed by Kolokoltsov (2006, 2010) to approximate a sequence
of pure-jump models of binary interaction (in a Banach space) by means of
a deterministic dynamical system. Section 6.3 uses techniques of Section 6.2
to establish conditions under which the replicator dynamics are a limit of a
sequence of Markov processes. Finally, Section 6.4 presents some general
comments on future perspectives.

6.1 Technical Preliminaries
In this section we summarize some facts about the approximation of ordinary
differential equations by Markov processes and other related topics. For proofs
we refer to Kallenberg (2002), Ethier and Kurtz (1984), and Böttcher et al.
(2013).

6.1.1 Markov Processes

Let F be a Banach space, and L(F) the set of all linear bounded operators from
F into itself. A strongly continuous semigroup of linear operators on F is a
mapping T : [0,∞) → L(F) such that

(i) T(t + s) = T(t)T(s) for all t, s ≥ 0, with T(0) = I, where I is the identity
operator.

(ii) limt→0+ T(t)x = x in the strong operator topology.

Definition 53 The generator G of a strongly continuous semigroup T(·) is
defined as follows. Let
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D(G) :=
{
f ∈ F : lim

t→0+

[
T(t) − I
t

]
f exists

}
,

and for f ∈ D(G) let

Gf := lim
t→0+

[
T(t) − I
t

]
f.

The connection of linear semigroup theory with Markov processes is as fol-
lows. Let A be a locally compact metric space. Let x(·) = {x(t) : t ≥ 0} be a
Markov process with values in A and transition probability function P(s,x, t,E),
namely,

P(s,x, t,E) = P(x(t) ∈ E | x(s) = x)

for all t ≥ s ≥ 0, x ∈ A, and E ∈ B(A). Let F be the linear space of real-valued
measurable functions f on [0,∞) × A such that∫

A
| f (t,y)|P(s,x, t,dy) ≤ ∞

for each t ≥ s ≥ 0 and x ∈ A. For each t ≥ 0 and f ∈ F, let Ttf be a function on
[0,∞) × A defined by

Ttf (s,x) :=
∫
A
f (s + t,y)P(s,x, s + t,dy).

In this case the operators Tt, t ≥ 0, form a semigroup of operators on F.
Let C∞(A) be the space of continuous functions vanishing at infinity.3 A

Markov process is called time-homogeneous if P(s,x, s + t,E) = P(0,x, t,E)
for all s ≥ 0. A (time-homogeneous) Markov process in a locally compact
metric space A is said to be a Feller process if for any f ∈ C∞(A) we have that
Ttf ∈ C∞(A).

6.1.2 Approximation of Pure-Jump Process

A Markov jump process describes a continuous-time stochastic process such
that, intuitively, it behaves as follows. Consider that the system starts from a
point x(s) = x ∈ A for some time s ≥ 0. The process stays in the state x for
a random length of time τ1 and then instantaneously “jumps” to a new state
y , x. It stays there a random length of time τ2 (independent of τ1) and then
“jumps” to a new state z , y, and this behavior is repeated indefinitely.

3 C∞(A) is the set of real-valued continuous functions such that for every ϵ > 0 there exists a
compact set K ⊂ A that satisfies supa<K | f (a) | ≤ ϵ .
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By a pure-jump (time-homogeneous) Markov process on A we mean a
Markov process with a generator of the form

Gf(x) =
∫
A
[f (y) − f (x)]Q(x,dy),

for f in C∞(A), where Q is a transition kernel, that is, for every x ∈ A
and E ∈ B(A), Q(·,E) is a real-valued measurable function, and Q(x, ·) is a
signed measure on B(A). In particular, for pure-jump processes Q satisfies that
Q(x,x) = 0 and Q(x,A) < ∞ for every x ∈ A.
Let A be a complete separable metric space with metric ϑ. Consider {xn(·)}

a sequence of pure-jump Markov processes in A. We say that this sequence
converges weakly to a Markov process x(·) if the distribution law of {xn(·)}
converges weakly to the distribution law of {x(·)}.
The following theorem gives the solution of some ordinary differential

equations as the limit of a sequence of pure-jump Markov processes.

