ON BLOCK-SCHEMATIC STEINER SYSTEMS S(t, t + 1, v)

MITSUO YOSHIZAWA

1. Introduction. A Steiner system S(t, k, v) is a collection of k-subsets, called blocks, of a v-set of points with the property that any t-subset of points is contained in a unique block. We assume 1 < t < k < v. A Steiner system is called *block-schematic* if the blocks form an association scheme with the relations determined by size of intersection. Ito and Patton [3] proved that if S(4, 5, v) is block-schematic, then v = 11. The purpose of this paper is to extend this result, and we prove the following theorem.

THEOREM. A Steiner system S(t, t + 1, v) is block-schematic if and only if one of the following holds: (i) t = 2, (ii) t = 3, v = 8, (iii) t = 4, v = 11, (iv) t = 5, v = 12.

It is well known that S(3, 4, 8), S(4, 5, 11) and S(5, 6, 12) are unique (cf. [6]), and S(2, k, v), S(3, 4, 8) and S(4, 5, 11) are block-schematic (cf. [1], [2]). Now, since the automorphism groups of S(5, 6, 12), S(4, 5, 11), and S(3, 4, 8) are the Mathieu group M_{12} , the Mathieu group M_{11} , and the three transitive group of order 1344 respectively, it is not difficult to check that they have the following property: If B_1, B_2, B_3 and B_4 are blocks with $|B_1 \cap B_2| = |B_3 \cap B_4|$, then there exists a automorphism σ such that $\sigma(B_1) = B_3$ and $\sigma(B_2) = B_4$. Hence, S(5, 6, 12) is blockschematic, also. Thus, in order to prove the theorem, it is sufficient to show that if S(t, t + 1, v) is block-schematic $(t \ge 3)$, then t = 3, v = 8, or t = 4, v = 11, or t = 5, v = 12.

2. Notation and preliminaries. For a Steiner system S = S(t, k, v) we use λ_i $(0 \le i \le t)$ to represent the number of blocks which contain the given *i* points of *S*. Then we have

$$\lambda_i = \frac{(v-i)(v-i-1)\dots(v-t+1)}{(k-i)(k-i-1)\dots(k-t+1)} \quad (0 \le i \le t).$$

For a block *B* of *S* we use x_i ($0 \le i \le k$) to denote the number of blocks each of which has exactly *i* points in common with *B*. By a theorem of [4], the number x_i depends on *S*, but not on the choice of a block *B*, and the

Received June 24, 1980 and in revised form October 20, 1980.

following equality holds for i = 0, 1, ..., t - 1:

$$x_i + \binom{i+1}{i} x_{i+1} + \ldots + \binom{t-1}{i} x_{t-1} = (\lambda_i - 1) \binom{k}{i}$$

We remark that $x_t = \ldots = x_{k-1} = 0$ and $x_k = 1$.

Let $B_1, \ldots, B_{\lambda_0}$ be the blocks of S. Let A_h $(0 \leq h \leq k)$ be the h-adjacency matrix of S of degree λ_0 defined by

$$A_h(i,j) = \begin{cases} 1 & \text{if } |B_i \cap B_j| = h \\ 0 & \text{otherwise.} \end{cases}$$

We remark that $A_{i} = \ldots = A_{k-1} = 0$ (the zero matrix) and $A_{k} = I$ (the identity matrix). If S is block-schematic, then

$$A_{i}A_{j} = \sum_{h=0}^{k} \mu(i, j, h)A_{h} \quad (0 \le i, j \le k)$$

where $\mu(i, j, h)$ is a non-negative integer defined by the following: When there exist blocks B_p and B_q with $|B_p \cap B_q| = h$,

$$\mu(i, j, h) = |\{B_r \mid |B_p \cap B_r| = i, |B_q \cap B_r| = j, 1 \le r \le \lambda_0\}|,$$

and when there exist no blocks B_p and B_q with $|B_p \cap B_q| = h$, $\mu(i, j, h) = 0$. Now, the following equalities are easily verified:

$$\mu(i, j, h) = \mu(j, i, h), \quad \mu(i, j, k) = \delta_{ij} x_i$$

$$\mu(i, j, h) x_h = \mu(h, j, i) x_i = \mu(h, i, j) x_j.$$

3. Proof of the theorem. Let S be a Steiner system S(t, t + 1, v) with $t \ge 3$.

LEMMA 1. v - t is not divisible by any prime p with $p \leq t + 1$.

Proof. Let p be any prime with $p \leq t + 1$. Now,

$$\lambda_{t+1-p} = \frac{(v-t-1+p)\dots(v-t+1)}{p\dots 2}$$

If v - t is divisible by p, then λ_{t+1-p} is not an integer, a contradiction.

