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ABSTRACT

Let X be a compact Kéhler manifold and let (L, ) be a pseudo-effective line bundle
on X. We first define a notion of numerical dimension for pseudo-effective line bundles
with singular metrics, and then discuss the properties of this numerical dimension.
Finally, we prove a very general Kawamata—Viehweg—Nadel-type vanishing theorem on
an arbitrary compact Kéhler manifold.

1. Introduction

Let X be a compact Kithler manifold and let (L, ) be a pseudo-effective line bundle! on X. Tsuji
[Tsu07] defined a notion of numerical dimension for such a pair, using an algebraic approach.

DEFINITION 1.1. Let X be a projective variety and let (L, ¢) be a pseudo-effective line bundle.
The numerical dimension of (L, ¢) is defined to be

Vnum (L, ¢) = max{dim V' | V' is a subvariety of X such that
¢ is well-defined on V' and (V, L, ¢) is big}.

Here, (V, L, ) being ‘big’ means that there exists a desingularization 7 : V — V such that

o ROV, ma*(L) @ I(mep o))
m—00 mm

> 0,

where n is the dimension of V.2

Since Tsuji’s definition depends on the existence of subvarieties, it would be convenient to
find a more analytic definition in the case where the base manifold is not projective. Following
a suggestion of J.-P. Demailly, we first define a notion of numerical dimension, nd(L, ) (see
Definition 3.1), for a pseudo-effective line bundle (L, ¢) on a manifold X which is just assumed
to be compact Kéhler. The definition involves a certain cohomological intersection product of
positive currents, introduced in § 2. We discuss the properties of nd(L, ) in §§ 3 and 4. The main
properties are as follows.
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PROPOSITION 1.2 (Proposition 3.7). Let (L, ) be a pseudo-effective line bundle on a projective
variety X of dimension n. If nd(L, p) = n, then

0
Jim h°(X, mL ® Z(my)) -

n
m—>00 m

0.

PROPOSITION 1.3 (Proposition 4.2). Let (L, ) be a pseudo-effective line bundle on a projective
variety X. Then
Vnum (L, ) = nd(L, ¢).

Our main goal in this article is to prove a general Kawamata—Viehweg—Nadel vanishing
theorem on an arbitrary compact Kahler manifold. Our result is as follows.

THEOREM 1.4 (Theorem 5.12). Let (L, ) be a pseudo-effective line bundle on a compact Kahler
manifold X of dimension n. Then

HP(X,O(Kx +L)®Zi(p)) =0 foreveryp>=n—nd(L,p)+1,

where Z () is the upper semicontinuous variant of the multiplier ideal sheaf associated to ¢
(cf. (2.1) or [FJO5]).

The organization of the article is as follows. In § 2, we recall some elementary results about
the analytic multiplier ideal sheaves and define our cohomological product of positive currents by
quasi-equisingular approximation. In § 3, using the product defined in § 2, we give our definition
of the numerical dimension nd(L, ¢) for a pseudo-effective line bundle L equipped with a singular
metric . The main goal of this section is to obtain an asymptotic estimate of sections when
nd(L, ) = dim X. In §4, we prove that our numerical dimension coincides with Definition 1.1
when X is projective; we also give a numerical criterion for the numerical dimension and discuss a
relationship between the numerical dimension without multiplier ideal sheaves and the numerical
dimension defined here. In §5, we first give a quick proof of our Kawamata—Viehweg—Nadel
vanishing theorem on projective varieties; finally, we generalize the vanishing theorem to arbitrary
compact Kéhler manifolds by the methods developed in [DP03], [Eno93] and [Mou95].

2. Cohomological product of positive currents

We first recall some basic definitions and results about quasi-psh functions (see [Dem12] for
details). Let X be a complex manifold. We say that ¢ is a psh function (respectively, a quasi-psh
function) on X if ¢ : X — [—o00, 00| is upper semicontinuous and

i00p > 0 (respectively, i00p > —c - wx),

where c is a positive constant and wx is a smooth hermitian metric on X. We say that a quasi-psh
function ¢ has analytic singularities if ¢ is locally of the form

o) =com( S o) + (),

where ¢ > 0 and the g; are holomorphic functions. Let ¢ and 1 be two quasi-psh functions. We
say that ¢ is less singular than 1 if
Y<p+C

for some constant C'. We write this as ¢ < .
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We now recall the analytic definition of multiplier ideal sheaves. Let ¢ be a quasi-psh function.
We define the multiplier ideal sheaves associated to the quasi-psh function ¢ as

Z(p)s = {f € Ox: /U |f|26_2“’ < +oo}

where U, is some open neighborhood of z in X. It is well known that Z(¢p) is a coherent sheaf
(cf. [Dem12] for a more detailed introduction to the concept of multiplier ideal sheaf). When
¢ does not possess analytic singularities, one needs to introduce the ‘upper semicontinuous
regularization’ of Z(y), namely the ideal sheaf

Zi(p) = lim Z((1+ €)y). (2.1)

e—0Tt

By the Noetherian property of coherent ideal sheaves, there exists an € > 0 such that
Ti(p) =Z((1+€)p) forevery 0 <€ <e.

When ¢ has analytic singularities, it is easy to see that

Zi(p) = Z(p). (2.2)

Conjecturally, the equality (2.2) holds for all quasi-psh functions. Recently, Berndtsson [Berl3]
proved that (2.2) holds for quasi-psh functions ¢ such that Z(¢) = Ox. However, it is unknown
whether his method can be generalized to arbitrary quasi-psh functions.?

Important convention. When we talk about a line bundle L on X, we always implicitly fix
a smooth metric hg on L. Given a quasi-psh function ¢ on X, we can therefore construct a new
metric (which may be singular) on L by setting hg - e~ %. In a similar fashion, when we prescribe
a ‘singular metric’ ¢ on L, we actually mean that the metric on L is given by hg - e~ %. Recall
that the curvature form for the metric ¢ is
i i .
%@w(L) = %@ho(L) + dd%p

by the Poincaré-Lelong formula.

DEFINITION 2.1. Let L be a pseudo-effective line bundle on a compact Kéhler manifold X
equipped with a metric ¢. We say that (L,y) is a pseudo-effective pair (or sometimes a
pseudo-effective line bundle) if the curvature form (i/27)0,(L) is positive as a current, i.e.
(i/2m)©,(L) = 0.

Let 7 : X — X be a modification of a smooth variety X, and let ¢ and 1 be two quasi-psh
fuctions on X such that Z(¢) C Z(v). In general, this inclusion does not imply that Z(¢ o 7) C
Z(3p o). In order to compare Z(p o) and Z(1) o ), we need the following lemma.

LEMMA 2.2. Let E = n* Ky — Kg. If Z() C Z(1)), then
I(pom) @ O(=E) CI(Y o),

where the sheaf O(—F) consists of the germs of holomorphic functions f such that div(f) > E.

3 The equality (2.2) is well known in dimension 1 and was proved to be true in dimension 2 by Favre and Jonsson
[FJ05]. See [DP03] for more details about Z; (¢).
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Proof. 1t is known that Z(¢ o ) C 7*Z(y) (cf. [Dem12, Proposition 14.3]). Then, for any f €
Z(p om); we have

/ o TP < o (2.3)

where U, is some open neighborhood of = (though its image m(U,) is not necessarily open).
Combining (2.3) with the condition Z(p) C Z(1)), we get

/ﬂ o 1T f12e2Y < 400. (2.4)
The inequality (2.4) implies that

/Uz |fI?]T7e 2T < 400, (2.5)
where J is the Jacobian of 7. Since O(—FE) = J - Ox, (2.5) implies the lemma. O

Let X be a compact Kéhler manifold and let 7" be a closed positive (1,1)-current. It is well
known that T can be written as

T =0+ dd,

where 6 is a smooth (1, 1)-closed form representing [T] € H!(X,R) and ¢ is a quasi-psh function.
Demailly’s famous regularization theorem states that ¢ can be approximated by a sequence of
quasi-psh functions with analytic singularities. This type of approximation is called an analytic
approximation of ¢. Among all such analytic approximations, we want to deal with those which
somehow preserve the information concerning the singularities of T. More precisely, we introduce
the following definition.

DEFINITION 2.3. Let 8+ddp be a positive current on a compact Kéhler manifold (X, w), where 6
is a smooth form and ¢ is a quasi-psh function on X. We say that {¢}72; is a quasi-equisingular
approximation of ¢ for the current 6 + dd°y if it satisfies the following conditions:

(i) the sequence {(}72, converges to ¢ in L' topology and
0+dd°pr > —T - w

for some constants 7. — 0 as k — +oc;
(ii) all the ¢y have analytic singularities, and ¢y < g4 for all k;
(iii) for any § > 0 and m € N, there exists ko(d,m) € N such that

Z(m(140)px) C Z(my) for every k = ko(d,m).

Remark 1. By condition (i), the concept of a quasi-equisingular approximation depends not on
@ only but on the current 6 + ddyp.

