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A Note on the Vanishing Viscosity Limit in
the Yudovich Class

Christian Seis

Abstract. We consider the inviscid limit for the two-dimensional Navier–Stokes equations in the class
of integrable and bounded vorticity fields. It is expected that the difference between the Navier–Stokes
and Euler velocity fields vanishes in L2 with an order proportional to the square root of the viscosity

constant ν. Here, we provide an order (ν/∣ log ν∣)
1

2
exp(−Ct) bound, which slightly improves upon

earlier results by Chemin.

1 Introduction

�e convergence of solutions of the Navier–Stokes equations towards solutions of the
Euler equations in the limit of vanishing viscosity has been an ongoing research topic
formany years.Most of the progress has beenmade in the two-dimensional full space,
in which both vortex stretching and boundary effects are absent. Configurations in
which the vorticity field is non-smooth are of particular interest, as these include the
important examples of vortex patches. In this paper, we study the inviscid limit for
integrable and bounded vorticity fields.

To be more specific, we are interested in the rate of L2 convergence of the Navier–
Stokes velocity fields towards the Euler velocity fields. To the best of our knowledge,
the best estimate available in the literature is due to Chemin [3], who provides an

O(ν 1
2
exp(−Ct)) bound on the velocity difference. In this paper, we slightly improve

this result by a logarithm,

∥uν(t) − u(t)∥L2 = O ⎛⎝(
ν

∣ log ν∣ )
1
2
exp(−Ct)⎞

⎠ ,(1.1)

as ν ≪ 1. Moreover, for small times t ≪ 1/∣ log ν∣, we obtain
∥uν(t) − u(t)∥L2 = O(√ν).(1.2)
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A Note on the Vanishing Viscosity Limit in the Yudovich Class 113

Better convergence results are available in the literature under additional regularity
assumptions. For instance, in [5, 6], Constantin andWuobtainedO(√ν) convergence
globally in time under additional gradient bounds on the velocity field. Such bounds
are true, for instance, for vortex patches with smooth boundaries. For these particular
solutions, however, better rates can be obtained. Indeed, Abidi and Danchin [1] estab-
lished an O(ν 3

4 ) estimate for vortex patches with smooth boundaries and showed
the optimality of this convergence order. �ese results were further generalized and
extended (to higher order Sobolev velocity fields) byMasmoudi [14].We alsomention
the L∞ bounds by Cozzi in the case of bounded but not necessarily decaying velocity
fields [7, 8].

We will work on the Navier–Stokes and Euler equations in vorticity formulations.
�e (scalar) vorticity fields are computed as the rotations of the velocity vectors and
are denoted by ων in the case of the Navier–Stokes and ω in the case of the Euler
equations. �e Navier–Stokes equation in vorticity formulation is the advection-
diffusion equation

∂tω
ν + uν ⋅ ∇ων = ν∆ων ,(1.3)

which reduces to the Euler vorticity equation, a simple advection equation,

∂tω + u ⋅ ∇ω = 0,(1.4)

in the inviscid limit when ν → 0.�e velocity vector fields can be reconstructed from
the vorticities via the Biot–Savart law

uν = K∗ων , u = K∗ω, where K(x) = 1

2π

x⊥

∣x∣2 ,
and x⊥ is the counterclockwise rotation by 90 degrees of a point x in the plane. We
note for completeness that the velocity fields are divergence-free by construction, thus
∇ ⋅ uν = ∇ ⋅ u = 0, which is the incompressibility assumption on the fluid.

