MULTIPLY SUBADDITIVE FUNCTIONS

G. G. LORENTZ

1. Introduction. Let S denote a Boolean ring with elements e, that is, a distributive, relatively complemented lattice with zero element 0 [2, p. 153]. In this paper we study real-valued functions $\Phi(e)$, $e \in S$ which have a representation of the form

(1.1)
$$\Phi(e) = \sup_{\phi \in C} \phi(e),$$

C being a certain class of *additive* functions on S; $\phi(e)$ is additive if $\phi(e_1 \cup e_2) = \phi(e_1) + \phi(e_2)$ for any pair $e_1, e_2 \in S, e_1 \cap e_2 = 0$. We find a relation between (a) the possibility of representation (1.1); (b) the possibility of extension of $\Phi(e)$ onto a vector space X containing S; (c) some simple intrinsic properties of $\Phi(e)$. For instance, one of our results (Theorem 4 in §5) is that $\Phi(e)$ possesses a representation (1.1), C being a family of addititive and positive functions $\phi(e)$, if and only if $\Phi(e)$ is increasing and has the property

(1.2)
$$p\Phi(e) \leqslant \sum_{\nu=1}^{n} \Phi(e_{\nu})$$

whenever the e_r cover e exactly p times (for a precise definition, see §§2,3). Functions Φ , satisfying (1.2), we call *multiply subadditive;* this property is stronger than the ordinary subadditivity expressed by the inequality

$$\Phi(e_1 \cup e_2) \leqslant \Phi(e_1) + \Phi(e_2), \qquad e_1 \cap e_2 = 0.$$

On the other hand, we shall see that (1.2), with = instead of \leq , holds for any additive function $\Phi(e)$. Multiply subadditive functions constitute, therefore, an intermediary class between the subadditive and the additive functions.

The problems treated in this paper arose, in the case when S is a Boolean ring of measurable sets, in connection with the study of certain spaces of functions, see [5, §4].

2. The vector space X(S). A natural extension of a Boolean ring S into a space $X(S) = X = \{x\}$ is obtained as follows. Let x be any finite sum

$$x = \sum_{\nu=1}^{n} a_{\nu} e_{\nu},$$

the order of terms being by definition irrelevant, where a_{ν} are arbitrary real numbers and e_{ν} arbitrary elements of S (with repetitions allowed). We define an equivalence relation $x \equiv y$ for two sums $x = \sum a_{\nu}e_{\nu}$, $y = \sum b_{\mu}f_{\mu}$ of this kind to mean that x can be transformed into y by a finite number of changes of the

Received April 14, 1951. This investigation was carried out while the author held a Fellowship at the Summer Institute of the Canadian Mathematical Congress in 1950.

types: (A) a term ae in the sum x is replaced by ae' + ae'', if $e = e' \cup e''$, $e' \cap e'' = 0$, or conversely, ae' + ae'' is replaced by ae; (B) 0e is omitted, or conversely, is added; (C) ae is replaced by a'e + a''e, where a = a' + a'', or conversely.

This equivalence relation is reflexive, symmetric, and transitive. Let X be the set of all equivalence classes and let X be provided with operations of addition and scalar multiplication as follows. If $x = \sum a_{\nu}e_{\nu}$, $y = \sum b_{\mu}f_{\mu}$, then

$$ax = \sum aa_{\nu}e_{\nu}, \quad x + y = \sum a_{\nu}e_{\nu} + \sum b_{\mu}f_{\mu}.$$

Clearly $x \equiv x_1$ and $y \equiv y_1$ imply $ax \equiv ax_1$ and $x + y \equiv x_1 + y_1$ and it follows that X is a vector space with zero of S as zero element.

The following lemma will be useful:

(2.1) Two sums $x = \sum a_{\nu}e_{\nu}$ and $y = \sum b_{\mu}f_{\mu}$ are equivalent if and only if there are disjoint elements g_1, \ldots, g_N such that every e_{ν} and every f_{μ} is a union of some of these g_{ρ} in such a way that, if the e_{ν} , f_{μ} are replaced by the sums of the corresponding g_{ρ} and the terms reduced, the two expressions $\sum a_{\nu}e_{\nu}$, $\sum b_{\mu}f_{\mu}$ become identical.

