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AVERAGING DISTANCES IN CERTAIN BANACH SPACES

REINHARD W O L F

Let £ be a Banach space. The averaging interval AI(E) is defined as the set of
positive real numbers a, with the following property: For each n £ N and for all
(not necessarily distinct) xi,xj,... ,xn E E with ||zi|| = ||zj| | = . . . = | | i n | | = 1,
there is an x 6 E, \\x\\ = 1, such that

It follows immediately, that AI(E) is a (perhaps empty) interval included in the
closed interval [1,2]. For example in this paper it is shown that AI(E) = {a} for
some 1 < a < 2, if E has finite dimension. Furthermore a complete discussion of
AI{C(X)) is given, where C{X) denotes the Banach space of real valued continu-
ous functions on a compact Hausdorff space X. Also a Banach space E is found,
such that AI(E) = [1,2].

1. INTRODUCTION

Let E be a Banach space. We ask for positive real numbers a , with the following

property: For each n G N and for all (not necessarily distinct) xi,X2,- • • ,xn £ E with

H î II = II^H = . . . = ||a:n|| = 1, there is an x G E, \\x\\ — 1, such that

Since the unit sphere 5 = {x 6 E, \\x\\ = 1} of E is connected, and for each choice
x i , . . . ,xn in S (not necessarily distinct) the function F[xi,... ,xn) on S denned by

n

F(x\,... ,xn)(x) := 1/n ̂  \\xi — x\\ for all x £ S, is continuous, we get:
i=i

F(xi,... ,xn)(S) C K + is a nonempty interval (closed, open, half closed - half
open). So a 6 R + has the desired property if and only if

F(xl7...,xn)(S).
ngN
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We define

ngN

as the averaging distance interval of E.
Since \\x - y\\ ^ 2, (||x - y\\ + \\x + y\\)/2 ^ 1, for all x,y £ S, it follows that

AI{E) is an interval (closed, open, half closed - half open, or consisting of exactly one
number, or the empty set) included in the closed interval [1,2].

In this paper we discuss AI(E) for certain real Banach spaces E.

2. BASIC DEFINITIONS AND NOTATION

All Banach spaces E in this paper are considered real and of dimension at least
two. By 5 = {x £ E, \\x\\ = 1} we denote the unit sphere of E. For n E N,
1 ^ P ^ oo, let lp(n) denote Rn with the usual p-norm. Recall that a sequence of
elements 11,12,... in E is called a basic sequence if for each x in the closed linear
span [(itn)B>i] generated by x\,X2,.-. there exist a unique sequence of real numbers
«i»<*2, • • • such that

x = lim
n—*oc

Further recall that a topological space X is completely regular if X is a Hausdorff
space with the following property: For each closed subset A of X and for each x $ A,
there exists a continuous function / on X such that 0 ^ f(y) Sj 1 for all y in X,
f(x) — 1 and /(a) = 0 for all a in A.

A subset B of X is called a G -̂set if B is the countable intersection of open
subsets of X.

A completely regular space X is called a P-space if every G«-set in X is open.
(See [1, p.63].)

3. THE RESULTS

When E is of finite dimension the following Theorem of Gross describes the aver-
aging interval AI(E):

THEOREM . [3] Let (X, d) be a compact connected metric space. There is a unique

positive real number r(X,d), D(X)/2 ^ r(X,d) < D(X), with the following property:

For each positive integer n and for all (not necessarily distinct) x\,X2,.-. ,xn in X,

there exists an x in X such that

^ £<£(*;, z)=r(X,d).
t=i
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T{X, d) is called the rendezvous number of X and D{X) denotes the diameter of

X.

For a proof see [3].
From this we obtain:

PROPOSITION 1. Let E be a finite dimensional Ba.na.ch space. Then we have
AI(E) = {a}, for some 1 < a < 2.

