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AVERAGING DISTANCES IN CERTAIN BANACH SPACES

REINHARD WOLF

Let E be a Banach space. The averaging interval AI(E) is defined as the set of
positive real numbers a, with the following property: For each n € N and for all
(not necessarily distinct) z1,22,... ,2n € E with ||z1]| = [jza]| = ... = ||za] = 1,
there is an # € E, ||lz|| = 1, such that

1 n
Z D llei—zll = a
i=1

It follows immediately, that AI(E) is a (perhaps empty) interval included in the
closed interval {1,2]. For example in this paper it is shown that AI(E) = {a} for
some 1 < a < 2, if E has finite dimension. Furthermore a complete discussion of
AI{C(X)) is given, where C(X) denotes the Banach space of real valued continu-
ous functions on a compact Hausdorff space X . Also a Banach space E is found,
such that AI{E) =[1,2].

1. INTRODUCTION

Let E be a Banach space. We ask for positive real numbers o, with the following
property: For each n € N and for all (not necessarily distinct) z1,22,... ,2, € E with
|z1]] = ||lz2ll = ... = lzall =1, thereis an z € E, ||z|| = 1, such that

1 n
=3 llei - sl = .
=1

Since the unit sphere § = {z € E,||z|| = 1} of E is connected, and for each choice
Z1,...,Zn in S (not necessarily distinct) the function F(z,,...,2z,) on S defined by

n
F(zy,...,z2)(z) :=1/n 3 ||zi — z| for all z € S, is continuous, we get:
i=1

F(z1,...,2,)(S) € R" is a nonempty interval (closed, open, half closed - half
open). So a € R* has the desired property if and only if

ac n F(z;,...,z2)(S).
nEN
1400492 €S
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We define
AI(E):= (] F(z1,...,2.)(5)

neN
2140 Tn €S

as the averaging distance interval of E.

Since [z —y|| < 2, (e —yl|+(lz+¥])/2 2 1, for all z,y € S, it follows that
AI(FE) is an interval (closed, open, half closed - half open, or consisting of exactly one
number, or the empty set) included in the closed interval [1,2].

In this paper we discuss AI(FE) for certain real Banach spaces E.

2. BASIC DEFINITIONS AND NOTATION

All Banach spaces E in this paper are considered real and of dimension at least
two. By S = {z € E, ||z|| = 1} we denote the unit sphere of E. For n € N,
1 € p < o0, let IP(n) denote R™ with the usual p-norm. Recall that a sequence of

elements z;,z5,... in E is called a basic sequence if for each z in the closed linear
span [(z»),>,] generated by zi,z2,... there exist a unique sequence of real numbers
ay,03,... such that

n
z = lim E oy,
n—oo

i=1

Further recall that a topological space X is completely regular if X is a Hausdorff
space with the following property: For each closed subset 4 of X and for each =z ¢ A4,
there exists a continuous function f on X such that 0 € f(y) < 1 for all y in X,
f(z) =1 and f(a) =0 for all a in A.

A subset B of X is called a Gg-set if B is the countable intersection of open
subsets of X . .

A completely regular space X is called a P-space if every Gs-set in X is open.
(See [1, p.63].)

3. THE RESULTS

When E is of finite dimension the following Theorem of Gross describes the aver-
aging interval AI(E):

THEOREM. (3] Let (X,d) be a compact connected metric space. There is a unique
positive real number »(X,d), D(X)/2 < r(X,d) < D(X), with the following property:
For each positive integer n and for all (not necessarily distinct) zy,z3,... ,2, in X,
there exists an ¢ in X such that

1 n
= Z d(zi,z) = r(X,d).
n

=1
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7(X,d) is called the rendezvous number of X and D(X) denotes the diameter of

For a proof see [3].

From this we obtain:

PROPOSITION 1. Let E be a finite dimensional Banach space. Then we have
AI(E) = {a}, for some 1 < a < 2.