Proposition 54 Let A ⊂ Rm (endowed with the Euclidean norm | · |), and let
{xn(t)} be a sequence of pure-jump Markov processes in A such that for every
n = 1,2, . . ., the process xn(·) has the generator

Gnf (x) =
∫
A
[f (y) − f (x)]Qn(x,dy)

and xn(0) = x0. For every n = 1,2, . . . and x in A, consider the functions

Fn(x) :=
∫
A
|x − y|Qn(x,dy) and Hn(x) :=

∫
|x−y |>ϵn

|x − y|Qn(x,dy),

where {ϵn} is a sequence of positive numbers such that limn→∞ ϵn = 0.
Consider the differential equation

x′(t) = G(x(t)), with x(0) = x0, (123)

where G satisfies a Lipschitz condition. Finally, assume that, for every x ∈ A,

(i) supn supx∈A Fn(x) < ∞,
(ii) limn→∞ supx∈AHn(x) = 0.

If GnI(·) :=
∫
A[y − (·)]Qn(·,dy) converges uniformly to G(·), then the sequence

of stochastic processes xn(·) converges weakly to the solution x(·) of the
differential equation (123). Moreover, for every ϵ > 0 and t > 0,

lim
n→∞

P(sup
s≤t

|xn(s) − x(s)| > ϵ) = 0.

Proof See Kurtz (1970, 1971).
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Proposition 54 is, in fact, a particular case of a theorem on convergence of
Feller processes (see Kallenberg (2002), chapter 19).
Let A be a compact metric space. ThenM(A) (endowed with the weak topol-

ogy) is a locally compact metric space (see Li (2010)). Under this condition, we
can talk about a Markov process with state spaces inM(A). This Markov proc-
ess is called a measure-valued Markov process. For references on this general
case see, for example, Li (2010), Dynkin (1994), and Kolokoltsov (2010).
In Section 6.2 we see the replicator dynamics as the limit of a sequence of

measure-valued Markov processes.

6.1.3 Notation

Let A be a separable and compact metric space, and consider the Cartesian
products Aj := A× · · · ×A (j-times) and A∞ := A×A× · · · (infinite-times) with
their product topologies. We shall denote by At the disjoint union of the sets
Aj, namely, At = t∞

j=1A
j, 4 and which is a separable and locally compact space.

For the following definition we consider the set N of natural numbers.

Definition 55 A measure µ inM(A∞) is called symmetric if for any permuta-
tion ρ : N→ N that replaces only finitely many elements, we have

µ(ρE) = µ(E) ∀E ∈ B(A∞),

where

ρE :=
{
(a1,a2, . . . ,aj, . . .) ∈ A∞ : (aρ(1),aρ(2), . . . ,aρ(j),...) ∈ E

}
.

The set of symmetric measures on A∞ is written asMS(A∞).

Similarly, as in Definition 55, we can define a symmetric measure on Aj

and At. The spaces of symmetric measures on Aj and At will be denoted by
MS(Aj) andMS(At), respectively. For more details about symmetric measures
see Hewitt and Savage (1955) and Bogachev (2007) (chapter 10).
Let X be either Aj , A∞, or At. The spaces of positive measures, and

symmetric positive measures on X will be denoted by M+(X ) and M+S (X ),
respectively.
A function f : A∞ → R is said to be symmetric if for any permutation ρ : N→

N and (a1,a2, . . . ,aj, . . .) in A∞

f (a1,a2, . . . ,aj, . . .) = f (aρ(1),aρ(2), . . . ,aρ(j), . . .).

