ON BLOCK-SGHEMATIC STEINER SYSTEMS
 $S(t, t+1, v)$

 MITSUO YOSHIZAWA

 MITSUO YOSHIZAWA}

1. Introduction. A Steiner system $S(t, k, v)$ is a collection of k-subsets, called blocks, of a v-set of points with the property that any t-subset of points is contained in a unique block. We assume $1<t<k<v$. A Steiner system is called block-schematic if the blocks form an association scheme with the relations determined by size of intersection. Ito and Patton [3] proved that if $S(4,5, v)$ is block-schematic, then $v=11$. The purpose of this paper is to extend this result, and we prove the following theorem.

Theorem. A Steiner system $S(t, t+1, v)$ is block-schematic if and only if one of the following holds: (i) $t=2$, (ii) $t=3, v=8$, (iii) $t=4, v=11$, (iv) $t=5, v=12$.

It is well known that $S(3,4,8), S(4,5,11)$ and $S(5,6,12)$ are unique (cf. [6]), and $S(2, k, v), S(3,4,8)$ and $S(4,5,11)$ are block-schematic (cf. [1], [2]). Now, since the automorphism groups of $S(5,6,12), S(4,5$, 11), and $S(3,4,8)$ are the Mathieu group M_{12}, the Mathieu group M_{11}, and the three transitive group of order 1344 respectively, it is not difficult to check that they have the following property: If B_{1}, B_{2}, B_{3} and B_{4} are blocks with $\left|B_{1} \cap B_{2}\right|=\left|B_{3} \cap B_{4}\right|$, then there exists a automorphism σ such that $\sigma\left(B_{1}\right)=B_{3}$ and $\sigma\left(B_{2}\right)=B_{4}$. Hence, $S(5,6,12)$ is blockschematic, also. Thus, in order to prove the theorem, it is sufficient to show that if $S(t, t+1, v)$ is block-schematic $(t \geqq 3)$, then $t=3$, v $=8$, or $t=4, v=11$, or $t=5, v=12$.
2. Notation and preliminaries. For a Steiner system $S=S(t, k, v)$ we use $\lambda_{i}(0 \leqq i \leqq t)$ to represent the number of blocks which contain the given i points of S. Then we have

$$
\lambda_{i}=\frac{(v-i)(v-i-1) \ldots(v-t+1)}{(k-i)(k-i-1) \ldots(k-t+1)} \quad(0 \leqq i \leqq t)
$$

For a block B of S we use $x_{i}(0 \leqq i \leqq k)$ to denote the number of blocks each of which has exactly i points in common with B. By a theorem of [4], the number x_{i} depends on S, but not on the choice of a block B, and the

[^0]following equality holds for $i=0,1, \ldots, t-1$:
$$
x_{i}+\binom{i+1}{i} x_{i+1}+\ldots+\binom{t-1}{i} x_{i-1}=\left(\lambda_{i}-1\right)\binom{k}{i} .
$$

We remark that $x_{t}=\ldots=x_{k-1}=0$ and $x_{k}=1$.
Let $B_{1}, \ldots, B_{\lambda_{0}}$ be the blocks of S. Let $A_{h}(0 \leqq h \leqq k)$ be the h adjacency matrix of S of degree λ_{0} defined by

$$
A_{h}(i, j)= \begin{cases}1 & \text { if }\left|B_{i} \cap B_{j}\right|=h, \\ 0 & \text { otherwise } .\end{cases}
$$

We remark that $A_{t}=\ldots=A_{k-1}=0$ (the zero matrix) and $A_{k}=I$ (the identity matrix). If S is block-schematic, then

$$
A_{i} A_{j}=\sum_{h=0}^{k} \mu(i, j, h) A_{h} \quad(0 \leqq i, j \leqq k)
$$

where $\mu(i, j, h)$ is a non-negative integer defined by the following: When there exist blocks B_{p} and B_{q} with $\left|B_{p} \cap B_{q}\right|=h$,

$$
\mu(i, j, h)=\left|\left\{B_{r}| | B_{p} \cap B_{r}|=i, \quad| B_{q} \cap B_{r} \mid=j, 1 \leqq r \leqq \lambda_{0}\right\}\right|,
$$

and when there exist no blocks B_{p} and B_{q} with $\left|B_{p} \cap B_{q}\right|=h, \mu(i, j, h)=$ 0 . Now, the following equalities are easily verified:

$$
\begin{aligned}
& \mu(i, j, h)=\mu(j, i, h), \quad \mu(i, j, k)=\delta_{i j} x_{i} \\
& \mu(i, j, h) x_{h}=\mu(h, j, i) x_{i}=\mu(h, i, j) x_{j} .
\end{aligned}
$$