Both evolution equations have to be equipped with an initial condition. In the
sequel, we assume that the initial vorticities are identical, integrable and bounded;
that is,

ων(0) = ω(0) = ω0 ∈ L1(R2) ∩ L∞(R2).(1.5)

�ese assumptions are retained by the evolution, in the sense that for any time t,

∥ων(t)∥L1 ≤ ∥ω0∥L1 , ∥ων(t)∥L∞ ≤ ∥ω0∥L∞ ,(1.6)

∥ω(t)∥L1 = ∥ω0∥L1 , ∥ω(t)∥L∞ = ∥ω0∥L∞ .(1.7)

We recall that in the class of integrable and bounded solutions, both the Navier–
Stokes and Euler equations admit a unique global solution in the two-dimensional
setting. Indeed, the well-posedness of the Navier–Stokes equations holds true under
more general assumptions; see, e.g., the work of Ben-Artzi [2] for a proof in the L1

setting. Roughly speaking, the results for (1.3) are a consequence of the parabolicity
of the equation. In the case of the Euler equations, well-posedness for initial data
in the class (1.5) was first obtained by Yudovich [11] and is essentially open for
unbounded vorticities. Yudovich’s result was later recovered by Loeper [12], who
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114 C. Seis

deduced uniqueness for the Euler equations from stability estimates in terms of the
2-Wasserstein distance. In either work, the central key for proving uniqueness for (1.4)
is a log-Lipschitz estimate for the velocity field, which is valid in the Yudovich class
L1 ∩ L∞, namely,

∣u(x) − u(y)∣ ≤ C∣x − y∣(1 + log(1 + 1

∣x − y∣ ));(1.8)

see, e.g., [13, Lemma 8.1]. In this estimate, the constant C depends on ∥ω∥L1 and∥ω∥L∞ .
In our derivation of the bounds on the convergence order (1.1) and (1.2), we

build up on Loeper’s approach. More precisely, we derive an estimate on certain 2-
Wasserstein distances, which provides, on the one hand, a bound on the 1-Wasserstein
distance between the viscous and the inviscid vorticity fields, and, on the other hand,
the desired bound on the L2 norm of the distance of the corresponding velocity fields.
We first state and discuss the latter. A definition ofWasserstein distances will be given
in the subsequent section.

�eorem 1.1 For ν ≪ 1 and t ≪ 1
∣ log ν∣ , it holds that

∥uν(t) − u(t)∥L2 ≲√νt.
Moreover, for any fixed t > 0, the following holds:

∥uν(t) − u(t)∥L2 = O ⎛⎝(
ν

∣ log ν∣ )
1
2
exp(−Ct)⎞

⎠ ,
as ν → 0, where C > 0 is a constant dependent only on ∥ω0∥L1 and ∥ω0∥L∞ .

Here and in the following, we write A ≲ B if there exists a constant Λ independent
of ν and t such thatA ≤ ΛB.Moreover, wewriteA ∼ B if bothA ≲ B and B ≲ A. Finally,
A≪ B means that A ≤ ΛB for some sufficiently large Λ.

As mentioned earlier, up to the logarithmic improvement, our second estimate
has been established earlier by Chemin [3]. Our contribution here is essentially a new
proof that is based on stability estimates. With regard to the scaling in ν, the first
estimate is supposedly optimal, even globally in time.

�e results can be restated as bounds on the homogeneous H−1 norm of the
vorticity fields; for instance,

∥ων(t) − ω(t)∥Ḣ−1 = O ⎛⎝(
ν

∣ log ν∣ )
1
2
exp(−Ct)⎞

⎠ ,(1.9)

and thus complement a recent work by Constantin, Drivas, and Elgindi [4], in which
the convergence in Lp is proved for vorticity fields in the Yudovich class

lim
ν→0

sup
t
∥ω(t) − ω(t)∥Lp = 0.
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Note that there can be no rates of strong convergence without imposing additional
regularity assumptions on the data, which can be easily seen on the linear level (cf.
[16, Example 2]).

�e results of our second theorem are similar in spirit to (1.9), in the sense that
they provide estimates on a negative Sobolev norm.