The existence of quasi-equisingular approximations was essentially proved in [DPSO0I,
Theorem 2.2.1] by a Bergman kernel method. Such approximations are in some sense the most
singular ones asymptotically. The following proposition makes this assertion more precise.
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PROPOSITION 2.4. Let 0 4 dd°p1 and 0 + dd®ps be two positive currents on a compact Kéhler
manifold X. We assume that the quasi-psh function yy is more singular than ;. Let {¢;1}2,
be an analytic approximation of 1, and let {y; 2}5°, be a quasi-equisingular approximation of
2. For any closed smooth (n — 1,n — 1)-semipositive form u, we have

lim (ddC(Pi,l)ac ANu = m (ddc(PiQ)ac A u, (2-6)

i—>ocoJX = JX
where (ddp; 1)ac denotes the absolutely continuous part of the current dd°y; ;.
Proof. The idea of the proof is rather standard (cf. [Bou02] or [Dem12, Theorem 18.12]). To
prove (2.6), it is enough to show that

/ (dd°ps1)ac Nu = lim (dd°pi2)ac N u (2.7)
X

i—oo Jx

for every s € N fixed. Since {y;2}5°; is a quasi-equisingular approximation of ¢, for any § > 0
and m € N, there exists a ky(d, m) € N such that

Z(m(1+ 6)pr2) C Z(mepz) for every k > ko(d,m). (2.8)
Since @51 < @1 < 2 by assumption, (2.8) implies that
Z(m(1 + 0)pr,2) C Z(mps1) (2.9)

for any s € N and k > ko(5, m). R
Using (2.9), we can proceed to prove (2.7). Let 7 : X — X be a log resolution of ¢; 1, i.e.
dd®(ps1 o) is locally of the form

dd(ps1om) = [F]+ C™,
where F' is a R-normal crossing divisor. By Lemma 2.2, (2.9) implies that
I(m(1+0)pr20om) @ O(=J) C I(mpsy om) = O(—mF|) (2.10)

for k > ko(6, m), where J is the Jacobian of the blow-up 7. Since F' is a normal crossing divisor,
(2.10) implies that m(1 + §)dd°pr 2 o m + [J] — [mF] is a positive current. Then

/A(m(l +9) - dd . © Tac Au < C + /A(m - dd®ps1 0 T)ac AU
b'e b'e

for k > ko(0, m), where C' is a constant independent of m and k. Letting m — +o0, we get

/ (ddpr,2 0 T)ac AN u < O(l) + C1d + / (dd°ps1 0 T)ac A u (2.11)
X m X

for k > ko(d, m), where C is a constant independent of m and k. Then

1
/ (dd°pr2)ac N u < O<> + C1d —l—/ (dd°ps1)ac Nu for k = ko(0,m).
X m X

Letting m — +o0o0 and 6 — 0, we get

lim (dd°pr2)ac N u < / (ddps,1)ac A u,
k—oo Jx X

and so (2.7) is proved. O
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Remark 2. By taking @1 = 2 and ¢;1 = ;2 in Proposition 2.4, we obtain that the sequence
{/x(dd°pi2)ac A u}2, is in fact convergent. Moreover, if {@;i} and {@;2} are two quasi-
equisingular approximations of ¢, Proposition 2.4 implies that

Im [ (dd@i1)ac Au= lim [ (dd°pi2)ac A u. (2.12)
1—> 00 X 71— 00 X
Thanks to Proposition 2.4 and (2.12), we can define a related cohomological product of closed

positive (1, 1)-currents.

DEFINITION 2.5. Let T1,..., T} be closed positive (1, 1)-currents on a compact Kéhler manifold
X. We write them in the potential forms T; = 0; + dd°p; as usual. Let {(pi,j}]@’il be a quasi-
equisingular approximation of ¢;. Then we can define a product

<T17T27 .. 7Tk'>

as an element in Hié“(X) (cf. [Bou02] or [Deml2, Theorem 18.12]) such that for all u €
Hn—k:,n—k(X)
<T1, Ty, ... ,Tk> ANu = 'lim ((91 + ddc¢1’j)ac FANRIREIVAN (ek + ddcgokd‘)ac A u,
J—>0 X
where A is the usual wedge product in cohomology.

Remark 3. Let {t;;}32, be an analytic approximation (not necessarily quasi-equisingular) of
;. Thanks to Proposition 2.4 and some standard arguments (cf. [Dem12, Theorem 18.12]), we
have

lim (91 + ddc¢17j)ac A A (Hk + ddcl/)k,j)ac AU

joooJX

> .lim (91 + ddCQDLJ‘)aC FANRIREIVAN (Hk + ddc(pkﬂ')ac A Uu.
J—>00 X

This means that the product defined in Definition 2.5 is smaller than the product defined by
any other analytic approximation. In particular, the product defined in Definition 2.5 does not
depend on the choice of the quasi-equisingular approximation.

3. Numerical dimension

Using Definition 2.5, we can give our definition of the numerical dimension.

DEFINITION 3.1. Let (L, ) be a pseudo-effective line bundle on a compact Kéhler manifold X.
We define the numerical dimension nd(L, ¢) to be the largest v € N such that ((i©,(L))") #
0, where the cohomological product ((i©,(L))") is the v-fold product of i©,(L) given in
Definition 2.5.

Let (L, ) be a pseudo-effective line bundle on X of dimension n such that nd(L, ¢) = n. If
the quasi-psh function ¢ has analytic singularities, it is not difficult to see that

RO(X, mL ® Z(my))

m’I’L

admits a strictly positive limit by using the Riemann—Roch formula. When ¢ is just a quasi-psh
function, Tsuji conjectured in [Tsu07] that

RO (X, mL ® IZ(my))

mn
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also admits a strictly positive limit. The main goal of this section is to prove Proposition 1.2,
i.e. if nd(L, p) = n, then

0
lim h°(X, mL ® Z(mey)) -

n
m— 00 m

0.

To begin with, we explain the construction of quasi-equisingular approximations by a
Bergman kernel method. Before doing so, we first give a useful estimate that uses the comparison-
of-integrals method in [DPS01, Theorem 2.2.1, Step 2]. Although the proof is almost the same,
we present it here for the sake of completeness.

LEMMA 3.2. Let A be a very ample line bundle on a projective manifold X, and let (L, ) be a
pseudo-effective line bundle. Let ¢,, be the metric on L constructed by the Bergman kernel of
H(X,0(A+mL) ® O(my)) with respect to the metric mep. Then

I<8mg0m> C I(sp) for any m,s € N.
s

m —
Proof. First of all, we have the following estimate on X:

/ o= 250(2) _ / (2(m—s)<p(x)~2m-p(z)
s-p(2)<(sm/ (m—3))om () s-p(z)<sm/(m—s)-pm (@)

2m.- —2m-
< / e ‘Pme ®Y
X

= h%(X,0(A +mL) ® Z(myp)) < +oo.

Using the finiteness obtained above, for any f € Z((sm/(m — $))pm)z we have

/ ‘f|2e—25<p</ |f’26—2scp+/ ’f‘Qe—(Qsm/(m—s))cpm
Us s (@) < (sm/ (m—3))prm () Us

<Sup|f|2-/ 6—2890+/ | f[2e—26m/n=s)em < 4o
sp(@)<(sm/ (m—s))gm (@) U,

Then f € Z(sg), so the lemma is proved. O

We are going to construct a quasi-equisingular approximation to . Although such
approximations were implicitly constructed in [DPS01, Theorem 2.2.1] for the local case, we
can easily adapt that construction to a global situation by using the same techniques.

ProproSITION 3.3. Let X be a projective variety of dimension n and let w be a Kahler metric
in HH(X, Q). Let (L, ) be a pseudo-effective line bundle on X (see Definition 2.1) such that
nd(L, ¢) = n.

Let (G, hg) be an ample line bundle on X equipped with a smooth metric h¢g, such that the
curvature form Oy, (G) is positive and sufficiently large (e.g. G is very ample and G — Kx is
ample). Let {1, 4:}; be an orthonormal basis of

HY(X,0(2PG +27L) @ Z(29¢))

with respect to the singular metric hQGp -h3" - e7%"%. We define

Ppg = By n E ‘Tp7q,z|hép.hg‘1-
(A
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Then there exist two increasing integral sequences p,, — +oo and ¢, — 400 with

Wm_ (gm/pm) = +oo

m—>—+00

and
dm — gm—1 = Pm — Pm—1 for allm € N

such that {¢p,, on }+2°) is a quasi-equisingular approximation of ¢ for the current (i/(27))Op, (L)+
dd®p. Set o, == ©p,, g for simplicity.

Moreover, {p,,} satisfies the following two properties.

(i) HY(X,0(2mG + 29 L) @ Z(29p,,)) = HO(X,0(2PmG + 29" L) @ I(29mp)) for every
m € NT.

(ii) There exists a constant C' > 0 independent of G and m such that

/(;Tr@%(L)Jrew) >C
X ac

for all e > 0 and m > mg(e) (i.e. m is larger than a constant depending on €).

Proof. By [Dem12, Theorems 13.21 and 13.23], there exist two sequences p,, — +oo and ¢, —
400 with
hnr@n Gm/Pm = +00

and
Gm — @m—1 = DPm — Pm—1 forallmeN

such that {¢,,} is an analytic approximation of ¢ for the current (i/27)©,(L). Since ¢,
is constructed using the Bergman kernel, by Lemma 3.2, {y,,} satisfies condition (iii) in
Definition 2.3. To prove that {p,,} is a quasi-equisingular approximation, it remains to verify
condition (ii) in Definition 2.3.

