MULTIPLY SUBADDITIVE FUNCTIONS

G. G. LORENTZ

1. Introduction. Let S denote a Boolean ring with elements e, that is, a distributive, relatively complemented lattice with zero element 0 [2, p. 153]. In this paper we study real-valued functions $\Phi(e), e \in S$ which have a representation of the form

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C} \phi(e), \tag{1.1}
\end{equation*}
$$

C being a certain class of additive functions on $S ; \phi(e)$ is additive if $\phi\left(e_{1} \cup e_{2}\right)=$ $\phi\left(e_{1}\right)+\phi\left(e_{2}\right)$ for any pair $e_{1}, e_{2} \in S, e_{1} \cap e_{2}=0$. We find a relation between (a) the possibility of representation (1.1); (b) the possibility of extension of $\Phi(e)$ onto a vector space X containing S; (c) some simple intrinsic properties of $\Phi(e)$. For instance, one of our results (Theorem 4 in §5) is that $\Phi(e)$ possesses a representation (1.1), C being a family of addititive and positive functions $\phi(e)$, if and only if $\Phi(e)$ is increasing and has the property

$$
\begin{equation*}
p \Phi(e) \leqslant \sum_{\nu=1}^{n} \Phi\left(e_{\nu}\right) \tag{1.2}
\end{equation*}
$$

whenever the e_{ν} cover e exactly p times (for a precise definition, see $\S \S 2,3$). Functions Φ, satisfying (1.2), we call multiply subadditive; this property is stronger than the ordinary subadditivity expressed by the inequality

$$
\Phi\left(e_{1} \cup e_{2}\right) \leqslant \Phi\left(e_{1}\right)+\Phi\left(e_{2}\right), \quad e_{1} \cap e_{2}=0
$$

On the other hand, we shall see that (1.2), with $=$ instead of \leqslant, holds for any additive function $\Phi(e)$. Multiply subadditive functions constitute, therefore, an intermediary class between the subadditive and the additive functions.

The problems treated in this paper arose, in the case when S is a Boolean ring of measurable sets, in connection with the study of certain spaces of functions, see [5, §4].
2. The vector space $X(S)$. A natural extension of a Boolean ring S into a space $X(S)=X=\{x\}$ is obtained as follows. Let x be any finite sum

$$
x=\sum_{\nu=1}^{n} a_{\nu} e_{\nu},
$$

the order of terms being by definition irrelevant, where a_{ν} are arbitrary real numbers and e_{ν} arbitrary elements of S (with repetitions allowed). We define an equivalence relation $x \equiv y$ for two sums $x=\sum a_{\nu} e_{\nu}, y=\sum b_{\mu} f_{\mu}$ of this kind to mean that x can be transformed into y by a finite number of changes of the

[^0]types: (A) a term $a e$ in the sum x is replaced by $a e^{\prime}+a e^{\prime \prime}$, if $e=e^{\prime} \cup e^{\prime \prime}, e^{\prime} \cap e^{\prime \prime}$ $=0$, or conversely, $a e^{\prime}+a e^{\prime \prime}$ is replaced by $a e$; (B) $0 e$ is omitted, or conversely, is added; (C) ae is replaced by $a^{\prime} e+a^{\prime \prime} e$, where $a=a^{\prime}+a^{\prime \prime}$, or conversely.

This equivalence relation is reflexive, symmetric, and transitive. Let X be the set of all equivalence classes and let X be provided with operations of addition and scalar multiplication as follows. If $x=\sum a_{\nu} e_{\nu}, y=\sum b_{\mu} f_{\mu}$, then

$$
a x=\sum a a_{\nu} e_{\nu}, \quad x+y=\sum a_{\nu} e_{\nu}+\sum b_{\mu} f_{\mu}
$$

Clearly $x \equiv x_{1}$ and $y \equiv y_{1}$ imply $a x \equiv a x_{1}$ and $x+y \equiv x_{1}+y_{1}$ and it follows that X is a vector space with zero of S as zero element.