3. Proof of the theorem. Let S be a Steiner system $S(t, t+1, v)$ with $t \geqq 3$.

Lemma 1.v-tis not divisible by any prime p with $p \leqq t+1$.
Proof. Let p be any prime with $p \leqq t+1$. Now,

$$
\lambda_{t+1-p}=\frac{(v-t-1+p) \ldots(v-t+1)}{p \ldots 2} .
$$

If $v-t$ is divisible by p, then λ_{t+1-p} is not an integer, a contradiction.
Lemma 2.

$$
\begin{aligned}
x_{t-1}= & (v-t-1)(t+1) t / 4, \\
x_{t-2}= & (v-t-1)(t+1) t(t-1)(v-t-5) / 36, \\
x_{i-3}= & (v-t-1)(t+1) t(t-1)(t-2) \\
& \quad \times\left\{v^{2}-(2 t+9) v+t^{2}+9 t+26\right\} / 576 .
\end{aligned}
$$

Proof. By a theorem of [4], we have the following:

$$
\begin{aligned}
& x_{t-1}=\left(\lambda_{t-1}-1\right)\binom{t+1}{t-1} \\
& x_{t-2}+\binom{t-1}{t-2} x_{t-1}=\left(\lambda_{t-2}-1\right)\binom{t+1}{t-2} \\
& x_{t-3}+\binom{t-2}{t-3} x_{t-2}+\binom{t-1}{t-3} x_{t-1}=\left(\lambda_{t-3}-1\right)\binom{t+1}{t-3} .
\end{aligned}
$$

By the above three equalities, we obtain Lemma 2.
From now on, let us suppose that S is a block-schematic Steiner system $S(t, t+1, v)$ with $t \geqq 3$.

Lemma 3.

$$
x_{t-1}^{2}=\mu_{t-3} x_{t-3}+\mu_{t-2} x_{t-2}+\mu_{t-1} x_{t-1}+x_{t-1}
$$

where

$$
\mu_{j}=\mu(t-1, t-1, j)(j=t-3, t-2, t-1)
$$

Proof. Since S is block-schematic, we have

$$
A_{t-1}^{2}=\sum_{h=0}^{t+1} \mu(t-1, t-1, h) A_{h}
$$

Let \mathscr{A} be the all -1 column vector of degree λ_{0}. Then,

$$
A_{t-1}^{2} \mathscr{A}=\sum_{h=0}^{t+1} \mu(t-1, t-1, h) A_{h} \mathscr{A}
$$

Therefore,

$$
x_{t-1}^{2}=\sum_{h=0}^{t+1} \mu(t-1, t-1, h) x_{h}
$$

Since $(t-4)+3+3>t+1$, we have $\mu(t-1, t-1, h)=0$ for $h \leqq t-4$.

From now on, let us assume $\mu_{j}=\mu(t-1, t-1, j)(j=t-3, t-2$, $t-1)$.

Lemma $4.1 \leqq \mu_{t-3} \leqq 12$.
Proof. First we show that $\mu_{t-3} \leqq 12$. By Lemma 2, we have $x_{t-3}>0$. Let B_{1} and B_{2} be blocks with $\left|B_{1} \cap B_{2}\right|=t-3$. If B is a block with $\left|B_{1} \cap B\right|=t-1$ and $\left|B_{2} \cap B\right|=t-1$, then we have $B \supset B_{1} \cap B_{2}$. And, if B^{\prime} is a block $(\neq B)$ with $B_{1} \cap B^{\prime}=B_{1} \cap B$ and $\left|B_{2} \cap B^{\prime}\right|=$ $t-1$, then we have

$$
B^{\prime} \supset B_{1} \cap B_{2} \quad \text { and } \quad\left(B_{2} \cap B^{\prime}\right) \cap\left(B_{2} \cap B\right)=B_{1} \cap B_{2}
$$