�eorem 1.2 For ν ≪ 1 and t ≪ 1
∣ log ν∣ , we have that

W1(ων(t),ω(t)) ≲√νt.
Moreover, for any fixed t > 0, we have

W1(ων(t),ω(t)) = O ⎛⎝(
ν

∣ log ν∣ )
1
2
exp(−Ct)⎞

⎠
as ν → 0, where C > 0 is a constant dependent only on ∥ω0∥L1 and ∥ω0∥L∞ .

Notice that, by the Kantorovich–Rubinstein theorem, the 1-Wasserstein distance
W1 is dual to the homogeneous Lipschitz norm ∥ ⋅ ∥Ẇ 1,∞ ; cf. (2.3) below. More-
over, as Wasserstein distances metrize weak convergence; cf. [17, �eorem 7.12],
estimates on the Wasserstein distance translate into estimates on the convergence
order. �at is, our second theorem shows that the vorticity fields of the viscous
fluid, ων , converge towards the vorticity field of the inviscid fluid, ω, weakly with

order O((ν/∣ log ν∣) 1
2
exp(−Ct)). Again, the author believes that O(√ν) convergence

is optimal. In this regard, the situation is very similar to the inviscid limit problem for
linear advection–diffusion equations in the DiPerna–Lions setting considered earlier
by the author by using new stability estimates for the continuity equation; see [15, 16].
(In a certain sense, the estimates in [15] are the linear analogues of Loeper’s estimates
for the 2D Euler equations [12].)

�e remainder of the paper is organized as follows. In the following section, we
recall the definition of the Wasserstein distances and collect a number of properties
that will be useful in our proofs. �e proofs of �eorems 1.1 and 1.2 will be provided
in the last section.

2 Some Tools from the Theory of Optimal Transportation

In this section, we collect definitions and properties of Wasserstein distances that
will be used in the sequel. For a general comprehensive introduction into the topic
of optimal transportation, we refer the reader to Villani’s popular monograph [17].

Given two nonnegative integrable functions f and g of the same total mass,

∫
R2

f dx = ∫
R2

g dx ,(2.1)

we define the set of transport plans Π( f , g) as the set of joint measures π on the
product space R2 ×R2 having f and g as marginals; that is,

∫
R2×R2

(φ(x) + ψ(y)) dπ(x , y) = ∫
R2

φ(x) f (x)dx + ∫
R2

ψ(y)g(y)dy
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for any continuous functions φ and ψ. �e p-Wasserstein distanceWp( f , g) between
f and g is then defined by the formula

Wp( f , g) = ( inf
π∈Π( f ,g)

∫
R2×R2

∣x − y∣p dπ(x , y)) 1
p

.

In this paper, we will only consider the cases p = 1 and p = 2. Both are ordered in the
sense that

W1( f , g) ≤ ∥ f ∥ 1
2

L1W2( f , g)(2.2)

by Jensen’s inequality, where we used the fact that π[R2 ×R2] = ∥ f ∥L1 .
As a consequence of the Kantorovich–Rubinstein duality theorem,

W1( f , g) = sup{∫
R2
( f − g)ζ dx ∶ ∥∇ζ∥L∞ ≤ 1}(2.3)

(cf. [17, �eorem 1.14]), the 1-Wasserstein distance is a transshipment cost that only
sees the difference of the marginals, and thus, W1 can be naturally extended as a
measure on the space of not necessarily nonnegative configurations with same spatial
average (2.1). �is is particularly convenient in our application to solutions to the
Navier–Stokes equations, as these conserve the spatial average but not the L1 norm.

Concerning W2, we will use the fact that the Wasserstein distance dominates the
Ḣ−1 norm,

∥ f − g∥Ḣ−1 ≤max{∥ f ∥L∞ , ∥g∥L∞} 1
2 W2( f , g)(2.4)

(cf. [12, �eorem 2.9]).

3 Proofs

Due to the fact that the vorticity fields are not necessarily nonnegative and our
argument is essentially based on W2-distances that are defined for nonnegative
quantities only, we need the following construction.

