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Introduction. An example of a non-topologizable algebra was given in [2]. In
[4] Zelazko gave a simple proof of the fact that, if X is an infinite-dimensional vector
space, then the algebra of all finite-rank linear operators on X is not topologizable
as a topological algebra. In the following we use a similar idea to prove that, if F'is a
Fréchet space which is not normable, then each subalgebra 4 of the algebra of all
bounded linear operators on E such that 4 contains the ideal of continuous, finite-
rank operators, is non-topologizable as a topological algebra. This is a shorter proof
and more general version of the result of [1].

Preliminaries. Let E be a locally convex space, with dual space E’, and let (p,)
be the family of separating continuous seminorms which defines the topology 7 of E.
The spaces of all bounded linear operators and all continuous, finite-rank operators
on E will be denoted by B(F) and F(E), respectively. So F(E) C B(E).

Let E® E’ be the tensor product of E and E’, so that E® E’ is a linear space
generated by {xo ® A : xo € E, Ay € E’}. Here xo ® XA is defined by:

(X0 ® Xo)(x) = (x, Mo)xo (x € E),

where the notation (x, A¢) is used for Ag(x). We identify £ ® E’ with F(E).

We recall that a topological algebra A is an associative algebra with a topology
on it such that it is a (Hausdorff) topological linear space and the multiplication is
jointly continuous.

Now take A4 to be a subalgebra of B(E) containing F(E), and let A be a topo-
logical algebra with respect to some topology. Take V to be a balanced, absorbing,
local base for the topology of A4.

Fix x¢ € E. Since E is locally convex, there exists Ay € E’ with (xg, A¢) = 1. Since
the topology of A is Hausdorff, there exists V€ V for which xg ® o € V. Now
choose Win V with W2 C V, and define

K=convixe E: x® Ao € W}.

Clearly K is convex, absorbing, balanced subset of E. So pg, its Minkowski func-
tional, is a seminorm on E. We shall show that pg is actually a norm.
For each A € E’, there is m; > 0 such that

Xo ® A € my W.

Now, if x € K, x® Ao € W, and A € E’, we have

(X0 ®A) o (x ® Ao) € M W2 Cm, V.
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It is easy to see that

(xo ®A) o (x ® Ag) = (x, A)(x0 ® Ag).

So (x, A)(xo ® Ag) € my V, and, since xo® Ao € V, it follows that |({x,A)] < my.
Therefore |(x, A}| < m, for each x € K, and consequently

[(x, M)] < mypg(x) (x € E). (1)

This shows that pg is a norm because, for each x # 0 in E, there exists A € E’ with

(x,4) #0,

Let us write ||x|| for pgx(x). Rewriting (1) we obtain:

(e, M <myllx|l (xe E,xeE").

This relation also shows that B={x € E: ||x|| < 1} is a weakly bounded set in E.
Since E is locally convex, B is bounded. So, for each «, there exists k, > 0 with

Pa(x) < kollxll (x € E).

By replacing p, with p,/k,, we can suppose that

po(x) =[xl (x € E).

We can now state our result.

PROPOSITION Let (E, T) be a Fréchet space, and let A be a subalgebra of B(E)
containing F(E). Then there exists a topology on A with respect to which it is a topo-
logical algebra if and only if E is a Banach space.

Proof. Let || - || and p, be as above, and define

P(xX) =suppa(x) (x € E).

Then p(x) < ||x]||, and, since (p,) is a separating family of seminorms, p is a norm on E.

Define B= {x e E:p(x) < l}. Then ~I§ is an absolutely convex, absorbing set.
Since B = ﬂa{x € E: pyu(x) < 1}, clearly B is t-closed. This shows that B is a barrel.
Since (E, ) is a barrelled space, B contains a neighbourhood of the origin. Hence
there exists « such that

P(X) < capu(x) (x € E)

for some ¢, > 0. Consequently the identity map id: (E, t) — (E, p), is continuous.
The definition of p shows that id: (E, p) — (E, 7) is also continuous. Therefore
the topology t of E as a Fréchet space can be defined by the norm p, and so E is a
Banach space.
The converse is immediate.
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This proposition shows that for a non-normable, Fréchet space E, any sub-
algebra of B(E) containing the ideal of continuous, finite-rank operators cannot be
topologized as a topological algebra.

For a related result to ours, see [5].
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