For example, in [5] Morris and Nickolas proved that this unique a is
(2"‘1 [I‘(n/2)]2)/(\/1_rI‘((2n— 1)/2)), for all n > 2 in the case E = [*(n), where
I’ denotes the Gamma function.

In [6] it is shown that o = 3/2 for E =1®(n), a =2 —1/n for E ='(n) and in
[7] we give a proof that @ < 2~ 1/n,if E is an n-dimensional real Banach space with
a l-unconditional basis and equality holds if and only if F is isometrically isomorphic
to {*(n). (In both papers the unique positive real number a is denoted by r(E).)

In the case E is of infinite dimension it is shown in [6] that AI(1?) = {V2},
AI(1*) = {3/2} and AI(I') = 0, where I? (1 < p < o0) denotes the real sequence space
with the usual p-norm. Recently Pei-Kee Lin (private communication, see [4]) showed
that AI(IP) C {2/7} if 1< p< oo, AI(I’)=0if 1<p<2 and ﬂ1~i_'rx;°1-(lf’(n)) = 2l/p
for all 1 < p < oo (AI(IP(n)) = {r(I?(n))}). By looking at the proofs of Proposition
1, 4, 5 in [6] and since 1 ¢ AI(co) (notice that there is no z in ¢o, ||z]| = 1 such
that ||lz1 — 2| + ||z1 + || + ||z2 — z|| + ||z2 + z|| = 4, where z; = (1,0,0,...) and
z2 =(1,1/2,1/3,...)) it follows that AI(co) = (1,3/2], where ¢o denotes the subspace
of I°® consisting of all zero tending sequences.

Notice that Proposition 1 implies that the numbers 1 and 2 are forbidden values
for a, if E is finite dimensional.

If E has infinite dimension the fact 1, respectively 2, are elements of AI( E) implies
that cp (under an added condition), respectively !, are in E:

PROPOSITION 2. Let E be a Banach space of infinite dimension. Then we get

1. 1€ AI(E) and E having a two dimensional subspace isometrically iso-
morphic to [°°(2) implies that E contains a closed subspace isometrically
isomorphic to cq.

2. 2 ¢ AI(FE) implies that E contains a closed subspace isometrically iso-
morphic to I*.

Since a Banach space is reflexive if and only if all its closed subspaces are reflexive,

we obtain

COROLLARY. Let E be a reflexive Banach space. Then 2 ¢ AI(E). In addition,
if E does not contain a two dimensional subspace isometrically isomorphic to 1°°(2),
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then 1 ¢ AI(E) also.

For a compact Hausdorff space X let C(X) denote the Banach space of all real
valued continuous functions on X with the supremum norm. The following result gives
a complete discussion of AI(C(X)):

PROPOSITION 3. Let X be a compact Hausdorff space with at least two points.
Then
1. AI(C(X)) = {3/2} if X has at least one isolated point.
AI(C(X)) = [3/2,2) if X has no isolated points and has at least one
point with a countable neighbourhood basis.
3. AI(C(X)) = [3/2,2] if no point in X has a countable neighbourhood
basis.

Therefore, for example, we get AI(C[0,1]) = [3/2,2).

Quite recently Pei-Kee Lin (private communication, see [4]) generalised Proposition
3, part 1 to Cs(X), the space of all bounded real valued continuous functions on a
normal space X, and moreover he showed that AI(Cy(X)) 2 (3/2, 2), if X is a normal
space without isolated points.

The next result gives an answer to the question: What is the maximal size of
AI(E)?

PROPOSITION 4. Let X be a P-space without isolated points and let E be
the Banach space of all bounded continuous real valued functions on X vanishing at
one point z¢ in X, with the supremum norm. Then we have

AI(E) = [1,2).

REMARK. Of course each discrete space is a P-space. An example of a P-space with
exactly one non isolated point is the following: Let § be an uncountable space in which
all points are isolated except for a distinguished point sq, a neighbourhood of sy being
any set containing so whose complement is countable. (See (1,4 N.1, p.64].)