For example, in [5] Morris and Nickolas proved that this unique a is

^ " - ' [ r t n ^ ) ] 2 ) /(v/7rT((2n-l)/2))J for all n ^ 2 in the case E = I2{n), where

F denotes the Gamma function.
In [6] it is shown that a = 3/2 for E = l°°(n), a = 2 - 1/n for E = ^(n) and in

[7] we give a proof that a ^ 2 — 1/n, if E is an n-dimensional real Banach space with
a 1-unconditional basis and equality holds if and only if E is isometrically isomorphic
to ll(n). (In both papers the unique positive real number a is denoted by r(E).)

In the case E is of infinite dimension it is shown in [6] that Al(l2) = {y/2},
AI(l°°) - {3/2} and Alty1) = 0, where lp (1 ^ p < oo) denotes the real sequence space
with the usual p-norm. Recently Pei-Kee Lin (private communication, see [4]) showed
that AI(l*) C {21/"} if 1 ^ p < oo, AI(F) = 0 if 1 ̂  p < 2 and Urn r(J*(n)) = 21/?

n—>oo

for all 1 ^ p < oo (AI(lp(n)) = {r{lp(n))}). By looking at the proofs of Proposition
1, 4, 5 in [6] and since 1 £ AI(co) (notice that there is no x in Co, ||z|| = 1 such
that ||zi — a;|| + ||xi + x|| + ||x2 — ^|| + ||̂ 2 + x\\ — 4, where x\ = (1,0,0,...) and
X2 — (1,1/2,1/3,...)) it follows that AI(co) = (1,3/2], where Co denotes the subspace
Q{ l°° consisting of all zero tending sequences.

Notice that Proposition 1 implies that the numbers 1 and 2 are forbidden values
for a, if E is finite dimensional.

If E has infinite dimension the fact 1, respectively 2, are elements of AI(E) implies
that c0 (under an added condition), respectively I1, are in E:

PROPOSITION 2 . Let E be a Banach space otinfinite dimension. Then we get

1. 1 £ AI(E) and E having a two dimensional subspace isometrically iso-
morphic to Z°°(2) implies that E contains a closed subspace isometrically
isomorphic to CQ .

2. 2 G AI(E) implies that E contains a closed subspace isometrically iso-
morphic to I1.

Since a Banach space is reflexive if and only if all its closed subspaces are reflexive,
we obtain

COROLLARY . Let E be a reflexive Banach space. Then 2 g AI(E). In addition,
if E does not contain a two dimensional subspace isometrically isomorphic to l°°(2),
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then 1 £ AI(E) also.

For a compact Hausdorff space X let C(X) denote the Banach space of all real
valued continuous functions on X with the supremum norm. The following result gives
a complete discussion of AI(C(X)):

PROPOSITION 3 . Let X be a compact Hausdorff space with at least two points.

Then

1. AI(C(X)) = {3/2} if X has at least one isolated point.

2. AI(C(X)) = [3/2,2) if X has no isolated points and has at least one
point with a countable neighbourhood basis.

3. AI(C(X)) — [3/2,2] if no point in X has a countable neighbourhood
basis.

Therefore, for example, we get AI(C[0,l]) = [3/2,2).

Quite recently Pei-Kee Lin (private communication, see [4]) generalised Proposition
3, part 1 to Cb(X), the space of all bounded real valued continuous functions on a
normal space X, and moreover he showed that AI(Cb(X)) I) (3/2, 2), if X is a normal
space without isolated points.

The next result gives an answer to the question: What is the maximal size of

PROPOSITION 4 . Let X be a P-space without isolated points and let E be

the Banach space of all bounded continuous real valued functions on X vanishing at

one point XQ in X, with the supremum norm. Then we have

AI(E) = [1,2].

REMARK. Of course each discrete space is a P-space. An example of a P-space with
exactly one non isolated point is the following: Let 5 be an uncountable space in which
all points are isolated except for a distinguished point so, a neighbourhood of so being
any set containing s0 whose complement is countable. (See [1, 4 N.I, p.64].)

