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ON BLOCK-SCHEMATIC STEINER SYSTEMS 
S(t, t + 1, v) 

MITSUO YOSHIZAWA 

1. Introduction. A Steiner system S(t, k, v) is a collection of ^-subsets, 
called blocks, of a z>-set of points with the property that any /-subset of 
points is contained in a unique block. We assume 1 < t < k < v. A Steiner 
system is called block-schematic if the blocks form an association scheme 
with the relations determined by size of intersection. Ito and Patton [3] 
proved that if 5(4, 5, v) is block-schematic, then v = 11. The purpose of 
this paper is to extend this result, and we prove the following theorem. 

THEOREM. A Steiner system S(t, t + 1, v) is block-schematic if and only if 
one of the following holds: (i) t = 2, (ii) t = 3, v = 8, (iii) t = 4, v — 11, 
(iv) t = 5, v = 12. 

It is well known that 5(3, 4, 8), 5(4, 5, 11) and 5(5, 6, 12) are unique 
(cf. [6]), and 5(2, k, v), 5(3, 4, 8) and 5(4, 5, 11) are block-schematic 
(cf. [1], [2]). Now, since the automorphism groups of 5(5, 6, 12), 5(4, 5, 
11), and 5(3, 4, 8) are the Mathieu group Mu, the Mathieu group Mu, 
and the three transitive group of order 1344 respectively, it is not dim-
cult to check that they have the following property: If Bi, B2, Bz and BA 

are blocks with \B\ P\ B2\ = \BZ f~\ J34|, then there exists a automorphism 
a such that a(Bi) = B% and a(B2) = B±. Hence, 5(5, 6, 12) is block-
schematic, also. Thus, in order to prove the theorem, it is sufficient to show 
that if S(t, t + 1, v) is block-schematic (t ^ 3), then t = 3, v = 8, or 
t = 4, y = 11, or/ = 5, v = 12. 

2. Notation and preliminaries. For a Steiner system 5 = S(t, k, v) 
we use \ t (0 ^ i ^ i) to represent the number of blocks which contain 
the given i points of 5. Then we have 

For a block B of 5 we use xt (0 ^ i ^ &) to denote the number of blocks 
each of which has exactly i points in common with B. By a theorem of [4], 
the number xt depends on 5, but not on the choice of a block B, and the 
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following equality holds for i = 0, 1, . . . , / — 1 : 

Xi + \ i )Xi+1 + • • • + ( i J00*-1 = (x* ~ !)(i) -

We remark that xt = . . . = xA_i = 0 and xk = 1. 
Let 5 i , . . . , BXQ be the blocks of S. Let 4* (0 ^ A ^ fe) be the h-

adjacency matrix of S of degree X0 defined by 

^ U , 7 ) - ^ 0 o t h e r w i s e > 

We remark that A t = . . . = Ak-i = 0 (the zero matrix) and ^ = / 
(the identity matrix). If S is block-schematic, then 

k 
AiAJ = S Ai(*,i» h)Ah (0 ^ i , j ^ k) 

where n(i,j, h) is a non-negative integer defined by the following: When 
there exist blocks Bv and Bq with \BV C\ Bq\ = h, 

v(i,j,h) = \{Br\\Bvr\Br\ = i, \Bq^Br\ = i , l g r g X0}|, 

and when there exist no blocks Bp and Bq with \BP C\ BQ\ = h, n(iyj, h) = 
0. Now, the following equalities are easily verified: 

v(hj, h) = n(j>i> h)> v(i,h k) = bijXi 

p(i,j, h)xh = n(h,j, i)Xi = fi(h, ij)xj. 

3. Proof of the theorem. Let S be a Steiner system S(t, t + 1, v) 
with t ^ 3. 

LEMMA l.v — t is not divisible by any prime p with p ^ t + 1. 

Proof. Let p be any prime with p ^ / + 1. Now, 

(v-t-l+p) ...(v-t + l) 
Xi+1-*- p...2 

If v — t is divisible by p, then Xj+i-p is not an integer, a contradiction. 

LEMMA 2. 

*i-i = (i> - / - 1 ) (*+ l)*/4, 

xf_2 = (v - * - 1)(* + l)/(* - l ) ( v - t - 5)/36, 

x,_3 = (v - / - 1)(* + l)t(t - l)(t - 2) 

X {̂ 2 - (2* + 9)» + /2 + 9* + 26}/576. 
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Proof. By a theorem of [4], we have the following: 

xt-i = (X«_i - 1 ) ^ _ J , 

*«-*+(! 1 2 K 1 = (x'-2 - 1 }C - 2) -

*-»+\t : s)^-2+(! - J K 1 = ( x - 3 - 1 } ( ! - J) • 
By the above three equalities, we obtain Lemma 2. 

From now on, let us suppose that S is a block-schematic Steiner system 
S(t,t + l,v) with / ^ 3. 