The existence of a P-space without isolated points is not trivial. A construction
of such a space is given in [1, Chapter 13|, in particular see 13 P. 1, page 193.

Summing up, we notice that if a Banach space E is finite dimensional with di-
mension at least two then AI(E) = {a} for some unique positive real number a. If
E has infinite dimension then all extreme cases for AI{(FE) are possible: For example
AI(IY) =0, AI(?) = {v2}, and AI(E) = [1,2] for E the Banach space given in

Proposition 4.

4. THE PROOFS

PROOF OF PROPOSITION 1: By assumption the unit sphere S of E equipped
with the norm induced metric is a compact connected metric space. Applying Gross’s
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Theorem and since the diameter of S is two, we get AI(E) = {a}, for some a € [1,2).
It remains to show that @ > 1. Assume a =1.

Let n € N. By compactness of S find a 1/n-net 21,... ,z25y of S, N = N(n).
Since AI(E) = {1} we find some y, in S such that

N
1
o7 Nl — wnll + s + all = 1.
i=1

It follows that ||zi — ya|| + ||zi +¥n|| =2 forall 1 <1 < N. So for each z in S we
obtain 9

2<lz —yall + llz +ymll <2+ .
Compactness of S again implies that a subsequence of (y,.)n21 converges to some y in

S . Therefore we have
(%) le —yll +llz+yl| =2 forallzinS.

Now choose some yp in S with ||y — yo|| = 1. By formula (x) we get ||y +yo| = 1.

Therefore y+yo and y—yo are elements of S. Applying formula (*) to y+yo and
y— ¥ we get |2y —yoll = |2y + woll = 1. But 4 = ||4y]| < |12y — yoll + |12y + vo|| =2
leads to a contradiction.

For proving Proposition 2 we need a well known criterion for basic sequences:

LEMMA 1. Let z1,22,... be a sequence of nonzero elements in a Banach space
E. Then in order that z1,z,,... be a basic sequence, it is both necessary and sufficient
that there be a finite constant K > 0 so that for any choice of scalars (an),, and any
integers m, n with m < n we have

m
E QT
i=1

For a proof see [2, Theorem 1, p.36].

<K-

n
E (27571
i=1

PROOF OF PROPOSITION 2: (1): Since I°°(2) is isometrically included in E we
find z1,2; in S such that ||a;z1 + a222|| = max (Jas|,|as]) for all a1,z in R.

We inductively construct a sequence z;,z3,... of elements in S such that
lorz1 + ... + onza|| =1 for all o1,...,0n in {1,—1} and all n > 2.

Now let n > 3 and assume that we have found 2;,...,z,-; in S such that
o1z + ... + op—1Za-1|| =1 for all oy,... ,0n0_1 in {-1, 1}. Since 1 € AI(E) we get
some z, in S such that

1
> lo1zs + ...+ On1Zn-1 + Znl|

on
Ol Pn—1 6{11‘1}

+llorzi 4+ ...+ o121 — Za|| = 1.
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Therefore we get

1
(*) 7 Z lowes + ...+ anzn] = 1.

0140 on €{1,—1}

Since ||z + ;|| + || — zi]| > 2||z;}| =2 forall 1 < i < n and all z € E and applying
formula (x) we get

n n
Zor:cr+:c; + Zorzr—:v.- =2
r=1 r=1
r#3 r#i
forall 1 <7< n andfor all o4,... ,0i-1,0i41,... ,0, in {1,—1}.
For 0 £ 7 € n define

Aj = {121+ ...+ Onn, 01,... ,0, € {1,-1} and

exactly j elements in o1,... ,0, are —1}.

Now it follows that ||z|| = s; for all z in A; for some 0 < 3; <2, 0< j <n and

S80+8 =81+82...=8p_1 + 8 = 2.