The following lemma will be useful:
(2.1) Two sums $x=\sum a_{\nu} e_{\nu}$ and $y=\sum b_{\mu} f_{\mu}$ are equivalent if and only if there are disjoint elements g_{1}, \ldots, g_{N} such that every e_{ν} and every f_{μ} is a union of some of these g_{ρ} in such a way that, if the e_{ν}, f_{μ} are replaced by the sums of the corresponding g_{ρ} and the terms reduced, the two expressions $\sum a_{\nu} e_{\nu}, \sum b_{\mu} f_{\mu}$ become identical.

For the proof, we write $x \backsim y$, if there are such g_{ρ}. Clearly, $x \backsim y$ implies $x \equiv y$. But also the converse is true. First, we have $x \backsim x$ for any x. For if e_{1}, \ldots, e_{n} is a finite set of elements of S, the e_{ν} can be expressed as unions of suitable disjoint g_{ρ}. Such g_{ρ} are obtained by taking all possible intersections $\bigcap_{\nu=1}^{n} e^{\prime}{ }_{\nu}$, where each $e^{\prime}{ }_{\nu}$ is either e_{ν} or the complement of e_{ν} with respect to $\bigcup_{\mu=1}^{n} e_{\mu}$. Again, the relation $x \sim y$ is not destroyed when any of the admissible changes (A), (B), (C) is performed on x. This shows that $x \backsim y$ is equivalent to $x \equiv y$ and proves our assertion. In particular, it follows that if $\sum e_{\nu}$ and $\sum f_{\mu}$ are equivalent then $\bigcup_{e_{\nu}}=\bigcup_{f_{\mu}}$. As a corollary we obtain that two elements e_{1}, e_{2} of S which are equivalent, are identical in S.

We can now describe the relation $p e=\sum_{\nu=1}^{n} e_{\nu}$ in X, that is, the equivalence

$$
\sum_{\mu=1}^{p} f_{\mu} \equiv \sum_{\nu=1}^{n} e_{\nu}
$$

where $f_{1}=\ldots=f_{p}=e$, more directly in terms of S. Using the g_{1}, \ldots, g_{N} of (2.1) it follows that
(2.2) $p e=\sum e_{\nu}$ holds if and only if there are disjoint decompositions e_{ν} $=\bigcup_{\mu=1}^{p} e_{\nu \mu}$ such that $e=\bigcup_{\nu=1}^{n} e_{\nu \mu}$ as a disjoint decomposition for every $\mu=1$, \ldots, p.

For instance, we may by induction on ν define the decompositions $e_{\nu}=U e_{\nu \mu}$ as follows: let $e_{\nu \mu}$ be the union of those g_{ρ} which satisfy $g_{\rho} \subset e_{\nu}$ and $g_{\rho} \subset e_{\sigma}$ for precisely $\mu-1$ indices $\sigma<\nu$. If (2.2) holds, we shall say that the e_{1}, \ldots, e_{n} cover e exactly p times. In the same way, we shall say that e_{1}, \ldots, e_{n} cover e at least p times if there are disjoint decompositions $e_{\nu}=\bigcup_{\mu=1}^{p} e_{\nu \mu}$ with $e \subset$ $\bigcup_{\nu=1}^{n} e_{\nu \mu}(\mu=1, \ldots, p)$. It is clear that this is the case if and only if there are $e^{\prime}{ }_{\nu} \subset e_{\nu}(\nu=1, \ldots, n)$ which cover e exactly p times.

