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DETERMINING THE FRATTINI SUBGROUP FROM 
THE CHARACTER TABLE 

SIDNEY GARRISON 

1. I n t r o d u c t i o n . Brauer [1, p . 141] has discussed the question of which 
subgroups of a group can be determined from its character table. He mentions, 
referring to ^-groups, t ha t the Fra t t in i subgroup can be determined. We 
show tha t for an arb i t ra ry finite solvable group, the Fra t t in i subgroup can be 
determined from the character table. Then we exhibit an infinite set of pairs 
of non-solvable groups such t ha t both members of a given pair have the same 
character table bu t Fra t t in i subgroups of different orders. All groups to be 
considered are finite. 

2. T h e so lvable case . For a group G and a prime p, recall t h a t Op(G) is the 
largest normal ^-subgroup in G and t ha t the Fra t t in i subgroup, $(G), is the 
intersection of all maximal subgroups of G. 

T H E O R E M . Let G be a solvable group and 0 be the set of all N < G such that 
for some prime p, Op(G/N) is the unique minimal normal subgroup of G/N. 
Then C\ 0 = $(G). In particular, the Frattini subgroup can be determined 

from the character table. 

Proof. Letc^# be the set of maximal subgroups of G and x Ç C\^ — $(G). 
We choose N G 0 and show x f N. If TV is a maximal subgroup, we are done. 
Otherwise, choose 0 and X with N < 0 < X ^ G and with O/N and X/O 
chief factors of G. Since G is solvable, the definition of 0 implies there are 
dist inct primes p, q such t ha t O/N = Op(G/N) and X/O is a q-group. Let 
Q/N be a Sylow g-subgroup of X/N so t ha t QO = X. Then by the Fra t t in i 
a rgument , the normalizer N((?) satisfies G = N(Q)X = N(Q)0. We claim 
N(<2) ^Jt. Indeed if N(Q) ^ M S G then M H 0 is normalized by MO = 
N(Q)0 = G. Now O/N is a chief factor and if M H 0 = 0 then M = MO =G. 
Alternately, if M H 0 = N then 

M = MC\N(Q)0 = N ( ( ? ) ( A f n 0) = N(Q)N = N(Q). 

Fur ther , Q is not normal in G, so N(Q) G ^Jé. Since O/N is the unique minimal 
normal subgroup of G/N, the conjugates of N(Q) intersect in N. T h u s 
x G C\^é implies x G N. Bu t N is an a rb i t ra ry member of 0 so $ (G) = 
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T o show H 0 C $ (G) , pick I Ç l We claim TV = H {M'|g G G} is 
in ^ . Let 0/7V be a minimal normal subgroup of G/N. Now N being the 
maximal normal subgroup of G in M implies the following three s ta tements . 
First , 0 $ M so by the maximality of M, MO = G. Second, since M Pi 0 is 
normalized by ilf O = G, M C\ O = N. Now suppose Oi and 0 2 are subgroups 
containing TV such tha t OJN is minimal normal in G/iV for i = 1,2. Then 
Oi/N centralizes Oi02/N so t ha t M C\ 0 i 0 2 is normalized by 0XM = G. We 
see finally t ha t M C\ Oi0 2 = N. I t follows tha t 

Oi = OiiV = Oi(MC\ O1O2) = GC\ O1O2 = O1O2. 

T h u s Oi = O2. Let 0/7V be this unique minimal normal subgroup of G/N 
and suppose it has ^-power order. We let X/N = Op(G/N) and show X = 0. 
Since O/N is the unique minimal normal subgroup in G/N, 0/N Ç Z(X/N). 
T h u s MO = G normalizes M P\ X. As iV is the maximal normal subgroup of 
G in M, we have M C\ X = N. I t follows tha t 

x = Mor\x = (M n z)o = ivo = o. 
T h u s N ^ & and we have H ^ C iV C M. Since M is arbi t rary, 

n G c n^# = $(G). 
Finally, since the lattice of normal subgroups and their orders can be 

determined from the character table, the set © can be found. Thus the classes 
in C\ © = <£(G) can be determined. 