For the proof, we write $x \sim y$, if there are such g_{ρ} . Clearly, $x \sim y$ implies $x \equiv y$. But also the converse is true. First, we have $x \sim x$ for any x. For if e_1, \ldots, e_n is a finite set of elements of S, the e_{ν} can be expressed as unions of suitable disjoint g_{ρ} . Such g_{ρ} are obtained by taking all possible intersections $\bigcap_{\mu=1}^{n} e'_{\nu}$, where each e'_{ν} is either e_{ν} or the complement of e_{ν} with respect to $\bigcap_{\mu=1}^{n} e_{\mu}$. Again, the relation $x \sim y$ is not destroyed when any of the admissible changes (A), (B), (C) is performed on x. This shows that $x \sim y$ is equivalent to $x \equiv y$ and proves our assertion. In particular, it follows that if $\sum e_{\nu}$ and $\sum f_{\mu}$ are equivalent then $\bigcup e_{\nu} = \bigcup f_{\mu}$. As a corollary we obtain that two elements e_{1}, e_{2} of S which are equivalent, are identical in S.

We can now describe the relation $pe = \sum_{\nu=1}^{n} e_{\nu}$ in X, that is, the equivalence

$$\sum_{\mu=1}^p f_{\mu} \equiv \sum_{\nu=1}^n e_{\nu},$$

where $f_1 = \ldots = f_p = e$, more directly in terms of S. Using the g_1, \ldots, g_N of (2.1) it follows that

(2.2) $pe = \sum e_{\nu}$ holds if and only if there are disjoint decompositions $e_{\nu} = \bigcup_{\mu=1}^{p} e_{\nu\mu}$ such that $e = \bigcup_{\nu=1}^{n} e_{\nu\mu}$ as a disjoint decomposition for every $\mu = 1, \ldots, p$.

For instance, we may by induction on ν define the decompositions $e_{\nu} = \bigcup e_{\nu\mu}$ as follows: let $e_{\nu\mu}$ be the union of those g_{ρ} which satisfy $g_{\rho} \subset e_{\nu}$ and $g_{\rho} \subset e_{\sigma}$ for precisely $\mu - 1$ indices $\sigma < \nu$. If (2.2) holds, we shall say that the e_1, \ldots, e_n cover e exactly p times. In the same way, we shall say that e_1, \ldots, e_n cover eat least p times if there are disjoint decompositions $e_{\nu} = \bigcup_{\mu=1}^{p} e_{\nu\mu}$ with $e \subset \bigcup_{\nu=1}^{n} e_{\nu\mu}$ ($\mu = 1, \ldots, p$). It is clear that this is the case if and only if there are $e'_{\nu} \subset e_{\nu}(\nu = 1, \ldots, n)$ which cover e exactly p times. We shall write $x \leq y, x, y \in X$ if there exist representations

$$x = \sum_{1}^{n} a_{\nu}e_{\nu}, \quad y = \sum_{1}^{n} b_{\nu}e_{\nu}$$

with $a_{\nu} \leq b_{\nu}(\nu = 1, ..., n)$. This relation is transitive by (2.1). For instance, $e_1 \subset e_2$ implies $e_1 \leq e_2$ in X.

3. Multiply subadditive functions. As stated in §1, a function $\Phi(e)$, $e \in S$ is multiply subadditive if $p\Phi(e) \leq \sum \Phi(e_r)$ whenever $pe = \sum e_r$ in X, that is, whenever the e_r cover e exactly p times. If $\Phi(e)$ is, moreover, increasing, $\Phi(e) \leq \Phi(e')$ for $e \subset e'$, then the last inequality holds even if the e_r cover e at least p times.

Writing 0 = 0 + 0, $2 \cdot 0 = 0$, we obtain $\Phi(0) \le 2\Phi(0)$, $2\Phi(0) \le \Phi(0)$. Therefore, a multiply subadditive function has the property $\Phi(0) = 0$. If, in addition, Φ is increasing, it follows that $\Phi(e) \ge 0$, $e \in S$.