Lemma 2.

Proof. By a theorem of [4], we have the following:

$$\begin{aligned} x_{t-1} &= (\lambda_{t-1} - 1) \begin{pmatrix} t+1\\ t-1 \end{pmatrix}, \\ x_{t-2} &+ \begin{pmatrix} t-1\\ t-2 \end{pmatrix} x_{t-1} = (\lambda_{t-2} - 1) \begin{pmatrix} t+1\\ t-2 \end{pmatrix}, \\ x_{t-3} &+ \begin{pmatrix} t-2\\ t-3 \end{pmatrix} x_{t-2} + \begin{pmatrix} t-1\\ t-3 \end{pmatrix} x_{t-1} = (\lambda_{t-3} - 1) \begin{pmatrix} t+1\\ t-3 \end{pmatrix}. \end{aligned}$$

By the above three equalities, we obtain Lemma 2.

From now on, let us suppose that S is a block-schematic Steiner system S(t, t + 1, v) with $t \ge 3$.

Lemma 3.

$$x_{t-1}^2 = \mu_{t-3}x_{t-3} + \mu_{t-2}x_{t-2} + \mu_{t-1}x_{t-1} + x_{t-1}$$

where

$$\mu_j = \mu(t-1, t-1, j) \ (j = t-3, t-2, t-1).$$

Proof. Since S is block-schematic, we have

$$A_{t-1}^{2} = \sum_{h=0}^{t+1} \mu(t-1, t-1, h)A_{h}.$$

Let \mathscr{A} be the all -1 column vector of degree λ_0 . Then,

$$A_{t-1}^{2}\mathscr{A} = \sum_{h=0}^{t+1} \mu(t-1, t-1, h) A_{h} \mathscr{A}.$$

Therefore,

$$x_{t-1}^{2} = \sum_{h=0}^{t+1} \mu(t-1, t-1, h) x_{h}.$$

Since (t - 4) + 3 + 3 > t + 1, we have $\mu(t - 1, t - 1, h) = 0$ for $h \le t - 4$.

From now on, let us assume $\mu_j = \mu(t-1, t-1, j)$ (j = t - 3, t - 2, t - 1).

Lemma 4. 1 $\leq \mu_{t-3} \leq 12$.

Proof. First we show that $\mu_{t-3} \leq 12$. By Lemma 2, we have $x_{t-3} > 0$. Let B_1 and B_2 be blocks with $|B_1 \cap B_2| = t - 3$. If B is a block with $|B_1 \cap B| = t - 1$ and $|B_2 \cap B| = t - 1$, then we have $B \supset B_1 \cap B_2$. And, if B' is a block $(\neq B)$ with $B_1 \cap B' = B_1 \cap B$ and $|B_2 \cap B'| = t - 1$, then we have

 $B' \supset B_1 \cap B_2$ and $(B_2 \cap B') \cap (B_2 \cap B) = B_1 \cap B_2$.

So,

$$|\{B| \ B \ a \ block, |B_1 \cap B| = t - 1, |B_2 \cap B| = t - 1\}|$$

 $\leq \binom{4}{2} \times 2 = 12.$

Next, we show that $1 \leq \mu_{t-3}$. Let $\alpha_1, \ldots, \alpha_{t-1}$ be t-1 points of S, and $B_1, \ldots, B_{\lambda_{t-1}}$ be λ_{t-1} blocks with

$$B_i \supset \{\alpha_1,\ldots,\alpha_{t-1}\} \ (i=1,\ldots,\lambda_{t-1}).$$

Set

1

$$B_1 - \{\alpha_1, \ldots, \alpha_{t-1}\} = \{\alpha_t, \alpha_{t+1}\}.$$

Let α_{t+2} be a point with $B_1 \not\ni \alpha_{t+2}$, and B_0 be the block which contains $\{\alpha_1, \ldots, \alpha_{t-3}, \alpha_t, \alpha_{t+1}, \alpha_{t+2}\}$. If $B_0 \cap B_i = \{\alpha_1, \ldots, \alpha_{t-3}\}$ for some i $(2 \leq i \leq \lambda_{t-1})$, then we have

$$B_0 \cap B_i = t - 3, |B_0 \cap B_1| = t - 1 \text{ and } |B_i \cap B_1| = t - 1.$$

Hence, $\mu_{t-3} \geq 1$. Let us suppose that $B_0 \cap B_i \supseteq \{\alpha_1, \ldots, \alpha_{t-3}\}$ for any i $(1 \leq i \leq \lambda_{t-1})$. Then we have $\lambda_{t-1} \leq 3$. Since S is a nontrivial design, we have $v \geq 2t + 2$. So,

$$((2t+2) - t + 1)/2 \leq (v - t + 1)/2 = \lambda_{t-1} \leq 3.$$

Hence, we have t = 3 and v = 8. On the other hand, S(3, 4, 8) is a block-schematic Steiner system with $\mu(2, 2, 0) = 12$.