For a general initial vorticity distribution ω0, we consider separately the evolution
of the positive and negative parts given by the linear equations

∂tω
ν
± + uν ⋅ ∇ων

± = ν∆ων
±, ων

±(0) = ω±0 ,(3.1)

∂tω± + u ⋅ ∇ω± = 0, ω±(0) = ω±0 ,(3.2)

where the superscript plus and minus signs indicate the positive and negative parts;
i.e., ω+0 =max{0,ω0} and ω−0 =max{0,−ω0}, while the subscript plus and minus
signs just mark the solutions. Notice that both equations are well-posed (and so is
the hypoelliptic equation in (3.3), which is a hybrid version of (3.1) and (3.2)) as a
consequence of theDiPerna–Lions theory [9], because∇u and∇uν both belong to the
class L∞(R+; Lp(R2))) for any p ∈ [1,∞) by the assumptions on the initial vorticity
(1.5), the a priori estimates in (1.6) and (1.7), and Calderón–Zygmund theory.

By the maximum principles for the respective equations, the solutions are non-
negative.Moreover, as both equations are conservative thanks to the incompressibility
condition∇ ⋅ uν = ∇ ⋅ u = 0, the totalmasses are preserved: ∥ων

±(t)∥L1 = ∥ω±(t)∥L1 =∥ω±0 ∥L1 . Finally, by uniqueness and linearity, it holds that ων = ων
+ − ων

− and
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ω = ω+ − ω−. We then have by the triangle inequality, (2.3), and (2.2) that

W1(ων ,ω) ≤W1(ων
+,ω+) +W1(ων

− ,ω−)
≤ ∥ω+0 ∥ 1

2

L1W2(ων
+,ω+) + ∥ω−0 ∥ 1

2

L1W2(ων
−,ω−)

≤ ∥ω0∥ 1
2

L1 (W2(ων
+,ω+) +W2(ων

−,ω−)) .
An analogous estimate holds true for the Ḣ−1 norm via (2.4), namely,

∥ων − ω∥Ḣ−1 ≤ ∥ω0∥ 1
2

L∞ (W2(ων
+,ω+) +W2(ων

−,ω−)) .
�eorems 1.1 and 1.2 are thus consequences of the following result.

�eorem 3.1 For ν ≪ 1 and t ≪ 1
∣ log ν∣ , it holds that

(W2(ων
+(t),ω+(t)) +W2(ων

−(t),ω−(t))) ≲√νt.
Moreover, for any fixed t > 0, we have

(W2(ων
+(t),ω+(t)) +W2(ων

−(t),ω−(t))) = O ⎛⎝(
ν

∣ log ν∣ )
1
2
exp(−Ct)⎞

⎠
as ν → 0, where C > 0 is a constant dependent only on ∥ω0∥L1 and ∥ω0∥L∞ .

We now turn to the proof of �eorem 3.1, in which we roughly follow and extend
Loeper’s stability estimate for the Euler equations [12]. Loeper’s proof is based on the
Lagrangian formulation of the advection equation (1.4). Its viscous version leads to
the stochastic differential equation

dXt(x) = uν(t, Xt(x))dt +√2νdWt , Xt(x) = x ,
and the Lagrangian representation of the vorticity, ων(t) = E[ω0 ○ X−1t ]. Instead of
working with the stochastic flow, we propose a deterministic (or Eulerian) derivation
of the stability-type estimate in �eorem 3.1 via the coupling method; see, e.g.,
[10]. For that purpose, we choose functions η±0 ∈ Π(ω±0 ,ω±0 ) and consider the linear
hypoelliptic advection-diffusion equations

∂tη± + u(x) ⋅ ∇xη± + uν(y) ⋅ ∇yη± = ν∆yη±(3.3)

on the product space R2 ×R2, with initial conditions η±(0) = η±0 . By construction,
the marginals of η± coincide with the unique solutions of equations (3.1) and (3.2),