So,
$\mid\left\{B \mid B\right.$ a block, $\left.\left|B_{1} \cap B\right|=t-1,\left|B_{2} \cap B\right|=t-1\right\} \mid$

$$
\leqq\binom{ 4}{2} \times 2=12 \text {. }
$$

Next, we show that $1 \leqq \mu_{t-3}$. Let $\alpha_{1}, \ldots, \alpha_{t-1}$ be $t-1$ points of S, and $B_{1}, \ldots, B_{\lambda_{t-1}}$ be λ_{t-1} blocks with

$$
B_{i} \supset\left\{\alpha_{1}, \ldots, \alpha_{t-1}\right\}\left(i=1, \ldots, \lambda_{t-1}\right) .
$$

Set

$$
B_{1}-\left\{\alpha_{1}, \ldots, \alpha_{t-1}\right\}=\left\{\alpha_{t}, \alpha_{t+1}\right\} .
$$

Let α_{t+2} be a point with $B_{1} \nexists \alpha_{t+2}$, and B_{0} be the block which contains $\left\{\alpha_{1}, \ldots, \alpha_{t-3}, \alpha_{t}, \alpha_{t+1}, \alpha_{t+2}\right\}$. If $B_{0} \cap B_{i}=\left\{\alpha_{1}, \ldots, \alpha_{t-3}\right\}$ for some i ($2 \leqq i \leqq \lambda_{t-1}$), then we have

$$
\left|B_{0} \cap B_{i}\right|=t-3,\left|B_{0} \cap B_{1}\right|=t-1 \text { and }\left|B_{i} \cap B_{1}\right|=t-1 .
$$

Hence, $\mu_{t-3} \geqq 1$. Let us suppose that $B_{0} \cap B_{i} \supsetneq\left\{\alpha_{1}, \ldots, \alpha_{t-3}\right\}$ for any $i\left(1 \leqq i \leqq \lambda_{t-1}\right)$. Then we have $\lambda_{t-1} \leqq 3$. Since S is a nontrivial design, we have $v \geqq 2 t+2$. So,

$$
((2 t+2)-t+1) / 2 \leqq(v-t+1) / 2=\lambda_{t-1} \leqq 3
$$

Hence, we have $t=3$ and $v=8$. On the other hand, $S(3,4,8)$ is a block-schematic Steiner system with $\mu(2,2,0)=12$.

Lemma $5.9 \leqq \mu_{t-2} \leqq 18$ holds except in the case where $t=3$ and $v=8$. Moreover, $\mu_{2} \leqq 15$ holds for $t=4$, and $\mu_{1} \leqq 12$ holds for $t=3$. If S is $S(3,4,8)$, then $\mu_{1}=0$.

Proof. If $x_{t-2}=0$, then by Lemma 2 we have $t=3$ and $v=8$. Hereafter, we assume $x_{t-2}>0$. Let B_{1} and B_{2} be blocks with $\left|B_{1} \cap B_{2}\right|=$ $t-2$. Let α_{1} and α_{2} be any points of $B_{1}-B_{2}$ and $B_{2}-B_{1}$ respectively. There exists a unique block B_{0} with
$B_{0} \supset\left\{\alpha_{1}, \alpha_{2}\right\} \cup\left(B_{1} \cap B_{2}\right)$.
Here, $B_{0} \cap\left(B_{1}-B_{2}\right)=\left\{\alpha_{1}\right\}$ and $B_{0} \cap\left(B_{2}-B_{1}\right)=\left\{\alpha_{2}\right\}$. Hence,
$\mid\left\{B \mid B\right.$ a block, $\left.B \supset B_{1} \cap B_{2},\left|B \cap B_{1}\right|=\left|B \cap B_{2}\right|=t-1\right\} \mid$