4 t∞
j=1A

j = ∪∞
j=1 {(a, j) : a ∈ Aj }

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
47

23
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009472319


Evolutionary Games and the Replicator Dynamics 71

A real-valued symmetric function on Aj and At is defined similarly. Let X be
either Aj, A∞, or At. We shall denote by BS(X ) (resp. CS(X )) the Banach space
of symmetric bounded (resp. continuous) real-valued functions on X.
On X we consider the equivalence relation ∼ given by

(a1,a2, . . . ,aj, . . .) ∼ (b1,b2, . . . ,bj, . . .)

if and only if there exists a permutation ρ such that bi = aρ(i) for all i = 1,2, . . ..
Let XS be the quotient space (the space of equivalence classes) with the quotient
topology (for details, see Pedersen (2012), chapter 1). This allows us to identify,
for example, CS(X ) = C(XS).

6.2 Pure-Jump Markov Processes for Binary Interacting
Individuals

In this section we see how a sequence of general pure-jump Markov pro-
cesses converges weakly to the solution of an infinite-dimensional differential
equation (called a kinetic equation). For details see Kolokoltsov (2006) and
Kolokoltsov (2010). In particular, we are interested in pure-jump Markov pro-
cesses that emerge from the interaction of two particles, in other words, that
originate from binary interacting particles.
In game theory, we are interested in the behavior of individuals, which is why

we replace the word “particles” (used in physical theory) with “individuals.”
Let A be a separable and compact metric space. The symmetrical laws on Aj

(which are uniquely defined by their projections to AjS) are called exchangea-
ble systems of j individuals. The elements of M+S (At) and CS(At) are called,
respectively, the states and observables for a Markov process Zt on At. We
shall denote the elements of At by bold letters, for example, a,b. A key obser-
vation from the theory of measure-valued limits is the inclusion of AtS toM

+(A)
given by

a = (a1, . . . ,al) 7→ hδa1 + · · · + hδal, h > 0, (124)

which defines a bijection between AtS and the spaceM
+
hδ(A) ⊂ M

+(A) of finite
linear combinations of δ-measures.
For each f ∈ BS(At) and a = (a1, . . . ,aj) ∈ Aj ⊂ At, we write f (a) =

f (a1, . . . ,aj), f+(a) = f+(a1, . . . ,aj) = f (a1) + · · · + f (aj), and f×(a) =
f×(a1, . . . ,aj) = f (a1) · · · · · f (aj). For a subset I = {i1, i2} of two elements
of a finite set J = {1,2, . . . , j} we denote by Ic its complement Ic = J − I.
Then for a = (a1, . . . ,aj) ∈ At, aI = (ai1,ai2 ) and aIc = (aic1, . . . ,aicm ), where
Ic = {ic1, . . . , i

c
m}, and a = ( aI,aIc).
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By a pure jump process Zt on At that describes the interaction of two
individuals, we mean a Markov process with a generator of the form

Gf(a) =
∑

I⊂{1,2,..j}

∫
At

[
f (aIc,b) − f ( a)

]
Q(aI,db), (125)

where the binary-interaction transition kernel is such that

Q(aI) =
∫
At
Q(aI,db) =

∞∑
m=1

∫
Am
Qm( aI,db1 · · · dbm). (126)

Changing the state space according to the mapping (124) yields the corre-
sponding Markov process Zht on M+hδ(A). To this end, we scale the empirical
measures δ a := δa1 + · · · + δal by a factor h > 0 and use the bijection (124) to
evaluate the map δa → f. To each empirical measure δa we assign a transition
probabilityQ (this allows us to have a mean-field interaction). Finally, we scale
the generator by the factor h > 0. The preceding change of space leads (125)
to the generator Gh defined by (for details see Kolokoltsov (2006))

Ghf (hδa)

= h
∑

I⊂{1,2,...,j}

∫
At

[
f (hδa − hδ aI + hδb) − f (hδa)

]
Q(hδa,aI,db). (127)

Using the relation∑
I⊂{1,2,...,j}

f ( aI) =
1
2

∑
i∈{1,2,...,j}

∑
k∈{1,2,...,j}

f (ai,ak) −
1
2

∑
i∈{1,2,...,j}

f (ai,ai)

=
1
2

∫
A2
f (a1,a2)δa(da1)δa(da2) −

1
2

∫
A
f (a,a)δa(da),

which holds for any symmetric f and a = (a1, . . . ,aj), we can express (127) as

Ghf (hδ a)

=
1
2
1
h

∫
At

∫
A2

[
f (hδa − hδ aI + hδb) − f (hδa)

]
Q(hδa, (a1,a2),db)hδ a(da1)hδa(da2)

− 1
2

∫
At

∫
A

[
f (hδa − hδaI + hδ b) − f (hδa)

]
Q(hδa, (a,a),db)hδ a(da).