3. Non- so lvab le c o u n t e r - e x a m p l e s . Character tables which provide 
counter-examples to the extension of the above theorem to the non-solvable 
case include those of groups of the form Gn = PSL(2, Zp

2) for p ^ 5 a prime. 
The un' in the notat ion "G n " refers to the fact tha t Gn is a non-split extension 
of PSL(2, p) by an elementary abelian group of order p3. Let Nn denote this 
normal subgroup of Gn. Then the group Gs, defined as the semi-direct product 
of Gn/Nn and Nn using the natural action, has the same character table as Gn 

bu t a Fra t t in i subgroup of a different order. 

We now show tha t Gn and Gs have the same character tables. We must 
construct a bijection between the characters of Gn and Gs and a bijection 
between the classes of the two groups so tha t corresponding characters have 
the same value on corresponding classes. This will be done separately, bu t in 
a coherent manner, for certain blocks (submatrices) of the character table 
matr ix by identifying these blocks with blocks of the character tables of 
isomorphic sections of Gn and Gs. Before constructing the bijections, some 
group theoretic and character theoretic information will be needed. 

4. Group theore t i c i n f o r m a t i o n . First we consider the action of GJNn 

on Nn. We define Nn more explicitly as the kernel of the natural homomorphism 
from Gn = PSL(2, TLvi) onto PSL(2, p) obtained by applying to the matr ix 
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entries the natural homomorphism from Zvi to Z r . Then for n Ç Nn we can 
choose a unique coset representat ive of the form J + F(n) where / is the 
2 X 2 identi ty matr ix and F(n) (E «if, the set of 2 X 2 matrices with entries 
from pZp2 and trace zero. T h e last condition holds since d e t ( 7 + F(n)) = 1 
if and only if tr(F(n)) = 0. T h e map F : (Nn, •) —> («if, + ) is easily seen to 
be a Gn/Nn isomorphism and so Nn is isomorphic to (Zp)

s as claimed. I t is 
convenient to change the ring over which the matr ix entries for members of 
i f are taken. Let i f ' be the set of 2 X 2 matrices with entries in Zv and trace 
zero. We map i f onto «if ' by mapping matr ix entries of the form ip{p2Z) £ 
pZp2 to i(pZ) 6 Zp . Then the actions by conjugation of Gn/Nn on (J£\ + ) 
and of PSL(2, p) on {^£ ', + ) are the same. We now use s tandard theorems 
to determine the orbit sizes. 

Table 1 gives the necessary information abou t the orbits of GL(2,p) on 
^£ '. T h e representat ive of each orbit is the rational canonical form. Here 
R = [a2\a eZp- {0}} and NR = Zv - {R\J {0}). 

Table 1. 

Representative x ro on 
Lo oj G a G a c a 

\C0L(2,p)(x)\ ft* - 1)(£2 _ £ ) p(p - 1) (/> - 1 ) 2 ^2 - 1 

Parameters a 6 R p £ NR 

Now consideration of the centralizer, C ( S L ( 2 , P ) ( ^ ) , for x given in Table 1 
determines the number of orbits of each size of SL(2, p) on S£ '. These are 
given in Table 2. 

Table 2. 

Orbit size 1 (P2 - D / 2 P2 +P P2 - P 

Number of orbits of 
this size 

1 2 (P - D / 2 (p - i ) / 2 

T h e relation between the actions of PSL(2, p) o n ^ ' and Gn/Nn on Nn given 
above implies t h a t Table 2 also gives the orbits of Gn/Nn act ing on Nn. Finally, 
one calculates t ha t the stabilizer in P 5 L ( 2 , p) and hence in Gn/Nn of a point 
from a non-trivial orbit is cyclic of order p, (p — l ) / 2 or (p + l ) / 2 . 