We first prove that

Op-1,0-1 = ¥pg and @pg1 <X Pp-1,4-1 (3.1)

by using the standard diagonal trick (cf. [DEL00] or [DPS01, Theorem 2.2.1, Step 3]). Let A be
the diagonal of X x X, and let 1 and w5 be two projections from X x X to X. Let

F =210t G 4+ 207 msG + 297 \nf L + 297 m3 L

be a new bundle on X x X equipped with a singular metric 29717 (p) + 297175 (). Since
2P~1G — Kx is ample enough, we can apply the Ohsawa-Takegoshi extension theorem from A
to X x X for the line bundle F'. Then the following map is surjective:

(HY(X,0(2P71G + 2971 L) @ T(27 19)))? - HO(X,0(2PG + 27L) @ T(2%¢)).  (3.2)
Let {fp,lg,l’i}fil be an orthonormal basis of

HO(X,002P71G +277'L) @ T(297 )

with respect to the singular metric hgﬁl : h%%l e~ 2% For any

g€ HY(X,0(2PG + 21L) @ I(2%¢)),
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by applying the effective version of the Ohsawa—Takegoshi extension theorem to (3.2), there exist
constants {c¢; j} such that

9(2) = <Z Ci,jfpl,ql,z‘(Z)fpl,qLj(w)>

0]

Z=w

and

> lei? < Cullgl?,

i?j

where C; depends only on X and ||g|| is the L? norm with respect to the singular metric h% -
h%qe_Qq‘P. By the Cauchy—Schwarz inequality, we have

‘g(z)ﬁéphgq < <Z|Cu‘2> (Z |fp—1,q—17i(2)fp—1,q—1,j(z)‘iép.hgq)

,J 4,J
2
<Gl (L1 ra- 16 1) -
i G 0

Assuming ||g|| = 1, we get

24 ln\g(zﬂhch.hgq < Toq + 94—1 In (Z |fp—1,q—1,i(z)|hép—1.hgq—1
2

InC
= 9q + Pp-1,4-1(2).
By the extremal property of the Bergman kernel, we finally obtain that

Pp-1,4-1 = Ppyg-

Thus the first inequality in (3.1) is proved. The second inequality in (3.1) is evident by observing
that G is very ample. Thanks to the construction of p,, and g, (3.1) implies that ¢,;,—1 < ©m.
Therefore ¢, is a quasi-equisingular approximation of ¢ for the current (i/27)0,(L).

It remains to check properties (i) and (ii) of the proposition. Property (i) comes directly
from the construction of ¢,,. Property (ii) follows from the fact that nd(L,¢) = n and ¢,, is a
quasi-equisingular approximation. O

The rest of this section is devoted to the proof of Proposition 1.2. The strategy is as
follows. Thanks to property (ii) of Proposition 3.3, we can construct a new metric on L with
strictly positive curvature that is more singular than ¢ in an asymptotic sense (cf. (3.11)).
Then Proposition 1.2 follows from a standard estimate for this new metric. Before giving the
construction of the new metric, we need the following two preparatory propositions.

PROPOSITION 3.4. Let ¢, be the quasi-psh function constructed in Proposition 3.3. Then there
exists another quasi-psh function @,, such that:

(1) supyex @m(z) = 0;
(ii) (i/2m)Og,, (L) = (0/2) - w, where § is a strictly positive number independent of m;

(il)) ©m < Om-
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Proof. Let m: X,, - X be a log resolution of ¢,,. We can therefore assume that
i ,
%Gsommr(” L) =[E]+ 8,

where [E] is a normal crossing divisor and 5 € C*°. Keeping the notation used in Proposition 3.3,
since w € H'(X,Q), we can find a Q-ample line bundle A on X such that ¢;(A) = w. Let € be
a positive rational number. By property (ii) of Proposition 3.3, we have

/ <217r@¢,m(L) + 6w> > C.
X ac

<Z Oy or (ML) + eﬂ*w>

Thanks to Proposition 3.3,

2T

ac

is a Q-nef class for m large enough. We can thus choose a Q-nef line bundle F},; on X, such that

c1(Fm) = (;ﬂ_@samoﬂ(ﬂ'*[/) + ew*w) N (3.3)
We now prove that
F,, —ér*w (3.4)
is pseudo-effective for a uniform constant § > 0 independent of € and m. In order to prove (3.4

)
we first give a uniform upper bound on F"~!.7*A. Let C; be a constant such that C; - A — L
is effective. Using the nefness of F,,, and 7*A, (3.3) implies that

Fpt - m ASFRT2 - (n° Lot en*w) - T A S BT (Cr ot ATt A
< Ferf?’ . ((Cl =+ 6)71'*A)2 A <o < ((Cl + G)W*A)nil SR AL

Therefore {7~ . 7*A},, is uniformly bounded (for € < 1). Combining this with property (ii) of
Proposition 3.3, we can thus choose a rational constant § > 0 independent of ¢ and m such that

Fl > ndFt. 1A (3.5)

Using the holomorphic Morse inequality (cf. [Dem12, ch. 8] or [Trall]) for the Q-bundle F),, —
§-7*(A) on X,,, we have
kn
RO (Xom, kFpy — kb -7 A) > C E(F;,g —ndF Lot A) + Ok, (3.6)

Combining (3.5) and (3.6), we obtain that F,, — d7*w is pseudo-effective.
By taking € < §/2, the pseudo-effectiveness (3.4) implies that (i/27)Oy,,or (7" L)ac — (6 /2)7*w
is pseudo-effective. In other words, there exists a quasi-psh function v, on X,, such that
i . 0 .
%@wmow(ﬂ' L) + dd“¢, > QT W (3.7)

Let C1 be a constant such that

sup (@m o T+ ¥y, + C1)(x) = 0.
IGX'm

Then (3.7) implies that ¢, o 7(x) + ¥, (x) + C1 induces a quasi-psh function on X, which we
denote by @,. It is easy to check that ¢, satisfies all the requirements in the proposition. O
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Remark 4. In the proof of Proposition 3.4 we assumed that € is rational. The reason is that we
want to use the holomorphic Morse inequality (3.6). However, by using the techniques in [DP04],
one can get the same results without assuming that e is rational.

Thanks to Proposition 3.4, we are able to construct a singular metric on L which is a type of
limit of @,,. We first recall the notion of upper semicontinuous regularization. Let 2 C R™ and
let (uq)acr be a family of upper semicontinuous functions  — [—o00, +0o[. Assume that (uy) is
locally uniformly bounded from above. Since the upper envelope

U = SUp Ugq,
ael

need not be upper semicontinuous, we consider its upper semicontinuous regularization,

u*(z) = lim sup w.
e—0 B(Z,G)

We denote this upper semicontinuous regularization by sup,(uq). It is easy to prove that if
{ua}aer are psh functions which are locally uniformly bounded from above, then sup, (uy) is
also a psh function (see [Dem12] for details).

We need the following lemma.

LEMMA 3.5. Let ¢ be a quasi-psh function with normal crossing singularities, i.e. ¢ is locally of
the form

= a;ln|fi|+0(1)
i
where the f; are holomorphic functions and ), div(f;) is a normal crossing divisor. Let {1;} be
quasi-psh functions such that

sup ;(2) <0 and dd“Y; > —Cw
zeX

for some uniform constant C' independent of i. If ¢ < 1; for all i, then
@ < sup(¢;).
(2

Proof. Since ¢ has normal crossing singularities and ¢ is less singular than ¢;, the differences
¥; —  are quasi-psh functions and

ddc(¢l - 30) = —C’lw (38)

for some uniform constant C independent of i. Since sup,¢x ¥i(z) < 0 and dd“y; > —Cw for a
uniform constant C, standard potential theory implies that there exists a constant M such that

/ vy < M for all 4.
X
Therefore

/ (i — @) < M’ (3.9)
X

for a uniform constant M’.
Combining (3.8) and (3.9), there exists a uniform constant C such that

sup (v;(z) — ¢(z)) < Cy  for all 4.
zeX

Therefore ¢ < sup;(¢;) and the lemma is proved. O
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Thanks to Propositions 3.4 and 3.5, we can construct the following crucial metric mentioned
in the paragraph before Proposition 3.4.

PROPOSITION 3.6. In the situation of Proposition 3.4, set

~ —_~

¢(2) := lim sup ((Gm+s(2)))-

m— o0 SZO

Then the new metric ¢ satisfies

i 0
and
Ym < ¢ for every m > 1. (3.11)

Proof. By Proposition 3.4, we have

i

(S
N ~ > > .
9 @<,0 (L) = 20&) for m = 1

By letting m — 400, (3.10) is proved. To check (3.11), since ¢ < SEB;;O(@,HS) by construction,
it is enough to show that

Pm < Sup (‘EerS)- (3'12)

s>0

Combining Propositions 3.3 and 3.4, we obtain that
Om =< Pmts < Pmys for every m and s. (3.13)
Let 7 : X — X be a log resolution of ¢,,. By (3.13), we have
OmOT =< OmasOT <X PmasOT. (3.14)

Since ¢, o ™ has normal crossing singularities, by Lemma 3.5, (3.14) implies that

Pm 0T <X SUP (Prts 0 T).
s=0

Upon passing to 7y, (3.12) is proved. O

Using the new metric @, we can give the following asymptotic estimate.

PROPOSITION 3.7 (Proposition 1.2). Let X be a projective variety of dimension n and let (L, ¢)
be a pseudo-effective line bundle on X such that nd(L,y) = n. Then

X, mL®T

n
m— 0o m

0.