Then, applying the operator (127) over the linear function

fg(µ) = 〈g, µ〉 =
∫
A
g(a)µ(da) g ∈ C(A), (128)
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we obtain

Ghfg(hδa)

=
1
2

∫
At

∫
A2

[
g+(b) − g+(a1,a2)

]
Q(hδa, (a1,a2),db)hδa(da1)hδa(da2)

− 1
2
h
∫
At

∫
A

[
g+(b) − g+(a,a)

]
Q(hδa, (a,a),db)hδa(da), (129)

where g+(b) = g+(b1,b2, . . . ,bk) = g(b1) + g(b2) + . . . + g(bk), and similarly
for g+(a1,a2). For more details see Kolokoltsov (2006) and (2010) (chapter I).
Assume that the value of h is the scale or genetic relevance of each individual.

This genetic relevance is decreasing, for example, with respect to the number of
individuals, namely, if the population tends to infinity, then h→ 0. The genetic
relevance of each individual h is high, for example, in small populations or
endangered populations.When the scale or genetic relevance of each individual
h is small (e.g. in a huge population) then the mass distribution hδa retains
this genetic relevance h. It follows that if h tends to 0 and hδa tends to some
distribution or probabilitymeasure µ, the corresponding generatorGh evaluated
in (128)–(129)) tends to

Gfg(µ) =
1
2

∫
At

∫
A2

[
g+(b) − g+(a1,a2)

]
Q(µ, (a1,a2),d b)µ(da1)µ(da2).

(130)

Under some hypotheses (see Kolokoltsov (2006)), if µ(t) is a solution of the
differential equation

d
dt
〈g, µ(t)〉 = Gfg(µ(t)) ∀g ∈ C(AS), (with µ(0) = µ0), (131)

then there exists a subsequence of stochastic processes Zhn (t) (subfamily of
{Zh(t)}h>0 ) with generator (127)–(129)), which converges weakly to µ(t).

6.3 The Replicator Dynamics as a Deterministic Approximation
In this section we specify a Markov game that can be approximated by the rep-
licator dynamics. This Markov game models a stochastic interaction between
individuals which explains the evolution of the probability distribution of
characteristics in a population.
Suppose that in each stage of the game we select a pair of individuals of

characteristics a1,a2 ∈ A. The agent with characteristic a1 plays against an
agent with characteristic a2, and the transition rate to have (m − 1) new agents
with characteristic a1 after this game is given by

Jm(a1,hδa) − Jm(a2,hδa), (132)
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where

(i) hδa is a positive measure on A described by (123), and h > 0 is the scale or
the genetic relevance of each individual;

(ii) the definition of Jm : M+(A) × M+(A) → R is similar to (83), namely,
Jm(a1,a2) = Um(a1,a2) for any a1,a2 ∈ A. The function Um(·, ·) can be
chosen arbitrarily as long as the average change equals a function U(·, ·),
that is, for any a1,a2 ∈ A,

U(a1,a2) =
∞∑
m=0

(m − 1)Um(a1,a2). (133)

The interaction transition kernelsQm in (125) from the generator (127)–(129)
and measure µ ∈ M(A) are of the form

Qm(µ, (a1,a2),db1 . . . dbm) =
[
Jm(a1, µ) − Jm(a2, µ)

]
δa1 (db1)...δa1 (dbm)

+
[
Jm(a2, µ) − Jm(a1, µ)

]
δa2 (db1)...δa2 (dbm).