LEMMA 3. 

Xt-1 = Ht-ZXt-Z + l*t-2Xt-2 + M M ^ i - 1 + #«-l> 

ixj = n(t - 1, t - l,j) (j = / - 3 , / - 2, t - 1). 

Proof. Since 5 is block-schematic, we have 

t+i 

L e t J ^ be the all —1 column vector of degree X0. Then, 

t+i 

A\-Xsf = I / i ( « - U - l , h)AhsZ. 

Therefore, 

t+i 

Since (* - 4) + 3 + 3 > / + 1, we have n(t - 1, / - 1, h) = 0 for 
h g t - 4. 

From now on, let us assume Hj = /z(£ — 1, t — 1, j ) (j = t — 3, t — 2, 
t - i ) . 

LEMMA 4. 1 g /x,_3 ^ 12. 

Proof. First we show that ju*-3 ^ 12. By Lemma 2, we have xt-z > 0. 
Let 5 i and B2 be blocks with \BX C\ B2\ = t - 3. If B is a block with 
|5i H J3| = 2 - 1 and \B2C\B\ = t - 1, then we have B Z> BXC\ B2. 
And, if B' is a block (^B) with J5i H 5 ' = Bx C\ B and \B2 H 5 ' | = 
£ — 1, then we have 

B' DB1n B2 and (B2 C\ B') C\ (B2 H B) = J5X H 5 2 . 
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So, 

|{J5| B a block, \BX C\ B\ = t - 1, \B2 C\ B\ = / - 1}| 

^ (2) X 2 = 1 2 ' 

Next, we show that 1 = M«—3. Let ax, . . . , at-\ be £ — 1 points of 5, 
and J5i, . . . , 2?x«_i be X,_i blocks with 

£z D {«i, . . . , a M | (̂  = 1, . . . , Xz_i). 

Set 

Bx — {ax, . . . , a,_i} = {au at+ï}. 

Let a:ï+2 be a point with £1 d at+2} and 5 0 be the block which contains 
{au • • • , oit-zy oùt, 0Lt+u at+2}. If B0 C\ Bt = {oci, . . . , a ^ l for some i 
(2 _ i ^ Xj_i), then we have 

| 5 0 r\ Bt\ = / - 3, | 5 0 H Bx| = / - 1 and \Bt C\ Bx\ = / - 1. 

Hence, /x*_3 — 1. Let us suppose that B0 C\ Bt^ {au • • • , ott-z) for any 
i (1 ^ i ^ Xz_i). Then we have A*_i g 3. Since 5 is a nontrivial design, 
we have v = 2t + 2. So, 

((2/ + 2) - * + l ) / 2 = (» - / + l ) / 2 = X,_! = 3. 

Hence, we have / = 3 and v = 8. On the other hand, 5(3, 4, 8) is a 
block-schematic Steiner system with ju(2, 2, 0) = 12. 

LEMMA 5. 9 ^ M*-2 = 18 /w/ds except in the case where t = 3 and v = 8. 
Moreover, /JL2 ^ 15 holds for t = 4, awd MI = 12 holds for t = 3. If S is 
5(3, 4, 8), /few MI = 0. 

Proof. If X;_2 = 0, then by Lemma 2 we have t = 3 and y = 8. Here
after, we assume x*_2 > 0. Let Bx and B2 be blocks with |JBi Pi 5 2 | = 
/ — 2. Let «i and a2 be any points of Bx — B2 and B2 — Bx respectively. 
There exists a unique block B0 with 

£o D {aua2\ KJ (Si n 5 2 ) . 

Here, £ 0 H (5i - £2) = {ax\ and B0 C\ (B2 - Bx) = {a2}. Hence, 

\{B\ B a block, B D BXC\ B2, \B C\ Bx\ = \B C\ B2\ = t - l}\ 

= 3 X 3 = 9. 

If W is a block such that ^ J ^ H £ 2 and |B' C\ Bx\ = |B' H B2\ = 
/ - 1, then we have \B' C\ BXC\ B2\ = t - 3. Therefore, 

\{B | 5 a block, Bt> BXC\ B2, \B C\ Bi\ = \B C\ B2\ = t - 1}\ 

* (?) - (?) - * 
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Moreover, if t = 3 or 4, then we see that 

| | 5 | B a block, \B C\ B1 C\ Bt\ = t - 3, 

\B C\ (B1 - Bt)\ = \BC\ (Bt - B1)\ = 2} 

is at most 3 for t = 3, 6 for t = 4. 
Thus, we complete the proof of Lemma 5. 