Proof. Let {om} be the quasi-equisingular approximation of ¢ constructed in Proposition 3.3.
By Lemma 3.2, for every m € N we have

. 9k
h (X, mL @ T(myp)) > h° <X, mL ®I<$€_mgpk)>. (3.15)
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Let ¢ be the metric constructed in Proposition 3.6. By (3.11) in Proposition 3.6, we have

0 m - 2% 0 m .24k
for every k and m. Combining (3.15) with (3.16), we obtain that

AL
hO(X, mL ® Z(mep)) > h' <X, mL®I<$€_m@)>. (3.17)

Since (3.17) is true for every m and k, we can take k so large that 2% > m. By applying (3.10)
to (3.17), we have

0
lim h° (X, mL ® I(my))

n
m—o00 m

> 0,

so the proposition is proved. O

Remark 5. Proposition 3.7 implies that if nd(L,¢) = dim X, then vyum(L, ) = dim X (cf.
Definition 1.1). In the next section, we will study the relation between nd(L, ¢) and vyym (L, ¢)
in more detail.

4. A numerical criterion

Up to now, we have two concepts of numerical dimension for a pseudo-effective pair (L, ¢): the
‘algebraic’ concept vpum (L, ¢) and the more analytic concept nd(L, ¢) (see Definitions 1.1 and
3.1). We prove in this section that these two definitions coincide when X is projective. Before
giving the proof, we first list some properties of multiplier ideal sheaves which will be useful in
our context. The essential tool here is the Ohsawa—Takegoshi extension theorem (cf. [Dem12,
ch. 12]).

LEMMA 4.1. Let (L, ) be a pseudo-effective line bundle on a projective variety X of dimension
n, and let {yr} be a quasi-equisingular approximation of ¢. Let s1 be a positive number such
that

(o) =Z((1+ €)p) forevery 0 <€ < s1. (4.1)

Assume that A is a very ample line bundle and S is the zero divisor of a very general global
section of H°(X, A). Then the following properties hold.

(i) The restrictions

Z(mpr) = Z(mpkls),  Zi(mer) = Iy (mekls), (4.2)
I(mep) — Z(mepls), Ii(mp) — i (mepls) (4.3)

are well-defined for all m € N, where ¢|g denotes the restriction of ¢ on S and Z(y|s) is the
multiplier ideal sheaf associated to p|s on S.* Moreover, we have

Z((1+ €)pls) = Z((1 + s1)pls) for every 0 < € < s1.

(ii) {pk|s} is a quasi-equisingular approximation of ¢|g.

4 Note that ¢|s is also quasi-psh if it is well-defined.
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(iii) If the restrictions are well-defined, we have an exact sequence
0= Zi () ® O(=5) = adjs(p) > Zy(pls) = 0

for every 0 < e < s1, where

s€ f 2 — €
adJS(SO)Cﬂ - {f S Ol’ : L ‘8‘2‘(1|_E/2)6 2(1+ )Lp < 400 p.

(iv) adjs(p) = Z4(p) for every 0 < € < s7.

Proof. (i) First of all, since S is very general, ¢ and ¢ are well-defined on S. Since the
multiplier ideal sheaves here are coherent and the restrictions (4.2) and (4.3) contain only
countable morphisms, by Fubini’s theorem it is easy to see that the restrictions (4.2) and (4.3)

are well-defined.
To show the second part of (i), since S is very general, we can suppose that

Z((1 + s1)p) = Z((1 + s1)0ls) (4.4)
is well-defined. Combining this with (4.1), we obtain that
(1 + )g) = T((1+els) (45)

is well-defined for every 0 < € < s1. Let f € Z(S, (14 s1)¢|s)z- Applying the Ohsawa—Takegoshi
extension theorem to (4.4), there exists a function f € Z((1 + s1)¢) such that f|g = f. Thanks

to (4.1) and (4.5), fls € Z((1 4 €)¢ls) for every 0 < € < s1, so (i) is proved.
(ii) Since {¢y} is a quasi-equisingular approximation of ¢, we have that

Z(m(1+9)pr) C Z(myp) for every k = ko(d, m). (4.6)
To prove (ii), it is enough to show that
Z(m(1+9)pkls) C Z(mypls) for every k = ko(d, m). (4.7)

Let f € Z(m(1+40)¢k|s)e. By the Ohsawa-Takegoshi extension theorem, there exists a f € Z(X,

m(1+40)¢x). such that f|g = f. By (4.6), f € Z(my). Thanks to (4.3), we have f|s € Z(S, mep |s).
Hence (4.7) is proved.

(iii) First of all, the Ohsawa-Takegoshi extension theorem implies the surjectivity of the
sequence. It remains to prove the exactness of the middle term, i.e. for any f € O, satisfying
the conditions

f |fI? —2(14¢€)p
; S 03; and v, ’3’2(17_6/2)6 < +OO, (48)
we should prove the existence of some ¢’ > 0 such that
1P oaiene
€ < 400, (4.9)
v, sl
where s is a local defining function for S. In fact, if f/s € O,, then
/ i < 400 for every § > 0. (4.10)
v, |s[*°
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By taking €’ = ¢/4 in (4.9), we have

2 2 (/0149 /0| g2 (Be/a)/(10)
/ P 2eespe / o204 / EAl (4.11)
U, |S’2 U, ’8’2(1—6/2) U, |8|01

by Holder’s inequality, where

2
a= (2-2(1—6)1+6/4>~(1+e)~4:106“<4.

2) 14¢€ 3¢ 3e

Thanks to (4.8) and (4.10), the right-hand side of (4.11) is finite. Thus (4.9) is proved.
(iv) By the definition of Z (), we have an obvious inclusion

adjs() C Zy()-

In order to prove the equality, it is enough to show that for any f € Z((1 + €)p), we have

2
/ ||2|(‘71C|_/2)e_2(1+6)“0 dV < +o0, (4.12)
U, IS €

where s is a general global section of H%(X, A) independent of the choice of f and z.
The bound (4.12) comes from Fubini’s theorem. In fact, let {sg,...,sny} be a basis for
HY(X, A). Then

N
Z |si(z)]> #0 for every = € X.
i=0
Taking {79,...,7n} € CN*! we have
2
/ dT/ |f| 672(1+6)50 dV
ZZN:O |7:]2=1 U }sz\io Ti3i|2(1_6/2)
2
- / J (1—¢/2) e 2 dV/ 1 2(1—¢/2) dr
N —€ €
U ol @) ELo Pt (SN it/ S i) )

i —2(1+€)p / 1
= — e € dv T 2(1—c/2) dr < 400. (413)
/Uz |Z’]\LO |Si($)‘2‘(l /) Zf-\]:o |Ti|2=1 |7—0‘2(1 /2)

For any f € Z((1 + €)p), fixed, by applying Fubini’s theorem to (4.13) we obtain that

‘f|2 —2(1+4e€

for a general element s € H°(X, A). Observing that Z((1 + €)¢) is finitely generated on X, we
can therefore choose a general section s such that (4.14) is true for any f € Z((1 + €)p). Thus
(4.12) is proved. O

The next proposition confirms that our definition of the numerical dimension coincides with
Tsuji’s definition.

ProPOSITION 4.2. If (L,p) is a pseudo-effective line bundle on a projective variety X of
dimension n, then

Vnum(L) SD) = nd(L7 90)
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Proof. We first prove that
Vnum (L, ¢) = nd(L, ¢) (4.15)

by induction on the dimension. If nd(L, ) = n, (4.15) comes from Proposition 3.7. Assume
that nd(L,¢) < n. Let A be a general hypersurface given by a very ample line bundle, and let
{¢K} be a quasi-equisingular approximation of ¢. By Lemma 4.1, pi|4 is a quasi-equisingular
approximation of ¢|4. Since A is a general section and nd(L, ¢) < n, we have

. S
7

li v L n—s—1

i [ ((gromm) ) et

where s = nd(L, ¢). By Definition 2.3, we have
nd(L,pla) > s =nd(L, ¢), (4.16)

where nd(L, ¢|4) is the numerical dimension of (L,¢|4) on A. Note, moreover, that by the
definition of vpum,

Voum (Ls ) = vium (L, 0| 4)- (4.17)

Thanks to (4.16) and (4.17), we get (4.15) by induction on the dimension.
We now prove that

Vnum<L7 (P) < nd(L, (P) (418)
Assume that vpym(L, ) = s. By Definition 1.1, there exists a subvariety V' of dimension s such
that
— KV, mL®ZI
fm Vo ml@lime)) (4.19)
m— 00 mSs

Let {¢r} be a quasi-equisingular approximation of ¢. To prove (4.18), by Definition 3.1, it is
sufficient to show that
lim (i©y, (L))ac A [V] > 0. (4.20)
k— 400
We prove (4.20) by using the holomorphic Morse inequality for line bundles equipped with

singular metrics (cf. [Bon98]). Let m : X — X be a desingularization of V in X, and let V' be
the strict transform of V. Thanks to (4.19), we have

0(1/ *
m h°(V, mn*(L) (?I(mgpk o))
m— 00 m

>0 for every k. (4.21)

Let A be an ample line bundle on X and let w be a Kéhler metric such that ¢;(A) = w. By
Definition 3.1, we can find a positive sequence e, — 0 such that (i©, (L))ac + exw > 0. Using
[Bon98, Theorem 1.1], we have

/(7’@50 (L) Ekw) P m h( (V, mm (L) ®Z(m90k © ”))
% k ac = )

m— 0o mS

Combining this with (4.21), we obtain that
(1O, (L) + exw)s. A [V] > 0.

Upon letting k — +o00, (4.20) is proved. O
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Remark 6. From the proof, it is easy to conclude that if Si,59,...,SE are divisors of general
global sections of a very ample line bundle, then
nd(L, ¢|s,n85n--ns,) = max(nd(L, p),n — k). (4.22)

In fact, if nd(L,¢) < n — k, then by the same argument as above, ¢n,|sns,n--ns, IS also a
quasi-equisingular approximation of ¢|g,ns,n...ns, - Then (4.22) is proved by a simple calculation.