Since ||z + o121 + 0222|| + || — o121 — F222|| 2 2||o121 + 0222 || = 2 for all 04,02
in {1,—1} and all z € E, by again applying formula (*) we get sp + sz = 2 and
therefore s9 = 81 = ... =35, = 1. So |lo1Z1+ ...+ onzs| = 1 for all o4,... ,0, in

{1,-1}.

Now let = > 3 and take ay,...,a, in R with max;gi¢n |aif =1.°

Since the set A = {o = (015-++ yOn)s O15... ,0n € {1,—1}} is the set of extreme
points of the unit ball in I*°(n) we get some 0 < b, < 1, Y b, = 1 such that

oEA
(a15.--yan) = Y by-0. So ayz1+...4an2n = Y, by-(0121 + ...+ 0nz,) and hence
ocEA ocCA
le1z1 + ... + anza|| < 1. On the other hand choose zi,... ,z;, € E' with zi(z;) =1,
llzi]l =1 for all 1 <i < n. Fix some 1 <j <n and take oy,... ,0j-1,0j41,... ,05 in
{1,-1}. Since z; = 1/2((;::1 oz, +:1:_.,-) + (rgl ——a',.:z:r+z:_,-)> and :c;-(zj) =1 we get
T#j r#j
.1:;- (Z a,z,.) =0.
r=1
T#j

It is easy to check that

o121 + ...+ anzy, =1/(27) E (101 4+ ...+ opan)(orz1 + ... + onzr)
gEA
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and therefore we get
:c;-(alzl + ...+ anzn) = aj.

So
> . p—— -
”alzl + ...+ aﬂzn” =z Iélaéx ]a,l =1

So it follows that

lerzy + ...+ anzsll = Jmax |ai|, for all a3,... ,0q € R.
Jign
Lemma 1 now guarantees that z;,z,,... is a basic sequence in E (take K =1). Let
F= K"”ﬂ)nzll be the closed linear span of z1,z2,... and define

T:co—F, T((ar,o2,...)) = Zan:cn.
n=1

Then it follows that T is an isometry from ¢o onto F.

(2): Take some z; in S. Since 2 € AI(E) we get some z; in S such that
1/2(Jlz1 ~ z2|| + ||—21 — 22||) = 2. Therefore ||lz; — z2|| = |21 + 22]] = 2. We induc-
tively construct a sequence z;,z3,... of elements of § such that ||o1zy + ... + onz,| =
nforall n > 2 and all 0y,...,0, in {1,—1}. Now let n > 3 and assume that we have

found zy,...,z,-1 in § such that
florz1 + ...+ on—1Zp-1f|=n—-1 forall oy,... ,0n—; in {1,~-1}.
Since 2 € AI(E) we get some z,, in S such that

1
7 X

014 s 0n—1 €E{1,~1}

(73214 ...+ On—1Zn—1) ~ Zn

1
n—1

=2
n—1

1
+ “ (121 + ...+ Ono1ZTn—1) + Zn
This implies

o121+ ... + On_1Zn—1) — (n — 1)2,]]
= (o121 + ... + On-1Tn-1) + (n — 1)z, || = 2(n ~ 1),

for all 01,... ,0n-1 in {1,—1}. Hence we get

2(n—1)=|lorzs +... + On_1Zn_1 + on(n — 1)z,||
Cllorzr +... +Op_1Zn-1 + onzal| + (n = 2) [lzall < 2n -2,
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for all o4,...,0, in {1,—1} and therefore

[lerzy + ...+ onznl|=n forall oy,...,0, in {1,-1}.
Now let n > 2 and take a;,... ,a, € R. Definer; =1if o; 2 0and s = -1if a; <0
for all 1 <i< n. Since ||7'1:L'1 + ...+ Tay|| = n choose some z' in E', ||z'|| =1 and
z'(n1z1 + - ‘rna:,.) =n. Hence z'(z,) =7; for all 1 <7 < n and therefore

larzs + ...+ anza|| 2 2'(121 + ... + @nzs) = 1| + ... + |aa].
So we have
larzr + ... 4+ anzn|| = laa| + ... +|an| forall n > 2 and all ay,...,a, € R.