(134)

Then∫
At

[
g+(b) − g+(a1,a2)

]
Q(hδa, (a1,a2),d b)

=

∞∑
m=0

(m − 1)
[
g(a1)

[
Jm(a1,hδa) − Jm(a2,hδa)

]
+ g(a2)

[
Jm(a2,hδa) − Jm(a1,hδ a)

] ]
= g(a1)

[
J(a1,hδa) − J(a2,hδa)

]
+ g(a2)

[
J(a2,hδa) − J(a1,hδa)

]
. (135)

Therefore, if h tends to 0 and hδa tends to some probability measure µ, then
(by Fubini’s theorem and (135)) the generator Gh in (130) has the form

1
2

∫
A

∫
A
g(a1)

[
J(a1, µ) − J(a2, µ)

]
µ(da1)µ(da2)

+
1
2

∫
A

∫
A
g(a2)

[
J(a2, µ) − J(a1, µ)

]
µ(da2)µ(da1)

=

∫
A

∫
A
g(a1)

[
J(a1, µ) − J(a2, µ)

]
µ(da1)µ(da2)

=

∫
A
g(a)

[
J(a, µ) − J(µ, µ)

]
µ(da).
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Then the kinetic equation (130) has the form of the replicator dynamics in the
weak topology

d
dt

∫
A
g(a)µ(t,da) =

∫
A
g(a)

[
J(a, µ(t)) − J(µ(t), µ(t))

]
µ(t,da), (136)

for g ∈ C(A).
To prove the approximation Theorem 56, we need the following concepts,

where we use the notation L+(a) and L×(a) as in Section 6.2.

(i) Let L be a nonnegative function in A. We say that the transition kernel is
L-subcritical if, for all b in At and µ inM+(A),∫

At

[
L+(b) − L+(a1,a2)

]
Q(µ, (a1,a2),db) ≤ 0.

(ii) We say that the transition kernel is L+-bounded (L×-bounded) if, for all
(a1,a2) in A2 and µ inM+(A) and some c > 0,

Q(µ, (a1,a2)) ≤ c[L(a1) + L(a2)]
(
Q(µ, (a1,a2)) ≤ cL(a1) · L(a2)

)
.

(iii) We say that the (ND)-condition is satisfied if the number of individuals
that can be created by a single act of interaction is uniformly bounded by
some number m0, and L is 1+-subcritical (where 1 is a constant function).

Theorem 56 Let A be a compact separable metric space, and let {Um}∞m=0 and
U be bounded functions that satisfy (133) and

∞∑
m=0

∫
A

∫
A
|m − 1| |Um(a1,a2)|µ(da1)µ(da2) < ∞ ∀µ ∈ M+(A). (137)

In addition, suppose that the mapping (µ, δ(a1 ,a2)) → Q(µ, (a1,a2), ·) is continu-
ous in the weak topology, where Q is defined by (126) and (134). If the family of
initial measures hδa converges weakly to somemeasure µ (as h→ 0), then there
exists a subsequence Zhnδat of the family of stochastic process {Zhδ a

t }h>0 defined
with generator (129) (with transition kernel as (126)–(134)) that converges
weakly to the solution µ(·) of the replicator dynamics (136).

Proof We will prove that the kernels Q of the generator (127)–(129) (where
Q is defined by (126) and (134)) satisfy the hypotheses of theorem 4.2 in
Kolokoltsov (2006).
Let L > 0 be an arbitrary (but fixed) positive number and µ in M(A). By

(126), (134), and (137), we have
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At

[
L+(b) − L+(a1,a2)

]
Q(µ, (a1,a2),d b)

=

∞∑
m=0

(m − 1)
[
L
[
Jm(a1, µ) − Jm(a2, µ)

]
+ L

[
Jm(a2, µ) − Jm(a1, µ)

] ]
= L

[
J(a1, µ) − J(a2, µ)

]
+ L

[
J(a2, µ) − J(a1, µ)

]
= 0. (138)

and

Q(µ, (a1,a2)) =
∞∑
m=0

∫
Am
Qm(µ, (a1,a2),db1 · · · dbm)