Before giving a numerical criterion to calculate the numerical dimension, we mention the
following interesting example, [Tsu07, Example 3.6]. The example tells us that we cannot expect
an equality of the form

— Inh%(X,0(A+mL) @ Z(my))

sup lim
A M—>0o0 Inm

=nd(L, p) (4.23)

where A runs over all the ample bundles on X. In fact, Tsuji defined a closed positive (1,1)-

current T on P!,
+oo0 31

1
T=2.> whi
i=1 j=1
where the P, ; are distinct points on P!. Thus, there exists a singular metric ¢ on L = O(1) with
(i/2m)©, (L) = T. It is easy to construct a quasi-equisingular approximation {¢} of ¢ such that

. k31
) 1

i=1 j=1

Then nd(L, ) = 0.
On the other hand, owing to the construction of ¢, we have
— WP O(s +m) @ I(my)) _ — hO(P1,O(s +4F —1) @ Z((4* — 1)p))

lim = lim -
m— 00 m k— o0 4r — 1

for every s > 1. By construction,
Z((4* = 1)p)e = O,

for x ¢ {Pi;}ick—1, and Z((4¥ — 1)) has multiplicity | (4% —1)/4%| = 4*=% — 1 on 3'~! points
{Pi1,..., P, 3i-1}. Therefore

k—1
hO(Plvo(S + 4k - 1) ®I((4k — 1)90)) =35+ 4k _ Z3i—1(4k—i . 1)
i=1
_ 9okt 1
= 23 +s 5
Then
0/ml
sup Tim In A%(P", O(A+m) ® I(myp)) _ n3
A M0 Inm In4
Therefore

nd(L, ) # sup Tm In hO(PL, O(A +m) ®@ Z(mey))

A M—>00 lnm

In view of the above example, we propose the following modified formula for calculating the
numerical dimension.
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PROPOSITION 4.3. Let (L, ) be a pseudo-effective line bundle on a projective variety X, and
let A be a very ample line bundle. Then nd(L, ¢) = d if and only if

ln( lim (RY(X, meA—G—mL@Z(mcp))/mn))

m— o0

lim =n—d.
e—0 Ine

Proof. First of all, the inclusion

HO(X, meA+mL®Z(mg)) D H(X, meA +mL @ T, (mg))
> HYX, meA+mL@I((m+1)p))

implies that h°(X, meA+mL®Z, (myp)) has the same asymptotic comportment as h%(X, meA +
mL ® Z(my)). Since we have constructed the exact sequence for Z in Lemma 4.1, we prefer to
calculate h?(X, meA +mL ® T, (my)) instead of h®(X, meA +mL @ T(myp)).

If nd(L, ) = n, the proposition follows directly from Proposition 4.2. Assume that nd(L,
@) =d < n. Let {Y;}™_; be the zero divisors of n very general global sections of H’(X, A). By
the remark after Proposition 4.2, there exists a uniform constant C' > 0 such that for all m
and e,

YN NY,_q, meA+mL @I, (mg)) = C(e,m) - m? (4.24)

with C(e,m) > C. Our aim is to prove by induction on s that

nl_s RO(Y1 N ---NYs, meA+mL @ T (myp))
1 1
— n—s—d n—s—d+1 4.9
C(e,m)e (n—d—>) +O(e )+O<m> (4.25)

for 0 < s<n-—d If s=mn-—d, (4.25) comes from (4.24). Assume that (4.25) is true for
so < s < n —d. We now prove (4.25) for s = sg — 1.
Let Y be the intersection of zero divisors of sg — 1 general global sections of H°(X, A), and

let
er(e,m) = <TZ€> (Y NYiN---NYy, meA®mL @ I (my)). (4.26)
We claim that
ﬁhom meA +mL @ L, (myp)) = —ﬁ <;(_1)qe§lq(e, m)> + O(;) . (4.27)
q=>

We postpone the proof of (4.27) to Lemma 4.4 and conclude the proof of (4.25) first. If ¢ >
n —d — sg + 1, we have, by definition,

: 1 0 —d-
Jim el (e) = O(e) < O, (4.28)

Then (4.27) and the induction hypothesis of (4.25) imply that

1
mn—so+1

n—d—so+1 n—d—so+1
_ _( Z (_1)q € C(€7m) '> + O(€n7d730+2) + O<;>

pt g(n—q—so+1—4d)

RO(Y, meA +mL @ T, (my))
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n—d—so+1 n—d—so+1 _ 1— 1
— _( Z (_1)‘16 C<€7 m) <n S0 + d>> + O(en—d—80+2) + O<>
q=1

(n—sp+1—d)! q m
en—d=so+1 (e, m) ot n—so+1—d 1
- _ ’ _1\q n—d—so+2 -
s 2 (")) oo )
1

= C(e,m)e"ds0F1

1
n—d—sg+2 -
(n—d—so+1)!+0(€ )+O<m>'

Therefore (4.25) is proved for s = sp — 1.
In particular, taking s = 0 in (4.25), we have

. — 0
21_1)1(1) W%gnoo mnen—dh (X,meA+mL ®Z,(myp)) > 0.

So the proposition is proved. O

We now prove the claim (4.27) in Proposition 4.3.
LEMMA 4.4. In the situation of Proposition 4.3, we have

1

1 0,0
WhO(Y, meA + mL ®I+(m@)) = ——e (f,m)

mnfso+1el
1 7.0, 1
= et (2D em) ) + O ).
q>1

Proof. Thanks to properties (iii) and (iv) of Lemma 4.1 and [Kiir06, §4], Oy (mL ® Z; (my)) is
resolved by a complex of sheaves

Oy (meA+mL @I (mp)) — @ Oyny,(meA +mL @I (my))

1<i<me
- P Ovovi,nv, (meA+mL @ Iy (myp))
1<ii<ig<me
N (%)
and then
H (Y, mL @ Iy (mgp)) = HF (e, m), (4.29)

where H” (e, m) represents the hypercohomology of (x).
We now calculate the asymptotic behavior of both sides of (4.29). The Nadel vanishing
theorem implies that

1
lim ———h*(Y, mL ®Z, (mp)) =0 for every k > 1. (4.30)

m—>o0 S0+l

Moreover, since we assume that nd(L,h) = d < dimY’, we have

1
lim ———h%(Y, mL ® I, (my)) = 0. (4.31)

m—oco mn—so+l

By calculating the asymptotic cohomology on both sides of (4.29), (4.30) and (4.31) imply in
particular that
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lim ———— Z Yenk(e,m) =0, (4.32)

m—o00 M50

where h*(e,m) denotes the dimension of HF (e, m).
We now prove the lemma by using (4.32). By the Nadel vanishing theorem, we have

1
q

m—o0o0 mt—so+1
for every p > 1. If p = 0, we have
me\ ;o _ 04
< )h Y nyin-.-nY, meA®mL ®Z (my))= e (e,m)
q

by (4.26). Then (4.32) implies that

1
lim ——— <Z(—1)qe?’q(e,m)> =0 for every € > 0,

m— oo mN—50+1

q=0
which is equivalent to saying that
1 0 1 €00
Wh (Y, meA+mL ®Zi(my)) = poavemrs (e,m)
= —ﬁ (;(—1)‘16?761(6, m)) + O(;) :
Thus the lemma is proved. O

Remark 7. On a compact Kahler manifold, Boucksom defined in [Bou02] a concept of numerical
dimension, nd(L), for a pseudo-effective line bundle L without any specified metric. Let ¢y be
a positive metric of L with minimal singularities. Proposition 4.3 implies, in particular, that

nd(L) > nd(L, ‘Pmin)- (4'33)
Example 1.7 from [DPS94] tells us that we cannot hope for an equality
nd(L) = nd(L, ¥min)-

In that example, the line bundle L is nef and nd(L) = 1. On the other hand, [DPS94, Example 1.7]
shows that there exists a unique singular metric b on L such that the curvature form (i/27)©p (L)
is positive. Moreover,

)
2 0,(L) =
27T®h( ) =[C]
for a curve C' on X. Therefore ¢pin = h and nd(L, ¢min) = 0. Hence
nd(L) > nd(L, ¥min)

in this example.
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5. A Kawamata—Viehweg—Nadel vanishing theorem
The classic Nadel vanishing theorem states the following.

THEOREM 5.1 [Nad90, Dem93]. Let (X,w) be a projective manifold and let (L, ¢) be a pseudo-
effective line bundle on X. If i©,(L) > ¢ - w for some constant ¢ > 0, then

HYX,OKx +L)®ZI(p)) =0 forevery q>1.

One of the limitations of Theorem 5.1 is that the curvature i©,(L) should be strictly positive.
Various attempts have been made to overcome this limitation. For example, the following more
classic Kawamata—Viehweg vanishing theorem has found many applications in complex algebraic
geometry (cf. [Dem12, ch. 6.D])

THEOREM 5.2 [Dem12]. Let X be a projective manifold and let F' be a line bundle over X such
that some positive multiple mF' can be written as mF = L+ D where L is a nef line bundle and
D is an effective divisor. Then

HYX,0(Kx + F)®Z(m™'D)) =0 forevery ¢ >n —nd(L).

The classic proof of Theorem 5.2 uses an ample line bundle on X and a hyperplane section
argument to perform an induction on the dimension. Therefore the hypothesis that X is
projective is crucial in Theorem 5.2. However, we believe that it would be useful to find a
Kawamata—Viehweg-type vanishing theorem for arbitrary Kéahler manifolds. In this direction,
Demailly and Peternell have proved the following result.