Let Ns denote the normal subgroup 1 X Nn of Gs, the split extension. In 
wha t follows G and iV will denote both the pair Gn and Nn and the pair Gs 

and iVs in s ta tements which hold for both pairs and further analogous notat ion 
will be introduced. For example, since by definition Gs/Ns acts on Ns jus t 
as Gn/Nn acts on Nn, we have t h a t the orbits of G/N on N have sizes 1, 
(p2 - l)/2, p2 + p and p2 - £. 
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We may now show that G/N acts irreducibly on N. Indeed, suppose K is 
a proper invariant subgroup of N. Then as K is a union of orbits, \K\ = p2. 
Thus \N/K\ = p so that N/K is a trivial G/iV-module. But then each orbit 
is in a fixed coset of K which is impossible for orbits of size p2 + p. 

5. Character theoretic information. Proofs of the standard results used 
in this section may be found in Feit [2, I] or Huppert [4, V]. It is necessary 
to calculate the orbit sizes of Irr(iV) under the action of G/N. As noted in the 
last section, G/N acts on N just as PSL(2, p) acts on ££ '. Define a bilinear 
map from i f ' X S£ ' to Zv for Mu M2 G S£ ' by 

(Mi, M2) ->tr(AfiM2). 

For M G P5L(2, £) we have (MiM, M2
M) = (Mi, M2). Thus the mapping p 

from i f ' to the dual space of i f ' defined by p(Mi)(M2) = (Mu M2) is a 
PSL(2, £>)-map. Since i f ' is an irreducible module and p is non-zero, we have 
a module isomorphism. Thus N and Irr(iV) are isomorphic G/N modules. In 
particular, the orbits of G/N on \rr(N) have the sizes given in Table 2. 

We now discuss the irreducible characters of G with kernels not containing 
N. If x ë Irr(G) is such a character, then XN, the restriction of % to TV, has 
a non-principal constituent X. By Frobenius Reciprocity x is a constituent 
of XG, the character of G induced from X. Thus it suffices to consider the con
stituents of \G for all X G Irr(iV) — {1N}> Let S ^ G be the inertial group 
of X in G. By the permutation isomorphism between the actions of G on N 
and G on Irr(JV) and the result from Section 4 concerning stabilizers of non-
identity elements of N, we see that S/N is cyclic of order p, (p — l ) / 2 or 
(£ + l ) /2 . Thus X extends to U Irr(S) [2, I, 9.12]. In what follows if 
K < H we will identify $ G Irr(i7) with kernel containing i£ with the corre
sponding character of Irr (H/K). With this convention, Gallagher [3, Theorem 
2] has shown that 

M<E Irr(S/N) 

where the /xX are all irreducible and distinct. Since the degree of (id\)G is 
\G : 5|, exactly the size of the orbit of X, Clifford's theorem implies (fJi\)G is 
irreducible. It follows that all irreducible characters of G with kernel not 
containing N are obtained in the above manner and so have degrees (p2 — l ) /2 , 
p2 + p , or p2 - p . 

6. Construction of bijections. We partition the classes of G. Let J T I 
denote the set of p + 2 conjugacy classes of G which are contained in N. Let 
J^2 , ^ 3 and J^4 denote respectively those remaining classes whose repre
sentatives modulo N have order dividing (p — l ) /2 , (£ + l ) /2 and £>. This 
is a partition since every non-identity element of PSL(2, p) has order dividing 
exactly one of these numbers [4, II, 8.5]. As explained earlier J^i<n and J T < I S 

will denote the corresponding classes of Gn and Gs respectively. 
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We define the bijection between the classes of Gn and Gs and the bijection 
between the characters of Gn and Gs in stages. By the definition of Gs as a 
semi-direct product , a : Nn —» Ns = 1 X Nn defined by a(n) = ( l , w ) is an 
isomorphism which intertwines with the isomorphism r : Gn/Nn —* Gs/Ns given 
by r : (xNn) = (xiVn, l)Ns. This induces a bijection between J ^ i , n and J^ i > s . 
Fixing an isomorphism from (Zp, + ) into (C, •)> the complex numbers , gives 
an isomorphism from the dual space of N to Irr(N). T h u s the isomorphism 
a : Nn-^ Ns induces an "adjoint mapping" , a-* : lrr(Ns) —> Irr(iVn), defined 
by (r*(08)(n) = 68(<r(n)) for 0s G Irr(N8) and w G Nn. 