The existence of a P-space without isolated points is not trivial. A construction

of such a space is given in [1, Chapter 13], in particular see 13 P. 1, page 193.

Summing up, we notice that if a Banach space E is finite dimensional with di-

mension at least two then AI(E) = {a} for some unique positive real number a . If

E has infinite dimension then all extreme cases for AI(E) axe possible: For example

Alp) = 0, Al(l2) = {V2}, and AI{E) = [1,2] for E the Banach space given in

Proposition 4.

4. THE PROOFS

P R O O F OF PROPOSITION 1: By assumption the unit sphere 5 of E equipped
with the norm induced metric is a compact connected metric space. Applying Gross's
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Theorem and since the diameter of S is two, we get AI(E) = {a}, for some a G [1,2).
It remains to show that a > 1. Assume a = 1.

Let n £ N. By compactness of 5 find a 1/n-net x i , . . . , XJV of S, N — N[n).

Since AI(E) — {1} we find some yn in 5 such that

It follows that \\ii — yn\\ + ||XJ +yn\\ = 2 for all 1 ^ i ^ TV. So for each x in S we
obtain

2
2 ^ | | 3 -y» | | + l|s: + 2/n|| < 2 + - .

Compactness of S again implies that a subsequence of (2/n)n>j converges to some y in
5 . Therefore we have

(•) | |x-2/ | | + ||x + y|| ~2 for all x in 5.

Now choose some t/o in S with ||y — j/o|| = 1- By formula (•) we get | |y+ yo|| — 1-

Therefore y + t/o and y — yo are elements of S. Applying formula (*) to y+yo and
y-y0 we get py - yo\\ = \\2y + yo\\ = 1. But 4 = ||4t/|| < \\2y - yo\\ + \\2y +yo\\ =2

leads to a contradiction. U

For proving Proposition 2 we need a well known criterion for basic sequences:

LEMMA 1. Let xi,X2,.. . be a sequence of nonzero elements in a Ba.na.ch space

E. Then in order that x\, X2, • •. be a basic sequence, it is both necessary and sufficient

that there be a finite constant K > 0 so that for any choice of scalars {a.n)n>1 and any

integers m, n with m < n we have

| i

< K •
»=i II I *=i II

For a proof see [2, Theorem 1, p.36].

PROOF OF PROPOSITION 2: (1): Since Z°°(2) is isometrically included in E we

find xi,X2 in S such that ||aiXi + c*2X2|| = max ( | a i | , |«2|) for all a i , a 2 in K.

We inductively construct a sequence x\,X2,... of elements in S such that

H^iXi + • • • + <rnXn|| = 1 for all <Ti,... ,0"n in {1 , -1} and all n Js 2.

Now let n ^ 3 and assume that we have found X i , . . . , x n - i in 5 such that

\\aiXi + ... + o-n_ia;n_i|| = 1 for all <T\,... ,<rn-i in {—1, 1}. Since 1 G AI(E) we get

some xn in 5 such that

J2 H + + - j + Xn\\

-i - xn|| =
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Therefore we get

()

S i n c e | |x + Xj| | + | |x — x<|| ^ 2 | | X J | | = 2 for all l ^ i ^ n a n d all x G E a n d a p p l y i n g
f o r m u l a ( • ) we g e t

1 ' * l 71 il

^ov^r - x j = 2
'r=l r = l

for all 1 ^ i ^ n and for all o"i,... , <r,-_i, <Ti+\,... , o-n in {1, — 1}.

For 0 ^ j ^ n define

Aj — {<rixi + ... + anxn, o-i , . . . ,an G { 1 , - 1 } and

exactly _;' elements in <T\,... , <rn are — 1} .

Now it follows that ||x|| — Sj for all x in Aj for some 0 ^ »,• ^ 2, 0 ^ j ^ n and

•so + si = si + S2 • • • = s-n-i + sn = 2.