∫
R2

η±(t, x , y)dx = ων
±(t, y), ∫

R2
η±(t, x , y)dy = ω±(t, x),

and thus, by definition of the Wasserstein distance,

W2
2 (ων

±(t),ω±(t)) ≤∬
R2×R2

∣x − y∣2η±(t, x , y)dx dy =∶ Q±(t).(3.4)

We also set

Q(t) = Q+(t) + Q−(t).
By standard approximation procedures, we can assume that η±0 is smooth and com-
pactly supported so that Q±(0) is finite, and that Q±(t) is smooth. In fact, since
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the Wasserstein distance between the Navier–Stokes and Euler vorticities is initially
vanishing by (1.5), we can choose η0 such that Q(0) is arbitrarily small, say

Q(0)(1 + log(1 + 1

Q(0))) < ν.(3.5)

Our first goal is the following differential inequality.

Lemma 3.2 We have that

dQ

dt
≲ Q(1 + log(1 + 1

Q
)) + ν.(3.6)

Proof In the following computation, we neglect the time dependences of the
involved functions. We first derive simultaneously estimates on the rates of change
of Q+ and Q−. Differentiation, (multiple) integration by parts, and the fact that the
velocity fields are both divergence-free yield

dQ±

dt
= 2∬

R2×R2
(x − y) ⋅ (u(x) − uν(y))η±(x , y)dx dy

+ 2ν∬
R2×R2

η±(x , y)dx dy.
Because (3.3) can be put in conservation form (because u and uν are divergence-free),
and in view of the marginal conditions for η±0 , we notice that

∬
R2×R2

η±(x , y)dx dy =∬
R2×R2

η±0 (x , y)dx dy = ∥ω±0 ∥L1 .

We thus have and write

dQ±

dt
= 2∬

R2×R2
(x − y) ⋅ (u(x) − u(y))η±(x , y)dx dy

+ 2∬
R2×R2

(x − y) ⋅ (u(y) − uν(y))η±(x , y)dx dy + 2ν∥ω±0 ∥L1

=∶ I1± + I2± + 2ν∥ω±0 ∥L1 .

In order to estimate the first integral term, we use the log-Lipschitz estimate (1.8) for
the velocity field,

∣I1±∣ ≲ Q± +∬
R2×R2

∣x − y∣2 log(1 + 1

∣x − y∣ ) η±(x , y)dx dy.
Because s ↦ s log (1 + 1

s
) is concave, we furthermore have with Jensen’s inequality

∬
R2×R2

∣x − y∣2 log(1 + 1

∣x − y∣ )η±(x , y)dx dy
≲ (∬

R2×R2
∣x − y∣2η±(x , y)dx dy)

× log(1 + ∬R2×R2 ∣x − y∣η±(x , y)dx dy
∬R2×R2 ∣x − y∣2η±(x , y)dx dy )
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≤ Q± log(1 + (∥ω±0 ∥L1

Q±
) 1

2 )
≲ Q±(1 + log(1 + 1

Q ±
)).

It thus follows that

I1± ≲ Q±(1 + log(1 + 1

Q ±
)).

For the second integral term, we use the Cauchy–Schwarz inequality and themarginal
condition for η±,

∣I2±∣ ≤ (∬
R2×R2

∣x − y∣2η±(x , y)dx dy)
1
2

× (∬
R2×R2

∣u(y) − uν(y)∣2η±(x , y)dx dy)
1
2

= Q 1
2
±(∫

R2
∣u(y) − uν(y)∣2ων

±(y)dy)
1
2

≤ Q 1
2
±∥ων

±∥ 1
2

L∞∥uν − u∥L2 .

It remains to notice that ∥ων
±∥L∞ ≤ ∥ω0∥L∞ . Moreover, the L2 norm of the velocity

difference is the Ḣ−1 norm of the vorticity difference, which is bounded by the 2-
Wasserstein distance; cf. (2.4). Hence, via the triangle inequality,

∣I2±∣ ≲ Q 1
2
±(W2(ω+,ων

+) +W2(ω−,ων
−)) ≤ Q 1

2
±Q

1
2 .