If $\Phi(e)$ is additive on *S*, we obtain an extension F(x) of ϕ onto *X* by putting $F(x) = \sum a_{\nu}\phi(e_{\nu})$ if $x = \sum a_{\nu}e_{\nu}$. Since the first sum is invariant under changes (A), (B), (C) of §2, F(x) is a function defined on *X*. Clearly F(x) is additive. In particular, we obtain

$$(3.1) p\phi(e) = \sum a_{\nu}\phi(e_{\nu}), pe = \sum a_{\nu}e_{\nu},$$

so that any additive function ϕ on S is multiply subadditive with equality in (1.1). If, in addition, ϕ is positive, $\phi(e) \ge 0$, $e \in S$, then

(3.2)
$$\sum a_{\nu}\phi(e_{\nu}) \leqslant \sum b_{\nu}\phi(e_{\nu}), \qquad \sum a_{\nu}e_{\nu} \leqslant \sum b_{\nu}e_{\nu}.$$

We finally remark that the condition

(3.3)
$$\Phi(e) \leqslant \sum_{\nu=1}^{n} a_{\nu} \Phi(e_{\nu}) \qquad \text{whenever } e = \sum a_{\nu} e_{\nu}, a_{\nu} \geqslant 0,$$

is equivalent to multiple subadditivity. If the a_{ν} are all rational, we write $a_{\nu} = k_{\nu}/k$ with positive integers k_{ν} , k, and repeating each e_{ν} exactly k_{ν} times, deduce (3.3) from (1.2). In the general case we see, using (2.1), that, for fixed e_{ν} , e, the relation $e = \sum a_{\nu}e_{\nu}$ is equivalent to a system of linear equations, with integral coefficients, for the a_{ν} . Solutions a_1, \ldots, a_n of this system can be approximated by positive rational solutions $a_1^{(m)}, \ldots, a_n^{(m)}$. Then $a_{\nu}^{(m)} \to a_{\nu}$ for $m \to \infty$ and $e = \sum a_{\nu}^{(m)}e_{\nu}$. Making $m \to \infty$ in

$$\Phi(e) \leqslant \sum a_{\nu}^{(m)} \Phi(e_{\nu}),$$

we obtain (3.3).

4. Extension of functions from S onto X. In this section we connect the possibility of representation of the form

(4.1)
$$\Phi(e) = \sup_{\phi \in C} \phi(e),$$

 $\phi(e)$ additive, with the possibility of extension of $\Phi(e)$ onto X(S).

THEOREM 1. $\Phi(e)$ has a representation (4.2) $\Phi(e) = \sup_{\phi \in G} |\phi(e)|$

if and only if $\Phi(e)$ has an extension P(x) onto X which satisfies the conditions

(i)
$$P(x+y) \leqslant P(x) + P(y),$$

(ii)
$$P(ax) = aP(x),$$

(iii)
$$P(x) \ge 0$$
,

(iv)
$$P(-x) = P(x).$$

Proof. If (4.2) holds, we define

(4.3)
$$P(x) = \sup_{\phi \in C} |\sum a_{\nu} \phi(e_{\nu})|, \qquad x = \sum a_{\nu} e_{\nu},$$

 $a \ge 0$,

the value of $\sum a_{\nu}\phi(e_{\nu})$ being independent of the choice of the representation $x = \sum a_{\nu}e_{\nu}$. Then P(x) is finite, since

$$0 \leqslant P(x) \leqslant \sum |a_{\nu}| \Phi(e_{\nu}) < + \infty.$$

Also, P(x) satisfies conditions (i)-(iv). Moreover, $P(x) = \Phi(e)$ for $x = e \in S$.

If, on the other hand, $\Phi(e)$ has an extension P(x) of the required kind, we apply the Hahn-Banach theorem [1] and obtain, for each $e_0 \in S$, a linear functional F(x) on X satisfying $F(e_0) = P(e_0) = \Phi(e_0)$ and $F(x) \leq P(x)$, $x \in X$. Then $F(x) \geq -P(-x) = -P(x)$, that is, $|F(x)| \leq P(x)$, $x \in X$. If C is the class of all functions $\phi(e) = F(e)$, $e \in S$ for all F(x) of this kind, then (4.1) holds.