Lemma 1 again guarantees that the sequence z;,,,... is a basic sequence in E (take
K =1). Let F=[(zn),5,] be the closed linear span of z,,z2,... and define

T: > F, T((a,az...,))= Zanzn.

Then it follows that T is an isometry from I* onto F and so we are done. 1]
In order to prove Proposition 3 we need the following lemmata:

LEMMA 2. Let X be a compact Hausdorff space with at least two points. For
each n € N and fi,...,fn in C(X) with ||fi]l = ... = ||fa]l = 1 there are fy and g,
in C(X) with ||fo|l = ||gol| = 1 such that

= Z I — foll <

le

Z ”ft 90”

ProoF: Let A= {f1,...,fn} and choose some z in X . Define
A’ ={feA, f(z) =0}, AT ={f € A, f(z) >0}, A~ ={f € 4, f(z) <0}.

Find an open neighbourhood U of z such that:

For all y in U we get |f(y)] < 1/2 for all f in A°, f(y) > 0 for all f in At
f(y) <0 forall fin A™.

Since X is completely regular we get fo in C(X) with 0 < fo(y) <1 forall y in
X, fo(z) =1 and fo(y) =0 forall y in X\U.
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Now it follows that

3 3 .
IIf = foll < Y IIf+ foll € 3 for all fin A°,
lf=Fll €1, |If+fll 2 forall fin AT,
lf=Foll €2, |[f+fll <1 forall fin A™.

Therefore if [AT| > |A™| we get
1« 3
- i — < 5
SIIEVIEE

and

N W

1 n
=3NS+ fll <
n =1

if [AY]< A7),
For the remaining inequality in Lemma 2, find a finite subset ¥ of X with at least
two elements, such that for each 1 < ¢ < n, there is some y in Y with |fi(y)| =1.
Let k£ in N be the order of Y. Define

Yi = (fi(y))yey foreach 1 <7 < n.

By definition of Y it follows that y1,¥z,... ,yn are elements of the unit sphere of (k).
Since AI (I°°(k)) = {3/2} (see [6]) we find some 2 in the unit sphere of I°°(k) such

that
1 < 3
n 2o =2l =

Let z = (’\ﬂ)er' Since X is normal the Tietze Extension Theorem applies giving
some go in C(X) such that go(y) = A, forall y in Y and ||go| = ||2||], = 1. Hence

we get

1 id 1 n 1 n 3
bt i —gol| = — (y) — _1 - _3
2 im0l > 03 maxlfite) = 9ol = i = #lle = 5 ]

LEMMA 3. Let X be an infinite compact Hausdorfl space and let ¢ > 0. Then
there is a finite subset A of norm one elements in C(X) such that

ﬁ Sf-ul> g —¢ forall hin C(X) with ||&| = 1.
feA
PROOF: Let n € N and choose a finite subset ¥ of X order n. Furthermore find
open neighbourhoods Uy for all y in Y such that UyNUy =0 forall y#y' in Y.
By the complete regularity of X, find for each y in Y some f, in C(X) such that
-1< fy(z)<1forall zin X, f(y) =1 and fy(z) = -1 for all z in X\U,. Now
take h in C(X), ||h|| = 1. Choose some zg in X with |h(z¢)| =1.
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CaASg 1. h(zo)=1. If z9 € Uy, for some yo in Y we get
£y = hll 2 1fy(z0) — h(z0)| = |-1 ~ 1] = 2,
forall y#yoin Y.