We now construct a bijection between the characters of degree p2 + p 
of Gn and Gs. Let A i>5i = 1, . . . , (p — l ) / 2 be representat ives of the (p — l ) / 2 
orbits in Irr(iV s) of size £2 + £, chosen so as to have the same inertial group, 
Ss. This is possible since all subgroups of G/N of order (p — l ) / 2 are conjugate 
[4, I I , 8.5]. Let the inertial group of a*(\it8) 6 Irr(Nn) i = 1, . . . , (p - l ) / 2 
be Sn. Let t ing S denote either Sn or Ss, we have t h a t NG/N(S/N) is dihedral 
of order p — 1 [4, I I , 8.3]. By the Schur-Zassenhaus theorem NGn(Sn) splits 
over Nn, say with complement Cn. Then â : N(5W) —» N(5 S ) defined for 
cw £ CwiVn = N ( 5 n ) by <r(cw) = (ciVw, w) is an isomorphism which extends a. 
Let \itS 6 I r r (5 5 ) be an extension of \i>s for i = 1, . . . , (p — l ) / 2 . Also let 
JLXS be a generator of the cyclic group Irr(Ss/Ns). J u s t as a induced a*, the 
isomorphism (r induces natural ly â* : I r r (5 s ) —> Ir r (5 w ) . Then the mapping 

^ W u ) ) 0 » ^ ^ ^ , , ) 0 ' t , i = 1, . . . , (/> - l ) / 2 

is a bijection between the irreducible characters of Gn and Gs of degree >̂2 + p. 
We use (j to define the bijection between J^2 l % and J^2 > s . Notice t h a t every 

class in J ^ 2 intersects S — N, since every element of order dividing (p — l ) / 2 
in G/iV lies in one of the unique class of cyclic subgroups of order (p — l ) / 2 
[4, I I , 8.5]. Fur the r N ( 5 ) controls fusion in 5 — N if an odd prime divides 
(p — l ) / 2 since N(S)/N and S/N are the normalizer and centralizer of a 
Sylow subgroup of G/N [4, IV, 2.5] and a similar a rgument works if (p — l ) / 2 
is a power of 2. T h u s the intersection of a class in J ^ 2 with S — N is a class of 
N(S). Combining the two bijections whose existence is implied by the last 
s t a t ement with the bijection between the classes of N(5W) and N(SS) induced 
by â gives the necessary bijection between J ^ 2 n and J^ 2 i S . Notice (for later 
use) t h a t if the natura l mappings 

i , . : N ( S , ) - * N ( S , ) / t f . and „» : N(Sn) - * N(Sn)/Nn 

are defined, then the definition of â implies r]sâ = Trjn. 
We may now show t h a t corresponding characters of degree p2 + p are 

equal on corresponding classes regardless of how the bijection from J^i<n to 
J ^ i t S is defined for i = 3, 4. Indeed, irreducible characters of degree p2 + p 
of Gn and Gs are induced from Sn and Ss respectively where |5/AT | = (p — l ) / 2 
and so must vanish on members of classes from £fcii% and <&itS for i = 3, 4. 
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Let 

X, = WKs)Gs and xn = (â*(nAi,s))
Gn for i,j G {1, . . . , (p - l ) / 2 } . 

Then (XS)NS *S the sum of characters of Irr(iV s) in the orbit of \itS and (xn)Nn 

is the sum of characters of lrr(Nn) in the orbit of cr*(Xî>5). But for n G Nni 

the definition of a* gives t ha t 

(°*(Ks)yW = X<,/<'>(er(w)) for g G Gw/iVn. 

