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PARALLEL SURFACES IN THE
REAL SPECIAL LINEAR GROUP SL(2,R)

MOHAMED BELKHELFA, FRANKI DlLLEN AND JUN-ICHI INOGUCHI

Dedicated to Professor Koichi Ogiue on his sixtieth birthday

We show that the only parallel surfaces in SL(2, M) are rotational surfaces with con-
stant mean curvature.

1. INTRODUCTION

It is well known that hypersurfaces of real space forms with parallel second fun-
damental form are spherical or products of spherical submanifolds, see [5] for a recent
survey. On the other hand, there are few results on submanifolds with parallel second
fundamental form, or simply parallel submanifolds, in arbitary Riemannian manifolds.
In [2] parallel surfaces in the 3-dimensional Heisenberg group H3 with canonical left in-
variant metric are classified. The Heisenberg group H3 is a typical example of a naturally
reductive homogeneous 3-manifold or a Sasakian space form. The special linear group
5L(2, R) is another such example. In this paper we shall classify parallel surfaces in
SL(2,R).

2. SPECIAL LINEAR GROUP SL(2, R)

We start with recalling fundamental properties of the real special linear group
SL(2, R). Let G denote the 2 x 2 real special linear group defined by

) = {geGL{2,R) ; detg=l }.

It is well-known that any element g of G can be decomposed uniquely as

\ x\ f^/y 0 W cos0 sinflA

j I ) Io i j I 0 i/y/y) I-sine cos e
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for some x e R, y 6 R+ and 9 € S1 (the Iwasawa decomposition of g). We may consider
(x, y,0) as a global coordinate system of G. Let us denote by g the Lie algebra of G

0 = sl(2,R) = {Xegl{2,R); t rX = 0}.

We define an inner product (•, •) on g by {X, Y) = tr (tXY)/2, where 'X denotes the
transposed matrix of X. Let us denote by ds2-, the left-invariant Riemannian metric
induced by (•,•). The metric dsG is written as

, /dx\2 (dy\2 (dx \2

with respect to the global coordinate system (x,y,9). The Lie group G has a compact,
connected subgroup K — SO{2). The homogeneous space G/K is diffeomorphic to the
upper half-plane H2. The metric dsQ induces the Poincare metric of constant Gauss
curvature —4 on H2. The natural projection n : G -> H2 is a Riemannian submersion
with totally geodesic fibres.

Let {u)1,^2,!^3} be an orthonormal coframe field defined by

, dx 2 dy , dx
u = —, u)2 = f-, w3 = — + d6.

2y 2y 1y

The dual orthonormal frame field {ei,e2,e3} of {w1,^2,^3} is given by

, d d d d
(h = 2ydi--W e* = 2ydy-' e3 = d6-

Note that {w*} and {e{} are globally defined on G. Furthermore w3 is a contact form on

G. Namely d w 3 A w 3 # 0 o n G.

Let us denote the Levi-Civita connection and Riemannian curvature tensor of

(G, ds2
G) by V and R respectively. Then we have

V e i e : = 2 e 2 , Ve,e2 = -2ex - e3) Ve ie3 = e2l

(1) Ve2e, = e3 Ve2e2 = 0, Vfi2e3 = -eu

V e 3 e i = e 2 , Ve3e2 = - e i , Veae3 = 0,

[ei,e2] = - 2 e i - 2 e 3 , [ei,e3] = 0, [e2)e3] = 0.

S = 7e2, % i , e 2 ) e 2 = -7ei , R{eue3)ei = - e 3 ,

^ ( ) e e fi(e) = -e3 , S(e2je3)e3 = e2.

For more information on properties of (5L(2,R),ds2
;), especially on the Sasakian

structure, we refer to [4] and [3].
To close this section, we recall the notion of rotational surface in G.

DEFINITION: According to [4], an immersed surface M in G is said to be rotational
if it is invariant under a right /('-action.