1 fy + Bl + || fyr + B]| = 1£,(¥) + )| + | £ (3) + h(v)|
=1+ h(y)l + -1+ h(y)| =2,

for all y #y' in Y. Hence we get

1 1 n-1 3 3
5 2 (s =Bl + 1Ay + Al > - (2 -1 +2- 2=) = - =
y€eY
Ifzog U U, we get
yeY
1fy = Bll > |fy(20) — A=)l = |-1-1| =2,
for all y € Y. Hence we get
1 1 n-1y 3 1
oo O (Ify =Bl + 115y +hl) > - (2n+2- 25=) = 5 - .
yE€Y
Summing up, we get
1 3 3
o O (s =Rl +1Ify + ) > 5 = 5
y€EY

CASE 2. h(zo) = —1. Take —h for h and look at Case 1. Now take A = {f,,—fy;
y € Y} and choose n big enough. 0

LEMMA 4. Let X be a compact Hausdorff space without isolated points and let
€>0. Foreach n € N and fy,...,fn in C(X) with ||fi]| = --- = ||fall = 1 there is
some fo in C(X) with || fo|| =1 such that

1 n
=N llfi- foll > 2 -
ni=l

ProOF: Let A = {fi,...,fn}. Choose some finite subset ¥ of X such that
for each f in A there is some y in Y with |[f(y)] = 1. Furthermore take open
neighbourhoods Uy for each y in Y such that Uy, NU, =0 for y#y' in Y. Let

By={fe€4 fly) =1}, Cy={fe A4, fly) =-1},
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for y in Y. For each y in Y take open neighbourhoods V;, of y such that f(z) >1-¢
forall z in V, and all f in By. Let

W,=U,nV,, yinY.

Since X has no isolated points, take some 2z, in Wy, z; # y. The Tietze extension
theorem provides fo in C(X) such that —1 < fo(z) < 1 for all z in X, fo(y) =1,
fo(2y)=-1,forall yin Y.

Let yin Y. If f isin B, we get ||f — foll 2> |f(2y) — fo(zy)| >2—€. If fisin
Cy we get [|f — foll > |f(y) — fo(y)| = 2. Hence

2l fll > 2.
i=1 0
LEMMA 5. Let X be a compact Hausdorff space and let zo be a point in X
without a countable neighbourhood basis and let A be a closed neighbourhood of z.
Furthermore let n € N and take fi,...,fn in C(X) with fi(z) 2 0 for all z in 4,
fi(zo)=0,forall 1 <1< n.

Then there are y1,... ,yn in A such that y; # zo, yi 7é‘y,- and fi(y;) =0 for all
1<i#j<n.

PROOF: By induction on n. Let n = 1. Assume fi(z) > 0 for all z in A4,
z # zp. Take an open neighbourhood U of zg, U C A and take k£ € N. Let
Ux = f;71[0,1/k)NU . We claim that (Uk)g>1 is a neighbourhood basis of 2o, consisting
of open neighbourhoods Uy of z. Let V be an open neighbourhood of zo. If A\V =0
we get A C V and therefore Uy, CV for all k € N. Now let A\V # 0. Since A\V is
compact we get some s € A\V such that fi(y) > f1(s) forall y in A\V. Since s € 4,
8 gV, weget fi(s) > 0. Choose some kg € N with fi(s) > 1/ko. Assume there is
some y in Uk, \V. Then we get fi(y) < 1/ko and by Uy, C U C A4, fi(y) > 1/ko.
Therefore Ug, C V.

So (Uk)is; build a countable neighbourhood basis of zo which leads to a contra-
diction. Therefore we get some y; in 4, y1 # zo and fi(y1) = 0. Now let fi,... , fat1
bein C(X) with fi(z) >0 forall z in X, fi(zo) =0,forall 1 <i<n+1. Assume
that we have found y1,... ,yn in A such that y; # @0, v: # y; and fi(y;) = 0 for all
I1Si#Fj<n.