=

∞∑
m=0

∫
Am

[
Jm(a1, µ) − Jm(a2, µ)

]
δa1 (db1)...δa1 (dbm)

+

∞∑
m=0

∫
Am

[
Jm(a2, µ) − Jm(a1, µ)

]
δa2 (db1)...δa2 (dbm)

=

∞∑
m=0

m
[ [
Jm(a1, µ) − Jm(a2, µ)

]
+
[
Jm(a2, µ) − Jm(a1, µ)

] ]
= 0. (139)

Then by (138) the kernel Q(µ, (a1,a2),db) is L-subcritical and 1-sub-critical.
By (139) the transition kernel is (1 + Lα)+-bounded. The (ND) condition is
satisfied since the number of individuals that can be created by a single act of
interaction is equal to 0. Thus the hypotheses of theorem 4.2 in Kolokoltsov
(2006) are satisfied and the assertion follows.

Remark 57 Under the conditions of Theorem 56, and since the payoff function
U is bounded, from Proposition 11 and Theorem 24 the replicator dynam-
ics in weak form (136) equal the strong form (85). Therefore, there exists a
subsequence Zhnδat of the family of stochastic process {Zhδat }h>0 defined with
generator (126)–(129) (with transition kernel as in (126)–(134)) that converges
weakly to the solution µ(·) of the replicator dynamics in the strong form (85).

6.4 Comments
In this section we considered the replicator dynamics as a limit of a sequence
of measure-valued Markov processes. We used a technique proposed by
Kolokoltsov (2006, 2010) to approximate a sequence of pure-jump models
of binary interaction (in the space of measures) by means of a deterministic
dynamical system.
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There are many questions, however, that remain open. For instance, can we
have numerical approximations for these measure-valued Markov processes?
This is an important issue for the application of this theory.When the set of pure
strategies is finite, there are other evolutionary dynamics that can be seen as a
limit of a sequence of measure-valued Markov processes. Is this true for games
with strategies in a space of measures? And finally, can the replicator dynam-
ics in the asymmetric case also be approximated by a sequence of stochastic
processes?
On the other hand, some phenomena of evolutionary economics naturally

intersect with a stochastic systems approach (see Dosi and Nelson (1994)).
Some evolutionary dynamics can serve as an approach to understanding eco-
nomic systems, even within stochastic environments that are characterized by
variability and uncertainty; see for instance Safarzyńska and van den Bergh
(2010). These stochastic environments include

(i) the evolution of industrial innovations and business strategies in markets
with uncertain conditions;

(ii) evolutionary models where variables such as prices, product demand, mar-
ket information, and the value of financial assets fluctuate in random
environments.

Therefore, the theory of evolutionary economics and stochastic systems often
intertwines in studies focused on the evolution and adaptation of firms in mar-
kets within economic environments marked by variability and uncertainty; see
for instance Winter et al. (2003).

7 Conclusions and Suggestions for Future Research
This Element provides a general framework to study the replicator dynamics
for evolutionary games in which the strategy set is a separable metric space.
We analyzed the asymmetric and symmetric cases and included examples to
illustrate our results.
For games in the asymmetric case we concluded the following:

(i) Under some conditions, there exists the solution for the asymmetric
replicator equations (Theorem 12) and this solution has special charac-
teristics (Theorem 13). In particular, these conditions are satisfied when
the payoffs are bounded (Proposition 11).

(ii) If µ∗ = (µ∗1, . . . , µ∗n) is a Nash equilibrium of a normal-form game Γ, then
µ∗ is a critical point of the replicator dynamics (Theorem 16).
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(iii) A strong uninvadable profile (SUP) is a Nash equilibrium (Theorem 19).
The SUPs are Nash equilibria where the strategy of each player is
dominant in a certain subset of their strategy set.

(iv) If µ∗ is a pure Nash equilibrium and is also a SUP, then µ∗ is a stable point
for the replicator dynamics (Proposition 11).