LEMMA 5. $9 \leq \mu_{t-2} \leq 18$ holds except in the case where t = 3 and v = 8. Moreover, $\mu_2 \leq 15$ holds for t = 4, and $\mu_1 \leq 12$ holds for t = 3. If S is S(3, 4, 8), then $\mu_1 = 0$.

Proof. If $x_{t-2} = 0$, then by Lemma 2 we have t = 3 and v = 8. Hereafter, we assume $x_{t-2} > 0$. Let B_1 and B_2 be blocks with $|B_1 \cap B_2| = t - 2$. Let α_1 and α_2 be any points of $B_1 - B_2$ and $B_2 - B_1$ respectively. There exists a unique block B_0 with

 $B_0 \supset \{\alpha_1, \alpha_2\} \cup (B_1 \cap B_2).$

Here, $B_0 \cap (B_1 - B_2) = \{\alpha_1\}$ and $B_0 \cap (B_2 - B_1) = \{\alpha_2\}$. Hence,

$$|\{B| \ B \ a \ block, \ B \supset B_1 \cap B_2, \ |B \cap B_1| = |B \cap B_2| = t - 1\}|$$

= 3 × 3 = 9.

If B' is a block such that $B' \not\supseteq B_1 \cap B_2$ and $|B' \cap B_1| = |B' \cap B_2| = t - 1$, then we have $|B' \cap B_1 \cap B_2| = t - 3$. Therefore,

$$|\{B \mid B \text{ a block}, B \not\supseteq B_1 \cap B_2, |B \cap B_1| = |B \cap B_2| = t - 1\}| \le {\binom{3}{2}} \times {\binom{3}{2}} = 9$$

Moreover, if t = 3 or 4, then we see that

$$|\{B \mid B \text{ a block, } |B \cap B_1 \cap B_2| = t - 3, |B \cap (B_1 - B_2)| = |B \cap (B_2 - B_1)| = 2\}|$$

is at most 3 for t = 3, 6 for t = 4. Thus, we complete the proof of Lemma 5.

Lemma 6.

$$\frac{v-t-3}{2} + 4(t-1) \le \mu_{t-1} \le \frac{v-t-3}{2} + 4(t-1) + \left[\frac{t-1}{2}\right].$$

Proof. By Lemma 2, we have $x_{t-1} > 0$. Let B_1 and B_2 be blocks with $|B_1 \cap B_2| = t - 1$. If B is a block with $|B \cap B_1| = |B \cap B_2| = t - 1$, then one of the following three cases holds: (I) $B \supset B_1 \cap B_2$. (II) $|B \cap B_1 \cap B_2| = t - 2$, $|B \cap (B_1 - B_2)| = |B \cap (B_2 - B_3)| = 1$. (III) $|B \cap B_1 \cap B_2| = t - 3$, $B_0 \supset B_1 - B_2$, $B_0 \supset B_2 - B_1$. There exists just (v - t - 3)/2 blocks B satisfying (I), and there exist just 4(t-1) blocks B satisfying (II), and there exist at most [(t-1)/2] blocks B satisfying (III).

Lemma 7. $3 \leq t \leq 43$.

Proof. By Lemmas 2, 3, 4 and 5, we have

 $x_{t-1}^2 > x_{t-3} + 9x_{t-2}.$

Hence,

$$36(v - t - 1)^{2}(t + 1)^{2}t^{2} > (v - t - 1)(t + 1)t(t - 1) \\ \times \{(t - 2)(v - t - 1)(v - t - 8) + 144(v - t - 5)\}.$$

Since $v \ge 2t + 2$, we have

$$\frac{36(v-t-1)(t+1)t}{(t-1)(t-3)} > (v-t-1)(v-t-8) + 144.$$

Let us suppose $t \ge 44$. Then we have 36(t+1)t/(t-1)(t-3) < 41, and so,

$$41(v - t - 1) > (v - t - 1)\{(v - t - 1) - 7\} + 144.$$

Hence,

 $v - t - 1 < 24 + \sqrt{432} < 45.$

Since $v \ge 2t + 2$, we get $t \le 43$, a contradiction.

LEMMA 8. $v \ge 2t + 2$ and 36(t+1)t > (t-1)(t-2)(v-t-8).