Finally for classes in J^ 2 , n let xn G 5 n — Nn so tha t (T(XW) £ SS — NS and 
represents the corresponding class in J^2 > s . Then since N ( 5 ) controls fusion 
in 5 — N, the formula for induced characters gives 

Xn(xn) = (<r*WX(,s))N<s»>(*„) 

and similarly 

Xs(fM) = Gx.'K<..)N<s,) (*(*»))• 

By the definition of <r*, these are equal and so we have shown corresponding 
characters of degree p2 + p agree on corresponding classes. 

The same arguments may be applied to the characters of degree p2 — p 
to define a bijection between J^ 3 ( n and J^ 3 l S and a bijection between the irre
ducible characters of Gn and Gs of degree p2 — p with properties similar to 
those of the bijections already defined. No additional difficulties arise in this 
case. 

We now consider the correspondences between the characters of degree 
(p2 — l ) / 2 and between J^ 4 , n and Jf 4 l i . T h e situation here is less straight
forward since the normalizers of the appropriate inertial groups in Gn and Gs 

are not isomorphic. However, we can give an isomorphism between certain 
sections of Gn and Gs which will meet our needs. 

We introduce some notat ion. Let Xi>n G Irr(Nn) be chosen from an orbit 
of size (p2 — l ) / 2 . No t all members of {Ai,n*|i = 1, . . . , p — 1} lie in the 
same orbit, for otherwise the stabilizer of {Xitn*|i = 1, . . . , p — 1} modulo Nn 

would have index (p + l ) / 2 in Gn/Nnj a simple group containing an element of 
order p. Let \2>n G Irr(iVre) be a power of \\>n in the other orbit of size (p2 — l ) / 2 . 
Let Sn and Kn be respectively the common inertial group and kernel of \ i t W 

and \2>w. Notice t ha t since \Sn : Kn\ = p2, the commuta tor subgroup satisfies 
Sn ' C Kn. Let \it8 G lrr(Ns) be defined by (7*(Xif,) = Xi>n for i = 1, 2. Then 
the inertial group and kernel, 5 S and Ks of XifS and X2>s satisfy r{Sn/Nn) = 
5 s / iV5 and o-CJT,,) = Ks. 

Let 5 denote either Sn or 5 5 . For x G 5 — iV it is easy to check t ha t the 
Jordan normal form for x acting on the vector space TV has one block. I t 
follows tha t 

1 < Z ( 5 ) < S' = K < N. 

Since 

xv G NnC(x) = Z(S) 
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we see that S/K is elementary abelian of order p2. Now N(5 ) /5 is cyclic of 
order (p — l ) / 2 and so S/K is the direct sum of two linear N(5)/5-modules, 
one being N/K. Let L/K be the other for K < L < S. As N ( 5 ) / 5 modules 
we have that 

L/K = L / ( J V n L ) ~ NL/N = 5/iV. 

Thus the action of N(S)/S on L/i£ is determined in N(S)/N. 
We may now define an isomorphism 

<r:N(Sn)/Kn->N(S,)/Ka. 

The symbol B is redefined for the remainder of the section to emphasize the 
analogy between this and the former construction. Let tn Ç N(5ra) — Sn with 
\tn\ = (P ~ l ) / 2 and define t, = (tnNny 1) £ N(S.) - 5,. Then r(tnNn) = 
£siV5. Let nn £ Nn — Kn and ws = (r(nn). Finally let ln £ Ln — Kn and 
Is G r{lnNn) C\ Ls. The last comment in the preceding paragraph shows that 
tn acts on (lnKn) just as ts acts on (lsKs). Since a intertwines with r we see that 
tn acts on (nnKn) just as £s acts on (nsKs). Therefore if we define â(tnKn) = 
tsKs, â(lnKn) = lsKs and â(nnKn) = nsKS} then â can be extended uniquely 
to an isomorphism from N(Sn)/Kn to N(SS)/KS. As in the previous case a 
induces a bijection 

â* : Irr(â(Tn)/Kn) ->Irr(Tn/Kn) 

for each Kn ^ Tn ^ N(Sn). 
Let Us G Irr(5s/7VS) be such that 

U ' l J G Z} = Irr(S, / tf , ) . 