Since ||x + o-jXi + <r2a;211 + 11as — o"ia;i - <T2X2\\ ^ 2 ||o"ixi + o-2x2|| = 2 for all <ri,o-2

in { 1 , - 1 } and all x £ i?, by again applying formula (•) we get so + a2 = 2 and
therefore 3Q = s^ — ... = sn = 1. So Ho^xi + . . . + Cn^nll = 1 for all a\,... ,an in

Now let n ^ 3 and take ct\,... ,an in R with maxi^ i^ n | a , | = 1.

Since the set A = {<r = ( o i , . . . ,o"n)) "'l)- • • j^n G {1, ~1}} is the set of extreme

points of the unit ball in /°°(n) we get some 0 ^ 6 C T ^ l , ^ 6^ = 1 such that

( a i , . . . , a n ) = X) &<7-<r- So a i x i + . . .+anxn = £ ^ ( ^ I ^ I +••• + V n ) and hence

||aiXi + . . . + an*n|| ^ 1 • On the other hand choose x\,... ,x'n G E' with x|(xj) = 1,
||x^|| = 1 for all 1 ^ i ^ n. Fix some 1 ^ j ^ n and take c i , . . . ,O-J_I,<7'J+I, . . . ,0",, in

{1 , -1} . Since Xj = 1/2 ( ( f ) ^Xr + x,) + (£) -o-rxr + xj) ) and x'.(xj) = 1 we get
\V=l ' V=l 'J

It is easy to check that

. . . + anxn =
<r€A
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- . . . - | - a n x n ) = a3-.

| |ai«i + . . . + a n x n | | ^ max |ay| = 1.

and therefore we get

So

So it follows that

||«i xi + . . . + anxn (I = max («i(, for aD c*i,... , a n G R.

Lemma 1 now guarantees that z i , x 2 | . . . is a basic sequence in E (take K — 1). Let

F = f(a;Ti)n>i] be the closed linear span of xi, x 2 , . . . and define

oo

T:cQ->F, T((aua2,...)) = '£/anxn.
n=l

Then it follows that T is an isometry from c0 onto F.

(2): Take some x% in S. Since 2 6 AI(E) we get some x2 in ^ such that

l/2(||xi - x2|| + \\-xi - x2||) = 2. Therefore ||xi - x2|| = \\xi + x2}} = 2. We induc-

tively construct a sequence Xi,x2,... of elements of S such that j|<ri«i -f • • • + ffnXn|| =

n for all n ^ 2 and all <ra,... , <rn in {1, —1}. Now let n ^ 3 and assume that we have

found x i , . . . , x n - i in S such that

||<riZi + . . . + c n _ ix n _ i | | = n — 1 for all <T\,.. • ,<rn-i in {1, —1}.

Since 2 6 .AJ(.E) we get some xn in 5 such that

1

= 2.

This implies

_ixn_i) - (n - l)xn|

+ . . . + <rn-i«»-i) + (n - l )x n | | = 2(ra - 1),

for all <TJ, . . . ,o-n_i in { 1 , - 1 } . Hence we get

2(n - 1) = \\a-iXi + . . . + <rn-ixn-t + <rn{n - l )x n | |

^ \\cnxi +...+ o-n-iSn-i + <rnxn\\ + (n - 2) | |xn| | ^ 2n - 2,
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for all <Ti,... ,<rn in { 1 , - 1 } and therefore

\\a-iX! + ... +crnxn\\ =n for all <Ti,... ,an in {1,-1}.

Now let n ^ 2 and take a i , . . . , o n 6 l . Define T; = 1 if a; ^ 0 and r,- = — 1 if at- < 0
for all 1 < i < n. Since ||TIS:I + - • • + rna;n|| = n choose some z' in E', ||x'|| = 1 and

+ . ..rnxn) = n. Hence x'(x{) = 7v for all 1 ̂  i < n and therefore

\\ctixi + ... + anxn\\ > x'faxi + .. . + anxn) = |ai | + . . . + \an\.

So we have

||aia:i + .. . + anxn | | = |ai | + . . . + |an | for all n ^ 2 and all a i , . . . , a n e R.