A rotational surface M is parametrised as (x,y,6) = (x(t),y(t),9). The curve
(x(t),y(t)) in H2 is called the generating curve of M.
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3. PARALLEL SURFACES IN SL(2,R)

In this section we shall classify parallel surfaces in 51/(2, E).

THEOREM. The only parallel surfaces in the real special linear group SL(2, R) are
rotational surfaces of constant mean curvature. The generating curve is a Riemannian
circle. Furthermore such surfaces are flat.

Let M be a surface in G with unit normal vector field n. Denote by V the Levi-
Civita connection of M. Then the second fundamental form h of M is determined by the
Gauss formula,

), X,YeX(M).

For any X, Y, Z € X{M), the normal component of the curvature R(X,Y)Z is
described by the Codazzi equation,

(R(X,Y)Z)L = (Vxh)(Y,Z) - (VYh)(X,Z).

Here the covariant derivative V/i is defined by

(Vxh)(Y, Z) = Vxh(Y, Z) - h(VxY, Z) - h(Y, VXZ)

for all X, Y, Z € 3t(M), where Vx is the normal connection of M in G. Recall that a
surface M in G is said to be parallel if V/i = 0.

Now we take a moving frame {XX,X2, X3 = n} and its dual coframe {9l,62,93} such
that Xi, X2 are tangent to M. Since 63 is dual to n, the restriction of 63 on M satisfies
03 = 0. We can write 93 = aw1 + bu>2 + cw3. Since {w*} is orthonormal, a2 + b2 + c2 = 1.

The vector fields u\ — cex — ae3 and u2 = ce2 — be$ are tangent to M. In particular if
c^O, {ui, u2} is a frame field of M. To prove our main theorem we need the following.

LEMMA . Let M be a surface in G. Then the normal component of the curvature R
is given by

= 86c3n, (fl(ui,U2)u2)
J" =-8ac3n.

PROOF OF LEMMA: By direct computations

R(uuu2)ui = c3R(eue2)e1 - bc2rR{ex,e3)el + abcR(ex,e3)ez

+ a2cR{e3, e2)e3 - ac2(R{eue2)e3 + R~{e3, e2)ex).

Next by using the formula (2) we have

R(u\,u2)u\ = abcei + (7c3 — a2c)e2 + bc2e3.

Since n is expressed as n = ae\ + be2 + ce3, we get

J" = 86c3n.
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The second formula can be proved similarly. D

P R O O F OF THEOREM: Assume that M is parallel. Then the Codazzi equation

implies

(5(u1,u2)ui)J" = (VUl/i)(u2,tii) - (Vuih)(uuui) = 0 .

Similarly we have

First we assume c ^ 0. Then the Lemma yields a = b = 0. Hence 93 = u>3. This
implies that M is an integral surface of the distribution defined by w3 = 0. However
this is impossible, since w3 is a contact form on G. Thus M satisfies c = 0. Therefore
63 has the form 63 = au1 + bu2. Since a? + b2 — 1, the orthonormal vector fields

Vl = bex — ae2, v2 = e3 give a tangent orthonormal basis of the distribution 83 = 0.
Using (1) we obtain the following

- Vi(a)e2,

(3) I " * = D'
V^vi = v2(b)ei - v2(a)e2 + n,

= 0.

By using the relation
ei — bvi + an, e2 = -avi + bn,

we have
VU2Ui = {av2(b) — bv2(a) + l}n.

By the Gauss formula, we obtain the induced connection V and the second fundamental

form h

(4) Vu lw1=0> VVlv2 = 0, VV2v2 = O,

^(^ij^i) = (26 + avi(b) - bvi(a) )n,

(5) h(vuv2)-n, h(v2,Vi)= {l + av2(b) - bv2(a)}n,

h{v2, v2) = 0.

In particular by the symmetry of h, we have

(6) av2{b) -bv2(a) = 0.

Since a2 + b2 — 1, we may write a = cos</>, 6 = sin^>. Then (6) becomes

(7) . vM = 0.
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The formulae (4) imply that M is flat. The mean curvature H of M is computed by

(5),

(8) 2H = 2b + avi(b)-bvl(a).