THEOREM 5.3 [DP03]. Let (L, h) be a line bundle over a compact Kéahler n-fold X. Assume that
L is nef. Then the natural morphism

HYX,0(Kx + L) ® T,.(h)) — HY(X,0(Kx + L))

vanishes for ¢ > n —nd(L) + 1.

Following several ideas and techniques from [DP03], we will prove in this section our main
theorem, Theorem 1.4, which says that given a pseudo-effective line bundle (L, ¢) over a compact
Kéahler manifold X of dimension n, one has

HP(X,O(Kx +L)®Zy(p)) =0 forp>n—nd(L,p)+1.

By (4.33), our vanishing theorem can be viewed as a generalization of Theorem 5.3. The main
advantage of this version of the Kawamata—Viehweg—Nadel vanishing theorem is that we do not
need strict positivity of the line bundle; but as compensation, we have to use the multiplier
ideal sheaf Z () instead of Z(¢). When X is projective, the proof of our vanishing theorem is
much easier. We first give a quick proof of Theorem 1.4 in the projective case using the tools
developed in the previous sections. To begin with, we prove Theorem 1.4 in the case where
nd(L, p) = dim X.

PROPOSITION 5.4. Let X be a smooth projective variety of dimension n. Let (L, @) be a pseudo-
effective line bundle over X with nd(L, ¢) = n. Then

HY(X,O(Kx +L)®Z.(p)) =0 foreveryi> 0.
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Proof. Recall that we first fix a smooth metric hg on L. The quasi-psh function ¢ gives a metric
hoe=% on L. That (L, p) is pseudo-effective means that

1

7
—0O,(L) = —06,(L) +dd°p > 0.
5 o(L) 5 ho(L) +ddp >0

Since (i/2m)O,(L) is not strictly positive, we cannot apply Theorem 5.1 directly. The idea is
to add a portion of the metric ¢ constructed in Proposition 3.6 to make the curvature form for
the new metric strictly positive. We will see that this operation preserves the multiplier ideal

sheaves Z, ().
First of all, by the definition of Z . (see §2), there exists a § > 0 such that

Zi(p) = Z((1 + 9)p)- (5.1)

Let ¢ be the psh function constructed in Proposition 3.6. Set ¢1 := (1 + o(€) — €)p + €@, where
0<e<land0 < o(e) < e Since dd°¢ > —cw for some constant ¢,” the condition o(e) < €
implies that

501 (L) = (1+0(6) = 50, (L) + €5-Op(L) + a(e)dd"p > 0.
Applying the standard Nadel vanishing theorem (cf. Theorem 5.1) to (X, L,Z(¢1)), we get
H'(X,0(Kx +L)®Z(p1)) =0 fori> 0. (5.2)
On the other hand, it not hard to prove that
T (p) =Z(p1) fore< 1. (5.3)

We postpone the proof of (5.3) to Lemma 5.5 and conclude the proof of Proposition 5.4 first. By
taking e small enough, (5.2) and (5.3) imply the proposition. O

LEMMA 5.5. In the situation of Proposition 5.4, if € is small enough, then
Z(p1) = L1 (#)- (5:4)
Proof. By (3.11) of Proposition 3.6, we have
(1+0(e))om = (1+0(€) = €)pm + eom < (1 +0(€) —€)p + €.
Therefore
Z(p1) CZ((1 + o (€))pm)- (5.5)
Note that, by Lemma 3.2, we have
Z((1 + o(€))em) C Ty () (5.6)
for m large enough with respect to o(e). Combining (5.5) with (5.6), we obtain that
Z(p1) € Zi ()

5In our context, since ¢ is a function on X, we have (i/27)0,(L) = (i/27)On, (L) + dd°p > 0. Therefore
dd®p > —cw.
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For the reverse inclusion of (5.4), we need to prove that if f € 7, (¢),, then

f€Z(p1)z-

By (5.1), we have

/ f2e 20499 < 4o, (5.7)

T

Since ¢ is a quasi-psh function, by taking e small enough, we have

/ e HU/? < 4o, (5.8)

x

Therefore (5.7) and (5.8) imply that
/ ‘f‘262(1+a(6)€)g&25@</ \f\ZeQ(H‘S)“"/ 2ADF o 4o
Uy z Uz

by Holder’s inequality. Since ¢1 = (14 0(€) — €)p + €p by construction, we have f € Z(¢1). The
lemma is proved. O

Using Proposition 5.4, we can prove the following Kawamata—Viehweg—Nadel vanishing
theorem by induction on the dimension.

PROPOSITION 5.6. Let (L, ) be a pseudo-effective line bundle on a projective variety X of
dimension n. Then

HP(X,O(Kx +L)®Z:(p)) =0 forp>n—nd(L,p)+ 1.
Proof. If nd(L, ¢) = n, the result has been proved in Proposition 5.4. Assume that nd(L, ¢) < n.
Let A be an ample line bundle that is large enough with respect to L, and let S be the zero
divisor of a very general global section of H(X, A). Let € > 0 be small enough that property

(iv) of Lemma 4.1 is satisfied (by Lemma 4.1, € is independent of A). By Lemma 4.1, we have
an exact sequence

0= Z () ® O(=5) = Ii(p) = Z4(S, ps) = 0. (5.9)
Therefore we get an exact sequence

HY(S,0(Ks+ L) @ T, (¢ls)) > H™(X,0(Kx + L) @ T, (¢))
- H"Y X, O(Kx + A+ L) @I, (p))

for every ¢ > 0. Since A is ample enough with respect to L, we have
HY X OKx+A+L)®Z, () =0
by the Nadel vanishing theorem. Thus the above exact sequence implies that
H(S,O(Ks + L) © T4 (¢ls)) — HT (X, O(Kx + L) © T4 (¢))

is surjective for every g. The proposition is proved by induction on the dimension. O
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The main goal of this section is to prove Theorem 1.4 for arbitrary K&ahler manifolds. To
achieve this, we use the methods developed in [DP03], [Eno93] and [Mou95]. To clarify the
idea of the proof, we first consider the following easy case. Assume that (X,w) is a compact
Kéahler manifold and (L, ¢) is a pseudo-effective line bundle with analytic singularities. Let
A1 < Ag < --- < Ay, be the eigenvalues of i©,(L) with respect to w. Let f be a smooth (n,p)-
form representing an element in HP (X, Kx ® L ® Z(p)) for some p > n — nd(L, ) + 1. Then
[x [f?e7?#w™ < +o00. By using a L? estimate (cf. [DP03] or Proposition A.1 in the Appendix),
f can be written as

f = 0uy, + v, (5.10)

with the following estimate:
1

1
2 _—2p 2 _—2p 2 _—2p
ur|“e + VL|%e < e , 5.11
/X|k| 2p6k/x|k| /X2p€k+)\1+/\2+"'+)‘p|f| (5:11)

where {€x} is a positive sequence tending to 0. Since p > n — nd(L, ¢) + 1, we have

/ <Z/\ >w” > 0. (5.12)

12p

If A\p(2) is generically strictly positive, (5.11) implies that

lim /|vk|2 % —.
k—+o00

By some standard results from functional analysis (cf. Lemma 5.8), we obtain that
f=0e HI(X,O(Kx + L) ®Z(yp)).

The situation becomes more complicated when A,(z) is not necessarily generically strictly
positive. In this case, thanks to the condition (5.12) and the fact that ¢ has analytic singularities,
we can use Monge-Ampere equations to construct a sequence of new metrics @5 on L such that
Ix | f|?e~2Pkw™ can be controlled by Ix |f|2e~2¥w™ and, more importantly, the place where the
pth eigenvalue of iO©g, (L) is strictly positive tends to cover the whole X. Letting & — 400, we
can thus prove that

f=0e HY(X,O(Kx + L) @ Z(p)).

In the general case, since ¢ does not necessarily possess analytic singularities, we are in
trouble when using L? estimates. Therefore we replace ¢ by a quasi-equisingular approximation
{¢r} and get estimates similar to (5.10) and (5.11) with ¢ replaced by ¢r. We can use a
Monge—Ampere equation to construct other metrics ¢y, for which we can control the eigenvalues.
Therefore we can use L? estimates for every $j. By a delicate analysis, we then prove the theorem.
Such ideas were already used in [DP03], [Eno93] and [Mou95]. We will construct the key metric
P in Lemma 5.9 and prove some important properties of @ in Lemmas 5.10 and 5.11. Finally,
we prove the vanishing theorem in Theorem 5.12.

To begin with, we show that 7, has analytic singularities. More precisely, we prove the
following result.

LEMMA 5.7. Let (L,¢) be a pseudo-effective line bundle over a compact Kéhler manifold X.
Then there exists a quasi-equisingular approximation {py} of ¢ such that

I(<1 + z> gok> =Z.(p) fork>1. (5.13)
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Proof. By [DPS01, Theorem 2.2.1], there exists a quasi-equisingular approximation {¢g} of
¢. The technique of comparing integrals discussed in [DPS01] implies that we can choose a
subsequence {¢ )} C {¢x} such that

I((l + i)wf(ko C . (p). (5.14)

In fact, if X is projective, we can take s = 1 + € and f(k) > k in Lemma 3.2. By Lemma 3.2,
we get (5.14). If X is an arbitrary compact Kéhler manifold, we can get the inclusion (5.14) on
any Stein open set of X. Using standard gluing techniques, we also obtain the global inclusion
(5.14) (see [DPS01, Theorem 2.2.1] for details).