Lemma 1 again guarantees that the sequence x\, x?,,... is a basic sequence in E (take
K = 1). Let F = [(in)n>1] be the closed linear span of X\,X2, • • • and define

T: I'^F, ( ( l l 2 , , ) )
n=l

Then it follows that T is an isometry from I1 onto F and so we are done. D

In order to prove Proposition 3 we need the following lemmata:

LEMMA 2. Let X be a compact Hausdorff space with at least two points. For
each n G N and f\,... , /„ in C{X) with \\fi || = . . . = ||/n|| = 1 there are f0 and g0

in C(X) with H/oll - \\go\\ = 1 such that

/.--/o ^ ^

PROOF: Let A — {/i , . . . , / n } and choose some x in X. Define

A0 = {/ € A, f{x) = 0}, A+ = {/ 6 A, f(x) > 0}, A~ = {/ e ^ , / ( x ) < 0}.

Find an open neighbourhood U of x such that:

For all y in U we get | / (y ) | < 1/2 for all / in A0, f{y) > 0 for all / in A+,

/ ( y ) < 0 for all / in A~.

Since X is completely regular we get /o in C(X) with 0 ^ /o(y) ^ 1 f° r all i/ in

X, fo(x) = 1 and fo(y) = 0 for all y in
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Now it follows that

11/ -/•!< | , 11/+ Ml ^ | for all / in A0,

11/-/o| | ^ 1, | | /+ /o | | < 2 for a l l / i n A+,

11/-/o| | < 2, | | / + /o | | ^ 1 for a l l / in A".

Therefore if \A+\ ^ | ^ - | we get

and
l-t\\fi + fo\\^l

i=l

if |A+| < |A-| .

For the remaining inequality in Lemma 2, find a finite subset Y of X with at least
two elements, such that for each 1 ^ i ^ n, there is some y in Y with |/i(y)| = 1.

Let k in N be the order of Y. Define

By definition of Y it follows that yi,y2,... ,yn are elements of the unit sphere of l°°(k).

Since AI(l°°(k)) = {3/2} (see [6]) we find some z in the unit sphere of l°°{k) such
that

I V | | ._z|i = !

Let 2 = (As) e y . Since X is normal the Tietze Extension Theorem applies giving

some go in C(X) such that go{y) = \ for all y in Y and ||<7o|| = IMIoo — 1- Hence

we get

I V l l f - l l > i V I f M - f ) l - - V l l - - -
n •^-' * ^ n *-? v€Y * n 4^i °° 2 D

LEMMA 3 . Let X be an infinite compact Hausdorff space and let e > 0. Tien
tiere is a finite subset A of norm one elements in C(X) such that

\f-hW>l-£ torallhinC(X) with ||fc|| = 1.
1 ' f€A

PROOF: Let n G N and choose a finite subset Y of X order n. Furthermore find
open neighbourhoods Uy for all y in Y such that Uy (1 Uyi = 0 for all y ^ y' in Y.

By the complete regularity of X, find for each y in Y some fy in C(X) such that
- 1 < fy(x) ^ 1 for all x in X, fy(y) = 1 and fy{x) = - 1 for all z in X\Uy. Now
take h in C(X), ||ft|| = 1. Choose some XQ in X with |A(XQ)| = 1-
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CASE 1. h(x0) — 1. If x0 G Uyo for some y0 in Y we get

Wfv ~ H >\fy(xo)-h(x0)\ = | - 1 - 1 | = 2,

for all y ^ y0 in Y.