Proof. Since S is a nontrivial design, we have $v \ge 2t + 2$. On the other

hand, by the proof of Lemma 7, we have

$$\begin{aligned} 36(v-t-1)^2(t+1)^2t^2 &> (v-t-1)(t+1)t(t-1)(t-2) \\ &\times (v-t-1)(v-t-8). \end{aligned}$$

Hence,

$$36(t+1)t > (t-1)(t-2)(v-t-8).$$

For a Steiner system S(t, k, v), generally, the number of blocks containing a point α and meeting a block B in j points $(0 \leq j \leq t - 1)$ is jx_j/k if $\alpha \in B$, $(k - j)x_j/(v - k)$ if $\alpha \notin B$. Hence, if \mathscr{A} denotes the all -1 vector of degree λ_0 , and if \mathscr{A}_{α} denotes the vector with *i*th component 1 if $\alpha \in B_i$, 0 otherwise $(1 \leq i \leq \lambda_0)$, we have

$$A_{j}\mathscr{A}_{\alpha} = (jx_{j}/k)\mathscr{A}_{\alpha} + ((k-j)x_{j}/(v-k))(\mathscr{A} - \mathscr{A}_{\alpha})$$

So, if α and β are distinct points, then

$$A_{j}(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}) = (j/k - (k-j)/(v-k))x_{j}(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}).$$

Thus for S we find

LEMMA 9. A_j has an eigenvalue d_j $(0 \leq j \leq t - 1)$ belonging to the eigenvector $\mathscr{A}_{\alpha} - \mathscr{A}_{\beta}$, where

$$d_{j} = \left\{1 - \frac{(t+1-j)v}{(t+1)(v-t-1)}\right\} x_{j}.$$

Lemma 10. $d_{t-1}^2 = \mu_{t-3}d_{t-3} + \mu_{t-2}d_{t-2} + \mu_{t-1}d_{t-1} + x_{t-1}$.

Proof. By the proof of Lemma 3, we have

$$A_{t-1}^{2} = \mu_{t-3}A_{t-3} + \mu_{t-2}A_{t-2} + \mu_{t-1}A_{t-1} + x_{t-1}I.$$

Then,

$$\begin{aligned} A_{t-1}^{2}(\mathscr{A}_{\alpha} - \mathscr{A}_{\beta}) &= (\mu_{t-3}A_{t-3} + \mu_{t-2}A_{t-2} + \mu_{t-1}A_{t-1} + x_{t-1}I) \\ &\times (\mathscr{A}_{\alpha} - \mathscr{A}_{\beta}). \end{aligned}$$

Hence, we get Lemma 10.

By Lemmas 1–10, we get the following by computer calculations: S satisfies one of the following seven cases.

	t	v	x_{t-1}	x_{t-2}	x_{t-3}	μ_{t-1}	μ_{t-2}	μ_{t-3}	d_{t-1}	d_{t-2}	d_{t-3}
(1)	3	8	12	0	1	10	0	12	0	0	-1
(2)	3	10	18	8	3	11	9	12	3	-2	-2
(3)	3	14	30	40	20	13	9	6	9	-2	-8
(4)	4	11	30	20	15	15	15	8	8	-2	-7
(5)	4	15	50	100	100	17	11	5	20	10	-20
(6)	5	12	45	40	45	20	18	8	15	0	-15
(7)	5	16	75	200	300	22	12	5	35	40	-20

The non-existence of Steiner system S(4, 5, 15) has been proved by Mendelsohn and Hung [5] without any condition. So, the cases (5) and (7) do not hold. By [5], the number of isomorphism classes of Steiner systems S(3, 4, 14) is four. Furthermore, the tables of the four classes are given in [5]. If S satisfies the case (3), then $\mu(2, 2, 0) = 6$. But, seeing the tables in [5], we get a contradiction. A similar contradiction is obtained for the well-known unique S(3, 4, 10). Hence, S satisfies the case (1), (4) or (6).

Acknowledgement. The author would like to thankProfessor H. Enomoto of Tokyo University for programming several calculations and the referee for making many helpful remarks.

References

- R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
- 2. P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
- 3. N. Ito and W. H. Patton, On a class of Steiner 4-systems, unpublished.
- 4. N. S. Mendelsohn, A theorem on Steiner systems, Can. J. Math. 22 (1970), 1010-1015.
- N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems S(3, 4, 14) and S(4, 5, 15), Utilitas Math. 1 (1972), 5-95.
- 6. E. Witt, Ueber Steinersche Systeme, Abh. Hamburg 12 (1938), 265-275.

Keio University, Yokohama, Japan

1438