(v) The symmetric replicator dynamics can be deduced from the asymmet-
ric case (see Section 3.2.1). Therefore, parts (i) to (iv) are true for the
symmetric case.

(vi) Finally, for asymmetric games, our framework provides us with robust
solutions to such outstanding issues as oligopoly pricing from an evo-
lutionary perspective. We gave three examples: the first one may be
applicable to oligopoly models, theory of international trade, and pub-
lic good models; the second and third examples deal with the tragedy of
commons game and a model of poverty traps.

In a two-player normal-form game Γ a symmetric Nash equilibrium can be
expressed in terms of a strategy called a Nash equilibrium strategy (NES). In
the same form, a symmetric SUP can be written in terms of a strategy called
a strongly uninvadable strategy (SUS). This particular fact allows us to obtain
more stability results than in the asymmetric case. In our case, the replicator
dynamics evolve in a space of signed measures. This allows us to study stabil-
ity criteria for the replicator dynamics with respect to different topologies and
metrics on a space of probability measures.
The conclusion (iv) is valid for a pure NES and in terms of the total variation

norm ‖ · ‖. Let r be any metric on the set P(A) of probability measures, and let
r-SUS be a SUS in terms of r (see Definition 26). This is a important point: a
SUS is a strategy with dominance in a certain subset of the strategy set. The
“size” of the subset is determined by the metric r.
For games in the symmetric case we concluded the following:

(vii) For any metric r, if µ∗ is a r-SUS, then µ is a NES (Proposition 29).
(viii) If µ∗ is a stable point for the replicator dynamics, then µ∗ is a NES

(Proposition 4.14).
(ix) For any metric r, if µ∗ is a r-SUS, then µ∗ is a stable point for the

replicator dynamics (Theorems 31, 32, 33).
(x) Let C and S be the sets of critical and stable points of the replicator

dynamics, respectively. Let N be the set of NESs and r-SUS the set
of SUSs. Then we have the following relations (Theorem 38):

r-SUS ⊂ S ⊂ N ⊂ C.
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(xi) We also analyzed the implications between the different concepts of
stability in diagram (100).

(xii) The replicator dynamics in a space of measures can be approximated by
a sequence of finite-dimensional dynamical systems (Theorems 43, 50.)

(xiii) The replicator dynamics in a space of measure can be approximated by
a sequence of measure-valued Markov processes (Theorem 56.)

Our proposed framework for the replicator dynamics provides opportuni-
ties for the elaboration of new evolutionary economic models and the field
of development economics. The contributions in this work pave the way for
the generalization of evolutionary economic models discussed in the literature,
as for instance Almudi et al. (2012), Almudi and Fatas-Villafranca (2021),
and Safarzyńska and van den Bergh (2010). Similarly for evolutionary mac-
roeconomic models, some of which involve replicator mechanisms, recently
analyzed through simulations (e.g. see Dosi et al. (2010) or Almudi et al.
(2020b)).
Future research could explore the application of replicator dynamics in

Banach spaces to extend Lotka–Volterra-type models in evolutionary eco-
nomics, such as Richard Goodwin’s model (Goodwin, 1967), which analyze
unemployment, profit, and wage growth, where additionally, it would be
valuable to complement this analysis with a dynamic income distribution
component.
For future research related to evolutionary games we have several questions

in mind, mainly related to the asymmetric case.

(a) In symmetric evolutionary games with strategies in the space of measures,
there are stability conditions with different metrics and topologies. Are
these conditions satisfied in the asymmetric case?

(b) It would be interesting to investigate if the replicator dynamics with contin-
uous strategies in the asymmetric case can be approximated, in some sense,
by games with discrete strategies. (This is true for the symmetric case; see
Section 4.7.)

(c) Sandholm (2001) establishes an important relation between potential games
and evolutionary dynamics for games with finite strategy sets. Under some
conditions, the potential of a normal-form game is a Lyapunov function for
the evolutionary dynamics. Cheung (2014) extends these results to sym-
metric games with strategies in a space of measures. Are these results true
for the asymmetric case?