Wfv + H + ||/,. + h\\ > \fy(y) + h(y)\ + \fy,(y) + h(y)\

= \l + h(y)\ + \-l+h(y)\=2,

for all y ^ y' in Y. Hence we get

If x0 & U Uy we get
yev

for all y G Y. Hence we get

Summing up, we get

CASE 2. h(x0) — — 1. Take —h for /i and look at Case 1. Now take A — {fy,—fy;

y G Y} and choose n big enough. D

LEMMA 4 . Let X be a compact Hausdorff space without isolated points and let

e > 0 . F o r eacA n £ N a n d / i , . . . , / „ in C ( X ) witA | | / i | | = ••• = | | /n | | = 1 there is

some /o in C(X) with \\fo\\ = 1 such that

-Y\\f -fW>2-e

PROOF: Let A = {/i , . . . , / n } - Choose some finite subset Y of X such that
for each f in A there is some y in Y with |/(t/) | = 1. Furthermore take open
neighbourhoods Uy for each y in Y such that J/j, (1 £/j,( = 0 for y ^ y' in V. Let

* s = {/ G A, f(y) = 1}, Cy = {/ G A, / (y) = - 1 } ,
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for y in Y. For each y in Y take open neighbourhoods Vy of y such that / (x ) > 1 - e
for all x in Vy and all / in By. Let

Wy = ff, n V,, y in y.

Since X has no isolated points, take some zy in Wy, zy ^ y. The Tietze extension
theorem provides /o in C(X) such that —1 ^ /o(*) *s 1 f° r all x in X , fo{y) = 1,
fo(zy) = —1, for all y in y .

Let y in Y. If / is in By we get \\f - /o|| ^ !/(*„) - /o(*»)| > 2 - e. If / is in
Cy we get | | / - /o| | > | /(y) - / 0 (y) | = 2. Hence

||

D
LEMMA 5 . Let X be a. compact Hausdorff space and let XQ be a point in X

without a countable neighbourhood basis and let A be a closed neighbourhood of xo .

Furthermore let n G N and take / i , . . . , / n in C(X) with fi(x) ^ 0 for all x in A,

/»(*o) = 0, for all 1 ^ i ^ n.

Then there are T/I, . . . ,yn in A such that yi ^ x0, yt ^ y, and fi(yi) —0 for all

1 < i ^ j ^ n.

PROOF: By induction on n. Let n — 1. Assume fi(x) > 0 for all x in A,

x ^ XQ. Take an open neighbourhood U oi xo, U C. A and take k £ N. Let
17A, = / j " 1 [0, l/k)r\U. We claim that (Cfc)fc>i is a neighbourhood basis of XQ , consisting
of open neighbourhoods Z/j. of x. Let V be an open neighbourhood of XQ . If A\ V — 0
we get A C V and therefore */* C V for all fc G N. Now let A \ F ^ 0. Since ^ \ F is
compact we get some s £ A\V such that / i (y) ^ / i ( s ) f° r all y in J 4 \ V . Since s £ A,
a £ F , we get / i ( s ) > 0. Choose some k0 € N with fi(s) > l/k0. Assume there is
some y in Uko\V. Then we get /j(y) < l/k0 and by ?7fco C U C A, f^y) > l/k0.

Therefore Uko Q V.

So (t/*)j!>1 build a countable neighbourhood basis of x<> which leads to a contra-
diction. Therefore we get some yi in A, y\ ^ xo and / i (yi) = 0. Now let / i , . . . , / n + i
be in C(X) with fi(x) ^ 0 for all x in X , fi(xo) — 0, for all l ^ i ^ n + 1. Assume
that we have found y i , . . . ,yn in J4 such that yi ^ xo, y; ^ yj and fi(yi) = 0 for all

Now choose some closed neighbourhood An of xo such that y i , . . . , yn & An. The

case n — 1 leads to some yn+i 6 ^4n H 4 such that yn+i 7̂  xo and /n+!(yn+i) = 0. U

Now we verify Proposition 3:

P R O O F OF PROPOSITION 3: (1): If X is finite we get C(X) = l°°{n) for some
n > 2. Since AI(l°°(n)) = {3/2} (see [6]) we are done. So assume that X is infinite.
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By Lemma 2 and 3 and the Intermediate Value Theorem we get 3/2 G AI(C(X)) and
AI(C(X)) C [3/2,2]. Now take some isolated point i B o i n l . Define f0 , by fo(xo) = 1
and fo(x) = 0 for all x ^ xo in X. Hence we get /o G C(X), \\fo\\ = 1. It is easy
to check that ||/o - f\\ + ||/o + f\\ < 3 for all / e C{X) with | | / | | = 1 and therefore
AI(C(X)) = {3/2}.