For the opposite inclusion, we observe that ¢y is less singular than ¢, and the definition
of Z. () implies that

2

Thus the lemma is proved. O

The following lemma will be important in the proof of our Kawamata—Viehweg—Nadel
vanishing theorem. The main substance of the lemma is that to prove the convergence in
higher-degree cohomology with multiplier ideal sheaves, we just need to check the convergence
for some smooth metric. Although this technique is well known (see, for example, [DPS01,
Part 2.4.2]), we will present the proof here for the reader’s convenience.

First we fix some notation. Let (L, ¢) be a pseudo-effective line bundle over a compact Kéhler
r{lanifold X and let U = {Ua}aelv be a Stein covering of X. Set Uyga,--ay = Uag N+~ NUq,. Let
CUU,Kx ® L ®Zy(p)) be the Cech g-cochain associated to Kx ®@ L ® I, (). For an element
ce CYU,Kx ® L®Zy(p)), we denote its component on Unga;--ay BY Capay-aq- Let

5+ CP7 (U I (9)) — CPWU. T4 () (5.15)

be the Cech operator, and let ZP(U, T, (p)) = Ker d,41.

LEMMA 5.8. Let L be a line bundle over a compact Kédhler manifold X and let ¢ be a singular
metric on L. Let {Uy}aer be a Stein covering of X. Let u be an element in HP(X,O(Kx + L) ®
Z.(p)). If there exists a sequence {v}3°, C CP(U, Kx ® L ® I (y)) in the same cohomology
class as u satisfying the L? convergence condition

lim |k a0y |2 = O, (5.16)

k=00 JUag -

where the L? norm |v|? in (5.16) is taken for some fixed smooth metric on L, then u = 0 in
Y (X, 0(Kx + L) ® Iy (¢).

Proof. On the p-cochain space CP(U,Z.(p)), we first define a family of natural semi-norms: for
feCPU,Ti(p)), define a family of semi-norms by

Z |f[?w™  for any open set Vag.a, € Ung--a,- (5.17)

agQp Q- Qp

Cramm. CP(U,T.(y)) is a Fréchet space with respect to the family of semi-norms (5.17).
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Proof of the claim. We need to prove that if f; € Z, () and f; — fp with respect to the semi-
norms (5.17), then fo € Z, (¢). First of all, by (5.17), fo is holomorphic. By Lemma 5.7, we can
choose a quasi-psh function v with analytic singularities such that

I(¢) = I+ (p)-

Let 7 : X — X be a log resolution of 1. Then the current E = |dd®(1 o 7)| has normal crossing
singularities. Since f; € Z, (¢) = Z(1)), we have

(fiom)-J € O(—E), (5.18)

where J is the Jacobian of 7. Since f; o™ — fy o7 in the sense of weak convergence and E has
normal crossing singularities, (5.18) implies that

(foom)-J € O(—E).
Therefore fy € 7, (¢) and the claim is proved. O

As a consequence of the claim, the Cech operator (5.15) is continuous and its kernel ZP*I(Z/I ,
Zi(p)) is also a Fréchet space. Therefore we have a continuous boundary morphism between
Fréchet spaces,

5y CP YU T (0) = 27U T (). (5.19)

Since the cokernel of &, in (5.19) is H?(X,O(Kx + L) ® Z,(¢)), which is of finite dimension,

by the open mapping theorem from functional analysis, the image of 6, in (5.19) is closed.

Therefore the quotient morphism

2r U, T+ (¢))
Im(6p)

is continuous. Thanks to the claim, the condition (5.16) implies that {v;}72; tends to 0 in the

Fréchet space ZP(U,Z+(y)). By the continuity of (5.20), we have

lim pr(u) =0 € H7(X,O(Kx + L) 9 T+(9)) (5.21)

pr: ZP(U, T (p)) — = HP(X,0(Kx +L)®Z(p)) (5.20)

k

Since, by construction, the pr(vg) are in the same class as [u], we conclude by (5.21) that u =10
in HP(X,O(Kx + L) @ Z(p)). 0
Remark 8. Recently, Matsumura proved in [Mat13] that the above lemma is also true for the
space HP (X, O(Kx + L) @ Z(y)).

We proceed to construct the new singular metrics mentioned in the paragraphs before

Lemma 5.7.

LEMMA 5.9. Let (L, ) be a pseudo-effective line bundle over a compact Kahler manifold (X, w)
of dimension n, and let p > n —nd(L, p) + 1. Then there exists a sequence of metrics {Py}3>,
with analytic singularities on L which satisfy the following properties.

(1) Z(Pk) = I+ () for all k.
(i) Let A\ < Agp < -+ < Ap g be the eigenvalues of (i/2m)©g, (L) with respect to the base
metric w. Then there exist two sequences 17, — 0 and €, — 0 such that

1 C
€ > TE + E and )‘l,k(:E) > —€L — E — Tk

for all x € X and k, where C' is a constant independent of k.
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(iii) We can choose 8 > 0 and 0 < o < 1 independent of k such that for every k, there exists
an open subset Uy, of X satisfying

vol(Uy) < eg and \p + 2¢; > € on X\Uy.

Proof. Recall that we first fix a smooth metric hg on L. Taking ¢ as a weight, we just mean that
the hermitian metric on L is hg - e~ %.
By definition, there exists s; > 0 such that

Zi(p) =Z((1 + s1))- (5.22)

Let {¢r} be the quasi-equisingular approximation of ¢ in Lemma 5.7. Then there is a positive
sequence 7, — 0 such that

i

5-90 () > —mw and T ((1 + 2)%) =Ty (») (5.23)

for every k. We can choose a positive sequence €, — 0 such that e, > 7, + 1/k.

Fix a positive sequence {d;} tending to 0. We begin to construct new metrics by solving a
Monge-Ampere equation. Let 7 : X — X be a log resolution of ¢g. Then dd®(¢y o 7) is of the
form [Ej] + C* where [Ej] is a normal crossing Q-divisor. Let Zj, = m.(E}). By [Bou02], there
exists a smooth metric hy on [Fj] such that for all § > 0 small enough,

. i
™ (w) + 52—@hk(—Ek)
T

is a Kéahler form on Xj. Then we can solve a Monge—Ampere equation on Xg,
i i "
((%ﬂ*@@k (L)> N +epmw + 5k§9hk (—Ek) + ddc%bk,e,ak)

. n
_ 7
= C(k,6,¢) - € d<w + (5k27T@hk(—Ek)> , (5.24)
with the normalization condition

su)? (prom +Ykes, + 0k In|Eglp,)(z) =0 (5.25)
ZEX

where d = nd(L, p). Thanks to the definition of numerical dimension, there exists a uniform
constant C' > 0 such that C(k,d,e) > C. By observing, moreover, that

. R 1
10010 | Bl = [Ex] + 5—On(—Ek),

(5.24) implies that

?

%@@k""wk,e,ék‘i‘ék In |Egp, (m"L) > —epw. (5.26)
Set
- 2
Op:i= |1+ L S)ekom + s(pp o+ Ypes +0In|Eglp, ), (5.27)
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where 0 < s < s vgill be made precise® in Lemma 5.10. Now we have a new metric P on
(X, 7" L) (i.e. hpe”%* as the actual hermitian metric on 7*L). We prove that @ induces a
natural metric on (X, L). In fact, by (5.27) we have

%6@9 (m7*L)=(1- S)%@% (m*L) + S%@(ka’,kae,ékJr&k In | Egln,, (7*L) + %dd vr. (5.28)

Inequality (5.26) gives the estimate for the second term in the right-hand side of (5.28). For the

last term in the right-hand side of (5.28), we observe that ¢y is a function on X satisfying
1 1
%@%(L) = %@ho(l’) + ddpp = —cw,

and thus
ddpr > —Cw

for some uniform constant C, and
i

. C
%@@C (7*L) > —€pw — Tpw — —w. (5.29)

k

Thus @y induces a quasi-psh function on X by extending it from X\ Zj to the whole X. This is
the metric that we wanted to construct. We denote it also by @y for simplicity. We will prove
properties (i) to (iii) of Lemmas 5.10 and 5.11. O

LEMMA 5.10. If we take s in (5.27) small enough with respect to sy in (5.22) of Lemma 5.9, then

/ |f|2e™2Pr < Clf| oo (/ | f|2e~ 2 He)e
U U

for all U in X and k > 1, where Cjy, .. is a constant depending only on |f|L~ (in particular, it
is independent of the open subset U and of k). As a consequence, we have

> 1/(1+51)
(5.30)

Z(pr) =TI (p) for every k. (5.31)

Proof. Thanks to (5.26), ¢k + ¥k es, + 0 In|Eg|p, induces a quasi-psh function on X. We denote
it also by @i, + Yk e 5, + 0 In|Eg|p, for simplicity. Then (5.25) and (5.26) in Lemma 5.9 imply the
existence of a constant a > 0 such that

/e2a(¢k+wk,e,5+5k1n|Ekhk)
X

is uniformly bounded for all k.
By Holder’s inequality and the construction (5.27), we have

1/(14s 51 /(14
/ ‘f‘26—2$k < (/ |f’2@—2(1+s1)tpk> [t (/ ‘f‘2€*(28(1+81)/31)(§0k+"/’k,e,ékﬂL6k 1n|Ek|hk)> /)
U U U

(5.32)
for k> 1, where U is any open subset of X. If we take an s > 0 satisfying s(1 + s1)/s1 < a, then
the uniform boundedness of fX e 20(Pktk,c.op 0k In | By ) implies that

/ | f2e=@s0s) /) @rt i et Bili) < [ f] o (5.33)
U

Note that s1 is the constant in (5.22).
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for any U C X and k> 1. Combining (5.32) with (5.33), we obtain that

- 1/(1+s1) 1/(1+s1)
J e B B ) I LT
U U U

for some constant C)y|, .. independent of the open subset U and of k > 1.