$$
=3 \times 3=9
$$

If B^{\prime} is a block such that $B^{\prime} \not \supset B_{1} \cap B_{2}$ and $\left|B^{\prime} \cap B_{1}\right|=\left|B^{\prime} \cap B_{2}\right|=$ $t-1$, then we have $\left|B^{\prime} \cap B_{1} \cap B_{2}\right|=t-3$. Therefore,

$$
\mid\left\{B \mid B \text { a block, } B \not \supset B_{1} \cap B_{2},\left|B \cap B_{1}\right|=\left|B \cap B_{2}\right|=t-1\right\} \mid
$$

$$
\leqq\binom{ 3}{2} \times\binom{ 3}{2}=9
$$

Moreover, if $t=3$ or 4 , then we see that

$$
\begin{aligned}
& \mid\left\{B \mid B \text { a block, }\left|B \cap B_{1} \cap B_{2}\right|=t-3,\right. \\
& \left.\quad\left|B \cap\left(B_{1}-B_{2}\right)\right|=\left|B \cap\left(B_{2}-B_{1}\right)\right|=2\right\} \mid
\end{aligned}
$$

is at most 3 for $t=3,6$ for $t=4$.
Thus, we complete the proof of Lemma 5.
Lemma 6.

$$
\frac{v-t-3}{2}+4(t-1) \leqq \mu_{t-1} \leqq \frac{v-t-3}{2}+4(t-1)+\left[\frac{t-1}{2}\right] .
$$

Proof. By Lemma 2, we have $x_{t-1}>0$. Let B_{1} and B_{2} be blocks with $\left|B_{1} \cap B_{2}\right|=t-1$. If B is a block with $\left|B \cap B_{1}\right|=\left|B \cap B_{2}\right|=t-1$, then one of the following three cases holds: (I) $B \supset B_{1} \cap B_{2}$. (II) $\left|B \cap B_{1} \cap B_{2}\right|=t-2,\left|B \cap\left(B_{1}-B_{2}\right)\right|=\left|B \cap\left(B_{2}-B_{3}\right)\right|=1$. (III) $\left|B \cap B_{1} \cap B_{2}\right|=t-3, B_{0} \supset B_{1}-B_{2}, B_{0} \supset B_{2}-B_{1}$. There exists just ($v-t-3$)/2 blocks B satisfying (I), and there exist just $4(t-1)$ blocks B satisfying (II), and there exist at most [$(t-1) / 2]$ blocks B satisfying (III).

Lemma 7. $3 \leqq t \leqq 43$.
Proof. By Lemmas 2, 3, 4 and 5, we have

$$
x_{t-1}^{2}>x_{t-3}+9 x_{t-2} .
$$

Hence,

$$
\begin{aligned}
36(v-t-1 &)^{2}(t+1)^{2} t^{2}>(v-t-1)(t+1) t(t-1) \\
& \times\{(t-2)(v-t-1)(v-t-8)+144(v-t-5)\} .
\end{aligned}
$$

Since $v \geqq 2 t+2$, we have

$$
\frac{36(v-t-1)(t+1) t}{(t-1)(t-3)}>(v-t-1)(v-t-8)+144 .
$$

Let us suppose $t \geqq 44$. Then we have $36(t+1) t /(t-1)(t-3)<41$, and so,

$$
41(v-t-1)>(v-t-1)\{(v-t-1)-7\}+144 .
$$

Hence,

$$
v-t-1<24+\sqrt{432}<45 .
$$

Since $v \geqq 2 t+2$, we get $t \leqq 43$, a contradiction.
Lemma 8. $v \geqq 2 t+2$ and $36(t+1) t>(t-1)(t-2)(v-t-8)$.
Proof. Since S is a nontrivial design, we have $v \geqq 2 t+2$. On the other
hand, by the proof of Lemma 7, we have

$$
\begin{aligned}
36(v-t-1)^{2}(t+1)^{2} t^{2}>(v-t-1) & (t+1) t(t-1)(t-2) \\
& \times(v-t-1)(v-t-8) .
\end{aligned}
$$