(2): By Lemma 2, 3, 4 and the Intermediate Value Theorem we get [3/2, 2) C
AI(C(X)) and AI{C(X)) C [3/2, 2]. It remains to show that 2 £ AT(C(X)). Take
some xo in X with a countable neighbourhood basis (Un)n>1 • Without loss of gener-
ality let Un be open neighbourhoods of xo for all n ̂  1. Since X is completely regular
take some (<7n)ra>i in @{X) such that 0 ̂  gn{x) S$ 1 for all x in X, gn(xo) = 0 and
gn(x) = 1 for all's G X\Un, for all n ^ 1.

It is easy to check that / defined by / = 1 — ^2 l/2ngn is in C(X) and is such

that 0 ^ f(x) < 1 for all x in X, f(x0) — 1 and f(x) < 1 for all x ^ x0 in A".
Assume that we have 2 G AT(C(X)). Then there must be some h G C(X), \\h\\ = 1
and | | / — /z.|[ + | |/ + h\\ = 4. Hence we get h(xo) = 1 and h(xo) = —1, which is a
contradiction.

(3): It remains to show that 2 G AI(C{X)). Let n G N and / i , . . . , /„ in C(X)
with ||/i|| = 1 for all 1 ̂  i Sj n. Let A = {/i,... , /n}- Choose a finite subset Yof X
such that for each f in A there is some y in Y with |/(i/)| = 1. Furthermore let Cy

be closed neighbourhoods of y such that Cy PI Cs/ = 0 for all y ^ y' in Y".
Let Ay = {/ G A, /(y) = 1} and B, = {/ G A, /(y) = -1} for all y in Y.

Now fix some y in Y. By Lemma 5 there are {zy,f)t€A
 m C» such that zyj ^ y,

*»./ ^ *y,r and (1 - /)(*,,/) = 0 for all / ^ / ' in AF.
By the Tietze Extension Theorem we get some g in C(X) such that — 1 ̂  g(x) ^ 1

for all x in X, g(y) = 1 and g(zyj) = -1 for all y in Y and all / in Ay.

Now let / in A.

CASE (a). / G Ayo for some j/o in Y. It follows that

11/ - 9\\ > \f{**>,/) ~ 9{zyo,f)\ = |1 - (-1)1 = 2.

CASE (b). / G Byo for some j/o in Y. It follows that

11/ -9\\>\f{yo)-g{yo)\ = | - i - i | = 2.

So | | / — Ĥ = 2 for all / in A and therefore

- * n = '• D
U

The next two lemmata lead to Proposition 4.
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LEMMA 6 . Let X be a P-spa.ce. Then we have

1. For every continuous function f on X the zero set Nf of f,

Nf = {x £ X, f(x) = 0} is an open and closed subset of X.

2. Let A be a countable subset of X. It follows that A is closed in X

and for each a in A there are open neighbourhoods Ua of a such that

Ua C\Uai = 0 for all af a' in A.

3. Let A be a countable subset of X and f a function defined on A. (By

(2) f is continuous on A.) Then there exists some continuous function

f on X such that / ( a ) = / ( a ) for all a in A.

PROOF: For (1) and (3) see exercise 4 J ( 3 ) and 4 K ( 2 ) in [1, p.63].

(2): A is closed by exercise 4K(1) in [1, p.63].

Let A = {xi,X2,...} and n £ N. Since A\{xn} is countable we get A\{xn} is
closed in X. Since X is completely regular there are /„ in C(X) such that fn{xn) = 0
and fn(xm) = 1 for all n ^ m in N.