It remains to prove (5.31). The inclusion Z(@x) D Z1(p) comes directly from (5.34). By
construction, @y is more singular than (1 + 2/k)py. Then (5.23) implies that Z(@r) C Z4(p),
and so the equality (5.31) is proved. O

The following lemma was essentially proved in [Mou95].

LEMMA 5.11. In the situation of Lemma 5.9, the new metrics { @), }7° , satisfy properties (ii) and
(iii) of Lemma 5.9.

Proof. Let A1(z) < Aa(z) < - < Au(2) be the eigenvalues of i©g, (L) with respect to the base
metric w. Note that \; is equal to A; in Lemma 5.9. Since the proof here is for a fixed k, this
simplification should not lead to misunderstanding. By (5.29), we have

Xi(z) = —e, — % - Tk,

so property (ii) of Lemma 5.9 is proved.
Set A; := \; + 2¢. Since s is a fixed positive constant, the Monge-Ampere equation (5.24)
implies that

[17(z) = C(s)ep, (5.35)
1=1

where C'(s) > 0 does not depend on k. Since p > n — d, we can take « such that 0 < o < 1 and
n—d<ap. Set Uy :={z¢€ X | Xp(z) < er}.

We now check that Uy satisfies property (iii) of Lemma 5.9. Since e, > 7 + 1/k, we have
Xl(z) = \i(z) + 2¢;, > 0 for any z and ¢. Thus the cohomological condition

/ AL+ A+ + A" < M
X
implies that

/ Gt Rt + A < M. (5.36)
Uk

Observing that (5.35) and the definition of Uy imply that

n—d
H Ai(z) = C’(s)efap for z € Uy,
pH1<i<n k
we have
N n—d\ 1/(n—p)
Ni(z) = C( b > for z € U, (5.37)
pH1<i<n “k
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by the inequality between arithmetic and geometric means. Applying (5.37) to (5.36), we have

en—d 1/(n—p)
/ (’g,,) W< M. (5.38)
Uy,

Since n — d < ap, (5.38) implies that
vol(Uy) < e,[j
for some 8 > 0. Thus property (iii) of Lemma 5.9 is proved. O

We now reach the final conclusion.

THEOREM 5.12 (Theorem 1.4). Let (L, ) be a pseudo-effective line bundle on a compact Kahler
manifold (X,w). Then

HP(X,O(Kx +L)®ZIy(p)) =0 forp>n—nd(L,p)+1.

Remark 9. One reason to use Z, (y) instead of Z(¢) is that it does not seem to be easy to prove
that
HP(X,O(Kx +L)®Z(p)) =0 forp>n—nd(L,p)+1,

even when X is projective. (However, see [Mat13] for some recent progress.)

Proof. We prove the theorem in two steps.

Step 1. L? estimates.
Let {@r}72, be the metrics constructed in Lemma 5.9, and let [u] be an element in HP(X,
Kx ® L®Zi(p)). Let f be a smooth (n,p)-form representing [u]. Then

/ |f]26*2(1+51)‘p<+oo,
X

where s is the constant in (5.22) of Lemma 5.9. By Lemma 5.10, we have

R 1/(1+s1)
/ | f|2e2%k < C’(/ ]f]Qe_z(Hsl)“”) for every k> 1 (5.39)
U U

for any open subset U of X, where C is a constant independent of U and k (but which certainly
depends on |f|r=). We now use the L? method from [DP03] to get a key estimate, namely that
f can be written as

f= guk + vk (5.40)
with the bound

5 1 = 1 ~
/ Jug[e ™2k + / |vg|?e 2Pk < / — —[f[2e7%Px, (5.41)
X 2pe Jx X )\l,k + )\27;9 + -+ >\p,k

where sz = Ak, + 2¢;. The estimate (5.41) comes from the Bochner inequality

[Bul2, + 7ul2, > /X (g + R -+ S — Ceg)[uf2, V7

_Zk

where Zj, is the singular locus of ¢ in X (see [DP03, Theorem 3.3] or Proposition A.1 in the
Appendix for details).
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Using (5.41), we claim that

lim / || 2e™ 2Pk — 0. (5.42)
X

k—o0

To prove the claim, observe that properties (ii) and (iii) of Lemma 5.9 and (5.41) imply that

. 1 . C ~ 1 o
/ |y, | e~ 2%* +/ |y |26 2%k </ %If\Qe_z“”“ —I—/ ——— | f|2e%Px,
X 2per Jx X € U, Caek

Then
/ o€ 2Pk < Cael™® / |27k + Cy / | f|2e 2, (5.43)
X X Uk

Since vol(Uy) — 0 by property (iii) of Lemma 5.9, (5.39) implies that the second term of the
right-hand side of (5.43) tends to 0. Since 0 < a < 1 and ¢, — 0 as k — oo, (5.39) therefore
implies that the first term of the right-hand side of (5.43) also tends to 0. Thus (5.42) is proved.
Step 2. Final stage.
We use Lemma 5.8 to obtain the final result. Let U = {U,}acr be a Stein covering of X.
Thanks to (5.42), we get a p-cocycle representing v, by solving d-equations, i.e. v can be written
as

Vg = {Uk,ao~~ap} € Cp(ua O(Kx + L) @ Z(¢r)),

where the components satisfy the L? conditions

J

ag-ap

|vk7ao...%|26_2¢’“ < C’/ |Uk|2€_2$k, (5.44)
X

with C not depending on k. Inequality (5.44) and property (i) of Lemma 5.9 imply that {vy} is
in CP(U,O(Kx + L) @ I, (p)) for every k.
Since @y, < 0 by construction, (5.42) and (5.44) imply that

lim [Vksig--vip |2 = 0. (5.45)
k=00 JUy...i,

By (5.40), {vr}32, are in the same cohomology class as u in HP(X,O(Kx + L) ® I, (¢)). By
Lemma 5.8, (5.45) implies that [u] = 0. So the theorem is proved. O
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Appendix. An L? estimate
For the reader’s convenience, we give the proof of estimate (5.41) in Theorem 5.12. For the most
part, the proof is just extracted from [DP03].

PROPOSITION A.1. Let (X,w) be a compact Kahler manifold and let (L, hoe™¥) be a line bundle
on X, where hg is a smooth metric on L and the quasi-psh function ¢ has analytic singularities
and is smooth outside a subvariety Z. Assume that

7

_ > _
27TG)W(L) > —ew
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on X\Z and that f is a smooth L-valued (n,p)-form satisfying
/ |flPe™2dV < oo. (A1)
X

Let A1 < A2 < --+ < A, be the eigenvalues of (1/2m)©, (L) and let Xz = \; + 2¢ > €. Then there
exist u and v such that f = Ou + v and the following estimate is satisfied:

1 1
/ |u]262“”dV+/ ]v|2625"dV</ — —|f[Pe 27 aV.
X 2pe Jx XA+ At + N

Proof. Let wy be a complete Kéhler metric on X\Z and let ws = w + dw; for some § > 0. We
now do the standard L? estimate on (X\Z, ws, L, ).
If s is an L-valued (n,p)-form in C°(X\Z), then the Bochner inequality implies that

HgsH% + Hg*sH?g > /X\Z(Xl Ao+t Xp — 2p6)|s]26_2¢w§, (A2)

where [|s]|2 = [y |s|?e"2?w}. Note that there is an abuse of notation here: we calculate the norm
|u|? by the metric (or volume form) written in the equations. For example, if the volume form is
wy, then we calculate the norm of u by means of the metrics ws and hg.

Since f is an (n,p)-form, (A1) implies that

fe LQ(X\Z,L, p,ws) for § > 0.
We write every form s in the domain of the L? extension of 9 ass= $1 + so with
s € Kerd and s € (Kerd): c Kerd'.
Since f € Ker d, by (A2) we obtain
(f ) = 1f 51000

1 ~ ~ o~
< / = A|f|26‘2“’dV6/ (4 Ao A5 2672 Vs
X\Z A+ X4+ A X\Z
1 _ =% =
</‘ — | f2e72 V([ 51]1? + 2pel|Fs1 |2)
X\Z A+ X+ A
1 _ =% =
</’ E— | f2e72 dV; (|33 + 2pe]|Bs|2).
X\Z A1+ X+ A

By the Hahn—Banach theorem, we can find vs and ugs such that

(f,8)5 = (us, D 8)5 + (vs,8)5 for every s

and which satisfy the estimate

1 1
lugll? + —— [vgl|? < C / S | f[Pe 2w
o 2pe N0 XA+ AgF -+ Ay ’
Therefore
f = 0us + vs. (A3)
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Since the norm || - ||s of (n,p)-forms is increasing as § decreases to 0, we obtain limits
=i d v=1Ii A4
u=limus and v = limv; (A4)
satisfying
2 1 2 1 2,-2p n 1 2,-2p n
lulls + 5—llvlls < C [ =—= =|[fI7e"Fwy <O | =~—= ~[flFe™™w
2pe XA+X+-+X XAMAX+- 4N
B (A5)
for every > 0. Formulas (A3) and (A4) imply that f = du + v. Letting 6 — 0 in (A5), we
obtain the estimate in the proposition. O
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