(d) For normal-form games with finite strategy sets, with the replicator dynam-
ics we can give a geometric characterization of the set of Nash equilibria;
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see Harsanyi (1973), Hofbauer and Sigmund (1998), Ritzberger (1994). Is
this geometric characterization true for games with strategies in a space of
measures?

(e) When the set of pure strategies is finite, Cressman (1997) shows that under
some conditions the stability of monotone selection dynamics is locally
determined by the replicator dynamics. Is this true for games with strategies
on the space P(A) of probability measures?

(f) Another important issue would be to obtain a stability theorem for several
evolutionary dynamics of games with continuous strategies and analyze
their relation with the replicator dynamics. See Hofbauer and Sigmund
(2003) (theorem 14) for games with a finite strategy set A.

(g) We considered the replicator dynamics as a limit of a sequence of measure-
valued Markov processes. Can we obtain numerical approximations for
these measure-valued Markov processes? This is an important issue for the
application of the theory.

(h) When the set of pure strategies is finite, there are several evolutionary
dynamics that can be seen as a limit of a sequence of measure-valued
Markov processes. Is this true for games with strategies in a space of
measures? Finally, can the replicator dynamics in the asymmetric case be
approximated by a sequence of stochastic processes?
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Symbols
Symbol Description

B(A) Borel σ-algebra of a metric space A, p. 5
M(A) space of signed measure on B(A), p. 5
(M(A), ‖ · ‖) the spaceM(A) endowed with the total variation norm (1),

p. 5
B(A) space of real-valued bounded functions on A, endowed

with the supremum norm (2), p. 5
CB(A) space of real-valued continuous and bounded functions on

A. p. 5
〈·, ·〉 the dual relation (3), p. 5
VH
ϵ (µ) neighborhood (4) of the weak topology inM(A), p. 6
P(A) space of probability measures on B(A), pp. 6, 6
rp Prokhorov metric (6), p. 6
rbl bounded Lipschitz metric (7), p. 6
L(A) subspace of CB(A) defined in p. 7
‖ · ‖L norm (8) of the space L(A), p. 6
LB(A) subspace of CB(A) defined in p. 6
‖ · ‖BL norm (9) of the space LB(A), p. 7
rkr Kantorovich–Rubinstein metric (10), p. 7
rwp Lp- Wasserstein distance (12), p. 7
rw L1- Wasserstein distance (12), p. 7
rw∗ any metric that metrizes the weak topology in P(A); see

Remark 2, p. 8
r any metric on P(A); see Remark 2, p. 8
Vrα(µ) open ball (13) in the metric space (P(A), r), p. 8
µ′(t) strong derivative of µ(t) w.r.t. t (see Definition 5), p. 9. In

Section 5.3, µ′(t) refers to theweak derivative; see Remark
47, p. 59

Ji(·) payoff function (18) of player i, p. 10
I(µ1 ,...,µn)Ui integral operator (20)–(21), p. 11
Γ normal-form game (23), p. 11
Γs two-player normal-form game (24), p. 11
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J(·) payoff function (18), (85) for Γs, pp. 11, 38
N set of NESs of Γs, p. 42
C set of critical points of (87), p. 42
r − SUS set of r-SUSs, p. 42
K(·, ·) Kullback–Leibler distance (96), p. 43
Wφ(ϵ )(µ) set defined in (94), p. 43
[r1, r2]-S [r1, r2]-stable p. 47
[r1, r2] − S set of [r1, r2]-S points p. 49
C∞(A) space of real-valued continuous functions vanishing at

infinity, p. 69
Aj Cartesian product A × · · · × A (j-times), p. 70
A∞ Cartesian product A × A × · · · , p. 70
At disjoint union of the Cartesian products Aj, p. 70

Abbreviations
Abbreviation Description

NES Nash equilibrium strategy, p. 12
SUP strong uninvadable profile, p. 30
r-SUS r-strongly uninvadable strategy, p. 41
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