LEMMA 6. 

v—~-1 + Mt - l) g „,_! è v—~-A + Ht - l) + 

Proof. By Lemma 2, we have xt-i > 0. Let B\ and B2 be blocks with 
|5i P\ 5 2 | = / - 1. If J3 is a block with |5 C\ 5 i | = |S n S2 | = / - 1, 
then one of the following three cases holds: (I) B D J3i C\ B2. (II) 

|s n Bx r\ B2\ = ; - 2, |s n (Si - B2)\ = \B r\ (B2 - s8)| = 1. 
(I l l ) \B C\ Br n B2\ = t - 3, 5o D S i - S2> Bo D B2 - Bx. There 
exists just (v — £ — 3)/2 blocks S satisfying (I), and there exist just 
4(J— 1) blocks B satisfying (II), and there exist at most [{t — l ) /2 ] blocks 
B satisfying (III) . 

LEMMA 7. 3 g / ^ 43. 

Proof. By Lemmas 2, 3, 4 and 5, we have 

X2,_i > X,_3 + 9X,_2 . 

Hence, 

36(y - / - l)2(t + l)2 /2 > (y - t - l){t + l)/(* - 1) 

X {(/ - 2){v - t - l){v - t - 8) + 144 (v - * - 5)}. 

Since v è 2/ + 2, we have 

36(E - t - l)(t+ l)t ^ . , 1 W , Q v , 1 /M 
- ( * - ! ) ( * - 3 ) > < " - < - Dfr ~ ' ~ 8) + 144. 

Let us suppose t ^ 44. Then we have 36(* + l)t/(t - 1)(/ - 3) < 41, 
and so, 

41 (v - t - 1) > (v - t - l)[(v - t - 1) - 7} + 144. 

Hence, 

v - t - 1 < 24 + V432 < 45. 

Since v ^ 2t + 2, we get ^ g 43, a contradiction. 

LEMMA 8. y ^ 2t + 2 and S6(t + l)t > (t - l)(t - 2){v - t - 8). 

Proof. Since 5 is a nontrivial design, we have v ^ 2t + 2. On the other 
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hand, by the proof of Lemma 7, we have 

36(y - / - 1)2(/ + l)2/2 > (v - t - l)(t + l)t(t - 1)(/ - 2) 

X (v - / - l)(v - t - 8). 
Hence, 

36(* + 1)/ > (t - l)(t - 2)(v - t - 8). 

For a Steiner system S(t> k, v), generally, the number of blocks con
taining a point a and meeting a block B in j points (0 ^ j ^ J — 1) is 
jtfj/fe if a G £ , (k — j)xj/(v — k) iia (t B. Hence, if s/ denotes the all —1 
vector of degree X0, and if S$a denotes the vector with ^th component 1 
if a G Bu 0 otherwise (1 ^ i ^ X0), we have 

A^a = (jXi/kWa + {(k-j)xs/(v -k))(9? -s/a). 

So, if a and /3 are distinct points, then 

4 ^ „ -séù = 07* - (* - J)/(v ~ k))Xj{¥a -s/,). 

Thus for S we find 

LEMMA 9. Aj has an eigenvalue dj (0 ^ j ^ t — 1) belonging to the 
eigenvector s/a — s$ $, where 

d - < f i - (t + l-j)v \ 
aj~Y (t+l)(v-t- l))Xj' 

LEMMA 10. d*_i = nt_zdt-z + Mz-2^_2 + iJLt-idt-i + xt-\. 

Proof. By the proof of Lemma 3, we have 

At-i = IXt-zAt-?, + Mî—2̂4 «—2 + \Xt-\At-\ + Xt-il. 

Then, 

A \ - ^ a -j/fi) = 0 * - 3 ^ - 3 + M*-2^*-2 + Ht-Ut-1 + Xt-J) 

X (à/a -<Sffi). 
Hence, we get Lemma 10. 

By Lemmas 1-10, we get the following by computer calculations: 
5 satisfies one of the following seven cases. 

t V X,-i Xt-2 xt-z M(-i M t-2 M (-3 dt-i dt-2 dt-z 

(1) 3 8 12 0 1 10 0 12 0 0 -1 
(2) 3 10 18 8 3 11 9 12 3 -2 -2 
(3) 3 14 30 40 20 13 9 6 9 -2 -8 
(4) 4 11 30 20 15 15 15 8 8 -2 -7 
(5) 4 15 50 100 100 17 11 5 20 10 -20 
(6) 5 12 45 40 45 20 18 8 15 0 -15 
(7) 5 16 75 200 300 22 12 5 35 40 -20 
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The non-existence of Steiner system 5(4, 5, 15) has been proved by 
Mendelsohn and Hung [5] without any condition. So, the cases (5) and 
(7) do not hold. By [5], the number of isomorphism classes of Steiner 
systems 5(3, 4, 14) is four. Furthermore, the tables of the four classes 
are given in [5], If S satisfies the case (3), then /x(2, 2, 0) = 6. But, 
seeing the tables in [5], we get a contradiction. A similar contradiction 
is obtained for the well-known unique 5(3, 4, 10). Hence, 5 satisfies 
the case (1), (4) or (6). 
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