Without loss of generality, we may assume H ^ 0. Moreover, since M is parallel, the
mean curvature H is constant on M.

Note that the formulae in (4) imply that the parallel surface M is parametrised by
0 and a coordinate t such that

o

The equation (7) is rewritten as

(9) -^~<t> = 0>

such that </> depends only on t. The equation (8) becomes

(10) 2sin(iH ~2H.
dt

The formulae (3) and (4) involve actually somewhat more. In fact (4) implies that both t-

coordinate curves and ̂ -coordinate curves are geodesies on M. Note that the ^-coordinate
curves (integral curves of v2 = e3) are geodesies in G. Let j(t) be a ^-coordinate curve
(that is, an integral curve oivi). Then the formulae (3) imply that 7 is a Frenet curve of
osculating order 3, see [1, p. 137]. The principal normal and binormal vector fields of 7
are N = n and B = -e$. The Frenet-Serret formula of 7 with respect to (T = 7', N, B)

is

( 0 -2H 0

2H 0 - 1
0 1 0

This formula says every t-coordinate curve on M is a helix in G with constant curvature
2H and constant torsion 1. In particular every t-coordinate curve is a Legendre curve

(that is, w3(77) — 0). Equivalently, 7 is a horizontal curve with respect to the Riemannian
submersion n. Thus the parallel surface M is generated by Legendre curves of constant
curvature 2H and integral curves of e^.

Let us denote by 7 := 7r O 7 the projection of 7 onto H2. Then we notice
d d

ir*V\ = 2j/sin</>— 2ycos<t>—.
ox ay

On the other hand, since v\ is the tangent vector field of 7, we have

dx d dy d
dt dx dt dy'
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Comparing these we get

(ii) Yt = 2 y W s i n < ^ ) > j t = -Mt) cos<i>(t).

The formulae (11) imply that t is the arclength parameter of 7. Recall that the
curvature K of 7 is given by (x'y" — x"y')/(4y2) + x'/y. Direct computations using (10)
and (11) show that K = 2H. Hence 7 is a (part of) Riemannian circle of constant
curvature 2H in H2. In particular the case H — 0, 7 is a geodesic in H2.

Recall that the surface M is parametrised by t and 6. And the ^-coordinate curves
are horozontal lifts of Riemannian circles with curvature 2H in H2. Thus we concluded
that M is a rotational surface over a Riemannian circle in H2. In particular, M is
parametrised by (x(t),y(t),0), see [4, Proposition 4.2].

We consider these Riemannian circles more in detail, see also [4, Proposition 4.3].

First we investigate the case <f> is constant. Then by (10), we obtain 0 $J H = sin 4> ^
1. Thus coscj) — ± V l — H2. If H = 1, then (11) implies y = y0 = constant, so 7 is a
horizontal line.

If H jk 1, then (11) is solved as follows

, . H
X = X0 ± •

a-H2

Thus 7 is a straight line.

Next, if 4>' / 0, then we can proceed as in [3, p. 156-157] and solve (11) explicitly.
From (10) and (11) we obtain

dy —y co s <j>
dcj) H — s i n <p'

which can be solved as follows
y — r(H — sin0)

for some non zero constant r. Similarly we obtain

dx . ,— 0
d<p

such that

(x(t),y(t)) = (-rcoa

for some constant Xo 6 R. Hence 7 is (a part of) circle

(x - xo)2 + (y - rHf - r2.

Note that 7 is closed if and only if H > 1, see [3, p. 156] or [4, Corollary 4.4].

Conversely it is easy to check that every rotational surface of constant mean curva-

ture has parallel second fundamental form. D

Note that our Theorem implies that there are no extrinsic spheres (that is, totally
umbilical surfaces with parallel mean curvature vector field), in particular, no totally
geodesic surfaces in (5L(2, R) ,ds^) .
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