Now choose some closed neighbourhood A, of z¢ such that y;,... ,y, € A,. The
case n = 1 leads to some y,+1 € 4, N A such that yn41 # 2o and fri1(yn+1) =0. |

Now we verify Proposition 3:

PROOF OF PROPOSITION 3: (1): If X is finite we get C(X) = I°°(n) for some
n > 2. Since AI(I®°(n)) = {3/2} (see [6]) we are done. So assume that X is infinite.
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By Lemma 2 and 3 and the Intermediate Value Theorem we get 3/2 € AI(C(X)) and
AI(C(X)) C [3/2,2]. Now take some isolated point o in X . Define fo, by fo(zo) =1
and fo(z) = 0 for all z # zo in X. Hence we get fy € C(X), ||foll = 1. It is easy
to check that ||fo — f|l + [[fo + fll £ 3 for all f € C(X) with ||f|| = 1 and therefore
AI(C(X)) = {3/2}.

(2): By Lemma 2, 3, 4 and the Intermediate Value Theorem we get [3/2,2) C
AI(C(X)) and AI(C(X)) C [3/2, 2]. It remains to show that 2 ¢ AI(C(X)). Take
some Zo in X with a countable neighbourhood basis (Un),,5,. Without loss of gener-
ality let U,, be open neighbourhoods of z¢ for all n > 1. Since X is completely regular
take some (gn),>; in C(X) such that 0 < ga(2) <1 forall z in X, gn(zo) =0 and
gn(z) =1 forall z € X\Up,forall n>1.

It is easy to check that f defined by f =1— ) 1/2”g, isin C(X) and is such

n>1
that 0 < f(z) < 1 forall z in X, f(zo) =1 and f(z) < 1 forall z # ¢ in X.
Assume that we have 2 € AI(C(X)). Then there must be some h € C(X), ||k]| =1
and ||f — | + ||f + k|| = 4. Hence we get h(zo) = 1 and h(zo) = —1, which is a
contradiction.

(3): It remains to show that 2 € AI(C(X)). Let n € N and f1,..., fn in C(X)
with ||fi|| =1forall 1 <i<n. Let A={fi,...,fn}. Choose a finite subset Y of X
such that for each f in A there is some y in Y with |f(y)| = 1. Furthermore let C,
be closed neighbourhoods of y such that C, NCy =0 forall y #y' in Y.

Let Ay ={f €A, flyy=1} and By = {f € A, f(y)=—-1}forall yin Y.
Now fix some y in Y. By Lemma 5 there are (Z!hf)feA,, in Cy such that z,; 3# y,

2y, s # 2y, and (1 — f)(2zy,7) =0 foral f# f in 4,.
By the Tietze Extension Theorem we get some g in C(X) suchthat —1 < g(z) <1
forall z in X, g(y) =1 and g(zy,4) = -1 forall yin Y and all f in A4,.

Now let fin A.

CasE (a). f € Ay, for some yg in Y. It follows that
I = gll > 1£(240,5) = 9(240,£)] = [1 = (-1)| = 2.
CASE (b). f € By, for some yp in Y. It follows that

If —gll = 1f(30) - 9(wo)l = -1 - 1| = 2.

So ||f —g|l =2 forall f in A and therefore

1 n
“S gl =2
o 0

The next two lemmata lead to Proposition 4.

https://doi.org/10.1017/50004972700030616 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700030616

[13] Averaging distances 159

LEMMA 6. Let X be a P-space. Then we have

1. For every continuous function f on X the zero set Nf of f,
Nf={z € X, f(z) =0} is an open and closed subset of X .

2. Let A be a countable subset of X. It follows that A is closed in X
and for each a in A there are open neighbourhoods U, of a such that
UsNUy =0 foralla#a' in A.

3. Let A be a countable subset of X and f a function defined on A. (By
(2) f is continuous on A.) Then there exists some continuous function

f on X such that f(a) = f(a) for all @ in A.

PRrROOF: For (1) and (3) see exercise 4J-(3) and 4K-(2) in [1, p.63].

(2): A is closed by exercise 4K-(1) in [1, p.63].

Let A = {z1,Z2,...} and n € N. Since A\{z,} is countable we get A\{z,} is
closed in X . Since X is completely regular there are f, in C(X) such that fo(z,) =0
and fp(#¢m) =1 forall n#m in N.