THEOREM 2. $\Phi(e)$ has a representation

(4.4)
$$\Phi(e) = \sup_{\phi \in C} \phi(e), \qquad \phi(e) \ge 0,$$

where C is a class of positive additive functions ϕ if and only if $\Phi(e)$ has an extension P(x) onto X with properties (i)-(iv) and

$$(v) P(e_1) \leqslant P(e_2), e_1 \subset e_2.$$

Proof. If $\Phi(e)$ satisfies (4.4), then P(x), defined by (4.3), has the properties (i)-(v), so that they are necessary.

On the other hand, if $\Phi(e)$ has a continuation P(x), then the proof of Theorem 1 establishes (4.4) where, however, the functions $\phi \in C$ are not necessarily positive. Let

$$\phi_1(e) = \sup_{e' \subseteq e} \phi(e') \ge 0$$

be the positive variation of $\phi \in C$. It is easy to see that ϕ_1 is additive and moreover (since $\Phi(e)$ increases by (v))

$$\Phi(e) = \sup_{e' \subseteq e} \Phi(e') = \sup_{\phi \in C} \left[\sup_{e' \subseteq e} \phi(e') \right] = \sup_{\phi_1 \in C_1} \phi_1(e),$$

which establishes (4.4) with $C_1 = \{\phi_1\}$ instead of C.

5. Representation of multiply subadditive functions. In this section we give the main results of this paper which connect the possibility of representation of a function $\Phi(e)$ in the form $\Phi(e) = \sup \phi(e)$ with the multiple subadditivity of $\Phi(e)$.

THEOREM 3. A function $\Phi(e)$ on S has a representation

(5.1)
$$\Phi(e) = \sup_{\phi \in C} |\phi(e)|$$

if and only if $\Phi(e)$ satisfies the condition

(5.2)
$$\Phi(e) \leqslant \sum_{\nu=1}^{n} |a_{\nu}| \Phi(e_{\nu}) \qquad \text{whenever } e = \sum a_{\nu} e_{\nu}.$$

Proof. We begin by remarking that (5.1) and (5.2) both imply $\Phi(e) \ge 0$, the latter condition by putting e = e - e + e. If (5.1) holds and $e = \sum a_{\nu}e_{\nu}$, then

$$|\phi(e)| = |\sum a_{\nu}\phi(e_{\nu})| \leq \sum |a_{\nu}|\Phi(e_{\nu})|$$

and (5.2) follows. Conversely, if this condition is fulfilled, we set

(5.3)
$$P(x) = \inf \sum |a_{\nu}| \Phi(e_{\nu})$$

where the infimum is taken for all representations $x = \sum a_r e_r$. Then $0 \leq P(x) < +\infty$ and, by (5.2), $P(e) = \Phi(e)$, $e \in S$. As P(x) satisfies (i)-(iv), we obtain (5.1) by Theorem 1.

Remark. As in the proof of (3.3), we may show that (5.2) is equivalent to the condition

(5.4)
$$p\Phi(e) \leqslant \sum_{\nu=1}^{n} \Phi(e_{\nu})$$
 whenever $pe = \sum \pm e_{\nu}$.

THEOREM 4. A function $\Phi(e)$ on S admits a representation

(5.5)
$$\Phi(e) = \sup_{\phi \in C} \phi(e), \qquad \phi(e) \ge 0,$$

if and only if $\Phi(e)$ is increasing and multiply subadditive.

Proof. The necessity of the conditions is obvious. Conversely, let $\Phi(e)$ be increasing and multiply subadditive, we show that (5.2) holds. By the Remark, it is sufficient to prove (5.4). But if $pe = \sum \pm e_r$ then the e_r cover e at least p times (see §2) and therefore, by §3, we obtain (5.4) for the function $\Phi(e)$. As in Theorem 3, (5.3) gives an extension of $\Phi(e)$ onto X satisfying (i)–(iv). Also (v) is satisfied; hence our result follows from Theorem 2.

6. Special classes of multiply subadditive functions. Examples of multiply subadditive functions may be obtained by considering

(6.1)
$$\Phi(e) = F(\psi(e)),$$

where $\psi(e)$ is a fixed positive additive function on S and F(u) a function of the real variable $u \ge 0$.