Combining the previous estimates yields

dQ

dt
≲ Q 1

2
+Q

1
2 + Q 1

2
−Q

1
2 + Q+(1 + log(1 + 1

Q +
)) + Q−(1 + log(1 + 1

Q −
)) + ν,

which implies the statement of the lemma, because s ↦ s (1 + log (1 + 1
s
)) is an

increasing function on R+. ∎
It remains to integrate the differential inequality (3.6).

Lemma 3.3 For ν ≪ 1 and t ≪ 1
∣ log ν∣ , we have that

Q(t) ≲ Q(0) + νt.
Moreover, for any fixed t > 0,

Q(t) = O ⎛⎝(Q(0) +
ν

∣ log ν∣ )
exp(−Ct)⎞

⎠
as ν → 0, where C > 0 is a constant dependent only on ∥ω0∥L1 and ∥ω0∥L∞ .
Proof �e argument is very elementary. We provide it for the convenience of the
reader.
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We remark that by replacing Q(t) by Q(t) + νt, which satisfies the same differen-
tial inequality (3.6) because s ↦ s (1 + log (1 + 1

s
)) is an increasing function, we may

without loss of generality assume that

Q(t) ≥ νt.(3.7)

As a consequence of (3.5), there exists a time t1 up to which Q(t) is small in the sense
that

Q(1 + log(1 + 1

Q
)) ≤ ν,

and thus, (3.6) reduces to

dQ

dt
≲ ν,

which yields that

Q(t) ≲ Q(0) + νt for t ∈ [0, t1].
�is already proves the first statement. We only have to give an estimate on t1. For
this, we notice that we can furthermore assume that Q(0) ≤ νt1, so that Q(t1) ∼ νt1
thanks to (3.7). �en the final time t1 is given by the estimate

νt1(1 + log(1 + 1

νt1
)) ∼ ν.(3.8)

For ν ≪ 1, this relation and, more precisely, the behavior of the function on the le�-
hand side enforce νt1 ≪ 1. In particular, (3.8) can be restated as

1

t1
∼ log 1

νt1
,

which entails that t1 ≪ 1. �erefore, 1/t1 is much larger than its logarithm, and, thus,
by the product rule for the logarithm, we must have

1

t1
∼ log 1

ν
.

We now turn to the second estimate of Lemma 3.3. Since we are interested in an
asymptotic statement for fixed times, we can always assume that Q < 1. Moreover, it
is enough to consider the case

Q(1 + log(1 + 1

Q
)) ≥ ν

for t ≥ t1, because otherwise Q would have to decrease in time. In this situation, (3.6)
simplifies to

dQ

dt
≲ Q(1 + log 1

Q
).
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�is differential inequality can be rewritten asC logQ + d
dt logQ ≤ C , for someC > 0,

and thus d
dt (eCt logQ) ≤ CeCt . A short computation reveals that

Q(t) ≲ Q(t1)exp(C(t1−t)) ≲ ( ν

log 1
ν

+ Q(0))exp(−Ct)

,

where we have used the above estimate on Q(t1) and the estimate for t1. ∎

Proof of�eorem 3.1. From (3.4) and Lemma 3.3, we deduce that

W2
2 (ων

+(t),ω+(t)) +W2
2 (ων

−(t),ω−(t)) ≲ Q(0) + νt
for times t ≪ 1

∣ log ν∣ . It remains to notice that we can set Q(0) = 0 by optimizing

over η±0 ∈ Π(ω±0 ,ω±0 ). �is concludes the proof of the first statement. �e second one
follows analogously. ∎

Acknowledgment �e author thanks Tarek Elgindi for pointing out an error in the
first dra� of this article.
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