Let Nf, ={z € X, fa(z) =0} for n € N. By (1) each Nf, is an open subset of
X . For each n € N define U = Nfu () [X\ U Nfi].

k#n
Note that X\ U Nfe= () (X\Nfi) is a Gs-set in X and therefore open since
k#n
X is a P-space. It is easy to check that (U,), >1 aTe open neighbourhoods of z,, and
Un.NUyp =0 forall n#min N. 0

LEMMA 7. Let X be a P-space without isolated points and let fi,...,fn €
Cy(X) with ||f1]l = ... = ||fn]| = 1. Then there exist countable subsets A;,... ,An of
X such that sup |fi(z)|=1 and AiNAj =0 forall 1<i#j<n

zCA;

ProoF: By induction on n. The case n = 1 is trivial. Now let fi,...,fnt1 €
Co(X) with ||f1]| = ... = ||fa+1]| =1 and assume that we have found countable subsets
Ai,..., A, of X such that sup |fi(z)] =1 and AiNA4; =0forall<i#j<n

TCA;
Choose some countable subset Bny1 of X such that sup |fant1(z)]=1. Let A =

z€Bn 41
AjU...UA,U B,y;. By Lemma 6, part (2), find some open neighbourhoods U, for

each a in A such that U,NU, =0 forall a#a' in A. If Bpy1N(4A1U...UA4,) =0,
let Apt1 = Bpy1. So assume that Bpyy N (A1 U...UA,) # 0. Take y € Bpya N
(A1 U...UA,). By Lemma 6, part (1), find some open neighbourhood V; of y such
that V;, C Uy and |fat1(2)| = |fa+1(y)| for all z in V. Since X has no isolated
points take some z, in Vy, z, # y for all y in B,y1 N (41 U...UA,). Now let

A,,,+1 = [Bn+1\(A1 U... UA,,)] U U {Zy}. By definition of An+1 we
yEBn+1n(A1U...UA,.)
get Apy1NA; = ... = Apy1 N A, = 0, Any1 countable and  sup |fot1(2)| =
zZ€An 41
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sup |fnta(2)| = 1. 0
z€EBn 1
PROOF OF PROPOSITION 4: Let fi,... ,fn € E, ||fill = ... = ||fal]l = 1. Let

Nfi={ze X, fi(z)=0}forall 1<i<n. Let U=Nf;N...NNf,. By Lemma 6,
part (1), U is an open neighbourhood of z¢. Since X has no isolated points, there is
z1 € U, z1 # z9. Take some open neighbourhood V of z; such that zo ¢ V and V C
U. Since X is completely regular we can find f in Cp(X) such that 0 < f(z) <1 for
all zin X, f(2:)=1 and f(z) =0 forall z in X\V. Therefore f € E and ||f| =1.
Now it follows that ||f — f1|| = ... = ||f — fn|| = 1 and therefore 1 € AI(E). It remains
to show that 2 € AI(E). By Lemma 7 there are some countable subsets 4;,...,4, of
X such that sup |fi(z)]=1 and AiNA; =0 forall 1 <i#j<n. Without loss of
Z€A;

generality let zo & 4; U...U 4,. We define a function g on 4 = {zo} U4; U...UA4,.
Put g(zo) = 0, g(z) = —fi(z) for all z in A; and all 1 < ¢ < n. It follows that

sup |g(z)| = 1réla&x |Ifill = 1. By Lemma 6, part (3), we get some continuous function
zCA B

g on X such that g(z) = g(z) for all z in A. Let h(z) = min(max(-1,3(z)),1)

for all z in X. It follows that h € E, ||h]| = 1 and h(z) = g(z) for all z in A.

Now let 1 < i< n. We get ||fi — k|| = sup |fi(z) - h(z)| = 2 sup |fi(z)| = 2, hence
zEA; z€A;

2 € AI(E). By the Intermediate Value Theorem it follows that AI(E) = [1,2]. a
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