We shall assume that S is ψ -nonatomic, that is, if $\psi(e) = \delta$ for some $e \in S$ and $0 \leq \delta_1 \leq \delta$, there is an $e_1 \subset e$ with $\psi(e_1) = \delta_1$. Clearly, with this condition, Φ is increasing if and only if F is increasing. Moreover, we have

THEOREM 5. A function (6.1) with an increasing F, F(0) = 0 is multiply subadditive on a ψ -nonatomic Boolean ring S if and only if F has the property

(6.2) $kF(\delta) \leq F(k\delta)$ for $0 \leq k \leq 1$ and all values $\delta = \psi(e), e \in S$.

Proof. If $pe = \sum_{\nu=1}^{n} e_{\nu}$, then $e_{\nu} \subset e$, and putting $\delta_{\nu} = \psi(e_{\nu})$, $\delta = \psi(e)$, we see that $0 \leq \delta_{\nu} \leq \delta$, $p\delta = \sum \delta_{\nu}$. If (6.2) holds and $\Phi(e)$ is defined by (6.1), we have, therefore, for $\delta > 0$,

$$p\Phi(e) = pF(\delta) = \sum \frac{\delta_{\nu}}{\delta} F(\delta) \leqslant \sum F(\delta_{\nu}) = \sum \Phi(e_{\nu}).$$

For $\delta = 0$ this inequality holds since F(0) = 0, so that $\Phi(e)$ is multiply subadditive.

Conversely, suppose that Φ has this property and that $\psi(e) = \delta$ for some $e \in S$; further, let $0 \leq k' = p/n \leq 1$ be a rational number and p, n be relatively prime. We decompose e into a disjoint union $e = \bigcup_{j=1}^{n} \bar{e}_j$ of elements \bar{e}_j with $\psi(\bar{e}_j) = \delta/n$. For any integer $1 \leq i \leq pn$ let $\bar{e}_i = \bar{e}_j$, where j is the residue of i modulo n in the interval $1 \leq j \leq n$. Then

$$e_{\nu} = \bigcup_{(\nu-1)p < i \leq \nu p} \bar{e}_i$$

is a disjoint union and the e_{ν} cover e exactly p times. Moreover, $\psi(e_{\nu}) = p\delta/n = k'\delta$. Therefore,

$$pF(\delta) = p\Phi(e) \leq \sum_{\mu} \Phi(e_{\mu}) = \sum_{\nu=1}^{n} F(k'\delta) = nF(k'\delta),$$
$$b'F(\delta) \leq F(b'\delta)$$

or

$$\mathcal{R} \Gamma(0) \leqslant \Gamma(\mathcal{R} 0).$$

If now k is a real number $0 \le k \le 1$, we take an increasing sequence of rationals $k'_n \to k$ and deduce $k'_n F(\delta) \le F(k'_n \delta) \le F(k\delta)$, which gives (6.2).

A function F(u) satisfying (6.2) is easily seen to be continuous. Conversely, any positive, continuous, and *concave* function F(u) satisfies (6.2). For it is known that F with F(0) = 0 has these properties if and only if

(6.3)
$$F(u) = \int_0^u f(x) dx,$$

f positive and decreasing, and this implies (6.2). There are functions of the type (6.1) which are subadditive, but not multiply subadditive. Let *S* be the Boolean algebra of measurable sets $e \subset (0,1)$ and $\psi(e)$ be the Lebesgue measure of the set $e \subset (0,1)$. Set $F(u) = \frac{3}{2}u$ in $(0, \frac{1}{3})$, $F(u) = \frac{1}{2}$ in $(\frac{1}{3}, \frac{2}{3})$, and $F(u) = \frac{3}{2}u - \frac{1}{2}$ in $(\frac{2}{3}, 1)$. Then the function (6.1) is subadditive because F(u) has the property $F(u_1 + u_2) \leq F(u_1) + F(u_2)$. However, condition (6.2) is not satisfied, for $\frac{2}{3} = \frac{2}{3} F(1) > F(\frac{2}{3}) = \frac{1}{2}$.