Let Xf(S G Irr(5s) be an extension of XitS for i = 1,2. Then the correspondence 
between characters of degree (p2 — l ) / 2 is given by 

(<x*WX*,s))
Gn<-> (nAi.s)0' i = 1 .2 ; j = 1, . . . , £ - 1. 

Since all characters of degree (£>2 — l ) / 2 are induced from a Sylow ^-subgroup, 
they vanish on J^2 and J^3. Since (7^/^ is induced by a-, corresponding charac
ters of degree (£2 — l ) / 2 are equal on corresponding classes in C^\%n and J^i , s . 

It remains to define the bijection between J^4>w and J^4)S. Since |5 : iV| = p, 
fusion in S/N is controlled in N(S)/N. Thus the conjugacy classes of G in 
J^ 4 when intersected with 5 give the N(S)-conjugacy classes in 5 — N. We 
claim that the conjugacy classes of N(5) in 5 — N are in one to one corre
spondence with the conjugacy classes of N(S)/K in S/K — N/K. Indeed for 
x G 5 — N, a reconsideration of the Jordan normal form for x acting on N 
shows that |Cs(x)| = p2. Thus x has p2 conjugates in S. But two conjugates 
are always in the same coset of S; = K. Finally \K\ = p2 implies that xK is 
the class of x in S. The bijections above, when combined with the map between 
classes of N(Sn)/Kn and N(SS)/KS defined by â, give the desired bijection. 
Finally since <r* is an "adjoint mapping" to â, we see that corresponding 
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characters of degree (p2 — l ) / 2 agree on corresponding classes in jT4ln and 

We have now completed the definition of the bijection between the classes 
of Gn and of Gs. It remains to define a bijection between the characters of 
Gn and Gs which contain Nn and Ns respectively in their kernels, i.e., between 
Irr (Gn/Nn) and Irr (Gs/Ns). But r : Gn/Nn —» GSNS is an isomorphism. Further 
the map between classes we have defined has the property that corresponding 
classes taken modulo Nn and Ns respectively correspond under the map 
between classes of Gn/Nn and Gs/Ns induced by r. Thus extending our map 
between characters to Irr (Gn/Nn) and Irr (Gs/Ns) by the * 'adjoint mapping" 
r* will guarantee that corresponding characters agree on corresponding classes. 
Thus Gn and Gs have the same character table. 

7. Frattini subgroups. It remains only to show that Gn and Gs have 
Frattini subgroups of different orders. It is easy to see that $(G/N) = N 
implies $(G) C N. In Gs, (Gn/Nn) X 1 is a maximal subgroup since Ns = 
1 X Nn is an irreducible Gs-module. Thus 

*(G.) Q {GJNn X 1) C\ (1 X Nn) = lGa. 

In Gn, let M be a maximal subgroup. If Nn ÇË M, then iVnAf = C7W and so 
# n ^ M < NnM = G„. Now 7Vn is an irreducible Gn-module so Nn (^ M = 1, 

in particular there is an element of order p in Gn — Nn. Since is not 

trivial in Gn = PSL(2, Z,V<L) and since p ^ 5, P. Hall's theory of regular 
^-groups [4, III, 10.2, 10.5] shows that all elements of £-power order in 
Gn — Nn have order p2. Thus every maximal subgroup of Gn contains Nn and 
so *(GH) = Nn. 

Since the Frattini subgroups have different orders, it is clear that no set 
of classes of G can be determined from the character table of G such that 
the union of the set is the Frattini subgroup. 
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