Hence,

$$
36(t+1) t>(t-1)(t-2)(v-t-8)
$$

For a Steiner system $S(t, k, v)$, generally, the number of blocks containing a point α and meeting a block B in j points $(0 \leqq j \leqq t-1)$ is $j x_{j} / k$ if $\alpha \in B,(k-j) x_{j} /(v-k)$ if $\alpha \notin B$. Hence, if \mathscr{A} denotes the all-1 vector of degree λ_{0}, and if \mathscr{A}_{α} denotes the vector with i th component 1 if $\alpha \in B_{i}, 0$ otherwise ($1 \leqq i \leqq \lambda_{0}$), we have

$$
A_{j} \mathscr{A}_{\alpha}=\left(j x_{j} / k\right) \mathscr{A}_{\alpha}+\left((k-j) x_{j} /(v-k)\right)\left(\mathscr{A}-\mathscr{A}_{\alpha}\right) .
$$

So, if α and β are distinct points, then

$$
A_{j}\left(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}\right)=(j / k-(k-j) /(v-k)) x_{j}\left(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}\right) .
$$

Thus for S we find
Lemma $9 . A_{j}$ has an eigenvalue $d_{j}(0 \leqq j \leqq t-1)$ belonging to the eigenvector $\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}$, where

$$
d_{j}=\left\{1-\frac{(t+1-j) v}{(t+1)(v-t-1)}\right\} x_{j} .
$$

Lemma 10. $d_{t-1}^{2}=\mu_{t-3} d_{t-3}+\mu_{t-2} d_{t-2}+\mu_{t-1} d_{t-1}+x_{t-1}$.
Proof. By the proof of Lemma 3, we have

$$
A_{t-1}^{2}=\mu_{t-3} A_{t-3}+\mu_{t-2} A_{t-2}+\mu_{t-1} A_{t-1}+x_{t-1} I
$$

Then,

$$
A_{t-1}^{2}\left(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}\right)=\left(\mu_{t-3} A_{t-3}+\mu_{t-2} A_{t-2}+\mu_{t-1} A_{t-1}+x_{t-1} I\right)
$$

$$
\times\left(\mathscr{A}_{\alpha}-\mathscr{A}_{\beta}\right) .
$$

Hence, we get Lemma 10 .
By Lemmas $1-10$, we get the following by computer calculations: S satisfies one of the following seven cases.

	t	v	x_{t-1}	x_{t-2}	x_{t-3}	μ_{t-1}	μ_{t-2}	μ_{t-3}	d_{t-1}	d_{t-2}	d_{t-3}
(1)	3	8	12	0	1	10	0	12	0	0	-1
(2)	3	10	18	8	3	11	9	12	3	-2	-2
(3)	3	14	30	40	20	13	9	6	9	-2	-8
(4)	4	11	30	20	15	15	15	8	8	-2	-7
(5)	4	15	50	100	100	17	11	5	20	10	-20
(6)	5	12	45	40	45	20	18	8	15	0	-15
(7)	5	16	75	200	300	22	12	5	35	40	-20

The non-existence of Steiner system $S(4,5,15)$ has been proved by Mendelsohn and Hung [5] without any condition. So, the cases (5) and (7) do not hold. By [5], the number of isomorphism classes of Steiner systems $S(3,4,14)$ is four. Furthermore, the tables of the four classes are given in [5]. If S satisfies the case (3), then $\mu(2,2,0)=6$. But, seeing the tables in [5], we get a contradiction. A similar contradiction is obtained for the well-known unique $S(3,4,10)$. Hence, S satisfies the case (1), (4) or (6).

Acknowledgement. The author would like to thankProfessor H. Enomoto of Tokyo University for programming several calculations and the referee for making many helpful remarks.

References

1. R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
2. P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
3. N. Ito and W. H. Patton, On a class of Steiner 4-systems, unpublished.
4. N. S. Mendelsohn, A theorem on Steiner systems, Can. J. Math. 22 (1970), 1010-1015.
5. N. S. Mendelsohn and S. H. Y. Hung, On the Steiner systems $S(3,4,14)$ and $S(4,5,15)$, Utilitas Math. 1 (1972), 5-95.
6. E. Witt, Ueber Steinersche Systeme, Abh. Hamburg 12 (1938), 265-275.

Keio University, Yokohama, Japan

[^0]: Received June 24, 1980 and in revised form October 20, 1980.