We can also describe functions of type (6.1) by means of their representations. Assume for simplicity that $\Phi(e) = me$ is the Lebesgue measure of a measurable set $e \subset (0, 1)$. Let T denote one-to-one measure-preserving transformations of (0, 1) into itself, so that e' = T(e) has the same measure as e for any measurable e. Then we have:

(6.4) An increasing multiply subadditive function $\Phi(e)$ is of the form $\Phi(e) = F(me)$ if and only if Φ has a representation

(6.5)
$$\Phi(e) = \sup_{\phi \in C} \phi(e),$$

where the class C contains with any $\phi(e)$ also any function $\phi(T(e))$.

If Φ has a representation of this kind, $\Phi(e)$ depends only on *me*, since, for any two sets *e*, *e'* with me = me', there is a *T* with e' = T(e). Therefore, $\Phi(e)$ is of the form F(me). On the other hand, if a multiply subadditive and increasing function (6.5) depends only on *me*, we may replace *C* by the class C_1 of all additive functions $\phi(T(e)), \phi \in C, T$ arbitrary, and have again

$$\Phi(e) = \sup_{\phi \in C_1} \phi(e).$$

A special case of the above class is described as follows. Let S be as before; we define the rearrangement of a set-function

$$\phi(e) = \int_{e} g(x) dx, \qquad e \in S$$
$$\bar{\phi}(e) = \int_{e} \bar{g} dx,$$

to be any function

where $\bar{g}(x)$ is a rearrangement of g(x) (for rearrangements of a point-function see [4, p. 276]).

(6.6) In order that $\Phi(e)$ be of the form $\Phi(e) = \sup_{C} \phi(e)$, where C is the class of all rearrangements of a single, absolutely continuouus positive function $\phi_0(e)$, it is necessary and sufficient that $\Phi(e) = F(me)$ where F(u) is continuous, increasing and concave.

If $\Phi(e) = \sup \phi(e)$ with the stated specification, and

$$\phi_0(e) = \int_e g dx, \qquad g \ge 0,$$

then we have

$$\Phi(e) = \int_0^{me} g^*(x) dx,$$

where g^* is the decreasing rearrangement of g. Thus $\Phi(e) = F(me)$, where

$$F(u) = \int_0^u g^* dx$$

is continuous, increasing and concave. Conversely, if $\Phi(e) = F(me)$ and

$$F(u) = \int_0^u g dx$$

with an integrable, positive and decreasing g, then $\Phi(e) = \sup \phi(e)$, where $\phi(e)$ are all rearrangements of

$$\phi_0(e) = \int_0^{me} g dx.$$

We finally indicate a generalization of the Hahn decomposition theorem for subadditive functions. Let S be a Boolean σ -ring with zero element [2] and $\Phi(e)$ a subadditive function on S (compare §1). An element $e \in S$ is called Φ positive, Φ -negative, or Φ -zero if $\Phi(e') \ge 0$, $\Phi(e') \le 0$, or $\Phi(e') = 0$, respectively, for each $e' \subseteq e$, $e' \in S$. Then the following statement holds:

(6.7) If a bounded subadditive function $\Phi(e)$ on S has the property

(6.8)
$$\lim_{n\to\infty} \Phi(e_n) = 0, \qquad e_1 \supset e_2 \supset \dots, \bigcap e_n = 0,$$

and takes values of different sign, then there are disjoint elements e^- , e_a^+ , $a \in A$ of S such that e^- is Φ -negative, each e_a^+ is Φ -positive, $\Phi(e_a^+) > 0$, and each $e \in S$ disjoint with all e^- , e_a^+ is Φ -zero.

The proof is similar to the usual proof of Hahn's theorem [3, p.121], but requires transfinite induction for Φ -positive elements.

References

- 1. S. Banach, Théorie des opérations linéaires (Warszaw, 1932).
- 2. G. Birkhoff, Lattice theory (2nd ed., New York, 1948).
- 3. P. R. Halmos, Measure theory (New York, 1950).
- 4. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (Cambridge, 1934).
- 5. G. G. Lorentz, On the theory of spaces Λ , Pacific J. Math., vol. 1 (1951), 411-429.

The University of Toronto

462