Let Nfn = {x 6 X, fn{x) = 0} for n £ N. By (1) each Nfn is an open subset of

X. For each n € N define Un = Nfn D \x\ \J Nfk] .

Note that X\ \J Nfk = f\ (X\Nfk) is a Gj-set in X and therefore open since

X is a P-space. It is easy to check that (Un)n>1 are open neighbourhoods of xn and

Un H Um = 0 for all n ^ m in N. D

LEMMA 7 . Let X be a P-space without isolated points and let / i , . . . , fn £
Cb{X) with | | / i | | = . . . = | | /n | | = 1. Tien there exist countable subsets Ai,... ,An of

X such that sup |/t(a:)| = 1 and A{ f~l Aj = 0 foralll^i^j^n.

PROOF: By induction on n. The case n — 1 is trivial. Now let / i , . . . , /n+i £
Cb{X) with ||/i || = . . . = ||/n+i|| = 1 and assume that we have found countable subsets
Ai,... ,An of X such that sup | / i(z) | = 1 and Ai fl Aj = 0 for all 1 ̂  i ^ j ^ n.

x£Ai

Choose some countable subset Bn+i of X such that sup |/n+i(a:)| = 1. Let A —

Ax U . . . U An U Bn+i. By Lemma 6, part (2), find some open neighbourhoods Ua for
each a in A such that UaC\Ua, = 0 for all a ^ a' in A. If £ n + i D(J4I U . . . U An) = 0 ,
let An+1 = Bn+1. So assume that B n + 1 n (Ai U . . . U An) ^ 0. Take y £ B n + i D
(Ax U . . . U An). By Lemma 6, part (1), find some open neighbourhood Vy of y such
that Vy C Uy and |/n+i(a:)| = |/n+i(y)| for all x in Fy. Since X has no isolated
points take some zy in Vy, zy ^ y for all y in Bn +i D (i4i U . . . U i n ) . Now let
^n+i = [ B n + i P i U . . . U 4 ) ] U U {zy}. By definition of An+1 we

y€Bn+ln( Ax U...uAn)

get 4 n + i n A i = . . . = A n + i n An = 0, ,4n +i countable and sup | / n + i (a ; ) | =
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s u p •
P R O O F OF PROPOSITION 4: Let fu... ,fn e E, | | / i | | = . . . = | | / n | | = 1. Let

fi = {x E X, fi(x) = 0} for all 1 < i < n. Let U = JV/i n . . . D Nfn. By Lemma 6,
part (1), U is an open neighbourhood of x0 • Since X has no isolated points, there is
xi G U, xi ^ x0 . Take some open neighbourhood V of x\ such that x0 g V and V C
U. Since X is completely regular we can find / in Cb{X) such that 0 5$ / (x) ^ 1 for
all x in X, f(xx) = 1 and f(x) = 0 for all x in X\V. Therefore / G £ and | | / | | = 1.
Now it follows that \\f - / i || = . . . = \\f - fn\\ = 1 and therefore 1 G AI(E). It remains
to show that 2 G AI(E). By Lemma 7 there are some countable subsets Ai,... , An of
X such that sup |/i(:c)| = 1 and Ai PI Aj = 0 for all 1 ^ i ^ j ^ n. Without loss of

n •generality let xo $ Ai U . . . U An. We define a function g on A = {XQ} U AI U . . . U A

Put 5(2:0) — 0, g(x) = —fi(x) for all x in .A; and all 1 ^ i ^ n. It follows that
sup |<7(a:)| = max | | / i | | = 1. By Lemma 6, part (3), we get some continuous function

g~ on X such that g~{x) = g(x) for all x in A. Let h(x) — min(max(—l,<7(x)),l)
for all x in X. It follows that h £ E, \\h\\ = 1 and h(x) = g(x) for all x in A.

Now let 1 < i ^ n. We get \\fi - h\\ ^ sup \fi(x) - h(x)\ = 2 sup \fi(x)\ = 2, hence
1 6 ^ x€Ai

2 G AI(E). By the Intermediate Value Theorem it follows that AI{E) = [1,2]. D
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