We shall write $x \leqslant y, x, y \in X$ if there exist representations

$$
x=\sum_{1}^{n} a_{\nu} e_{\nu}, y=\sum_{1}^{n} b_{\nu} e_{\nu}
$$

with $a_{\nu} \leqslant b_{\nu}(\nu=1, \ldots, n)$. This relation is transitive by (2.1). For instance, $e_{1} \subset e_{2}$ implies $e_{1} \leqslant e_{2}$ in X.
3. Multiply subadditive functions. As stated in $\S 1$, a function $\Phi(e), e \in S$ is multiply subadditive if $p \Phi(e) \leqslant \sum \Phi\left(e_{\nu}\right)$ whenever $p e=\sum e_{\nu}$ in X, that is, whenever the e_{ν} cover e exactly p times. If $\Phi(e)$ is, moreover, increasing, $\Phi(e) \leqslant$ $\Phi\left(e^{\prime}\right)$ for $e \subset e^{\prime}$, then the last inequality holds even if the e_{ν} cover e at least p times.

Writing $0=0+0,2 \cdot 0=0$, we obtain $\Phi(0) \leqslant 2 \Phi(0), 2 \Phi(0) \leqslant \Phi(0)$. Therefore, a multiply subadditive function has the property $\Phi(0)=0$. If, in addition, Φ is increasing, it follows that $\Phi(e) \geqslant 0, e \in S$.

If $\Phi(e)$ is additive on S, we obtain an extension $F(x)$ of ϕ onto X by putting $F(x)=\sum a_{\nu} \phi\left(e_{\nu}\right)$ if $x=\sum a_{\nu} e_{\nu}$. Since the first sum is invariant under changes (A), (B), (C) of $\S 2, F(x)$ is a function defined on X. Clearly $F(x)$ is additive. In particular, we obtain

$$
\begin{equation*}
p \phi(e)=\sum a_{\nu} \phi\left(e_{\nu}\right), \quad p e=\sum a_{\nu} e_{\nu} \tag{3.1}
\end{equation*}
$$

so that any additive function ϕ on S is multiply subadditive with equality in (1.1). If, in addition, ϕ is positive, $\phi(e) \geqslant 0, e \in S$, then

$$
\begin{equation*}
\sum a_{\nu} \phi\left(e_{\nu}\right) \leqslant \sum b_{\nu} \phi\left(e_{\nu}\right), \quad \sum a_{\nu} e_{\nu} \leqslant \sum b_{\nu} e_{\nu} . \tag{3.2}
\end{equation*}
$$

We finally remark that the condition

$$
\begin{equation*}
\Phi(e) \leqslant \sum_{\nu=1}^{n} a_{\nu} \Phi\left(e_{\nu}\right) \quad \text { whenever } e=\sum a_{\nu} e_{\nu}, a_{\nu} \geqslant 0 \tag{3.3}
\end{equation*}
$$

is equivalent to multiple subadditivity. If the a_{ν} are all rational, we write $a_{\nu}=k_{\nu} / k$ with positive integers k_{ν}, k, and repeating each e_{ν} exactly k_{ν} times, deduce (3.3) from (1.2). In the general case we see, using (2.1), that, for fixed e_{ν}, e, the relation $e=\sum a_{\nu} e_{\nu}$ is equivalent to a system of linear equations, with integral coefficients, for the a_{ν}. Solutions a_{1}, \ldots, a_{n} of this system can be approximated by positive rational solutions $a_{1}{ }^{(m)}, \ldots, a_{n}{ }^{(m)}$. Then $a_{\nu}{ }^{(m)} \rightarrow a_{\nu}$ for $m \rightarrow \infty$ and $e=\sum a_{\nu}{ }^{(m)} e_{\nu}$. Making $m \rightarrow \infty$ in

$$
\Phi(e) \leqslant \sum a_{\nu}^{(m)} \Phi\left(e_{\nu}\right)
$$

we obtain (3.3).
4. Extension of functions from S onto X. In this section we connect the possibility of representation of the form

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C} \phi(e), \tag{4.1}
\end{equation*}
$$

$\phi(e)$ additive, with the possibility of extension of $\Phi(e)$ onto $X(S)$.

Theorem 1. $\Phi(e)$ has a representation

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C}|\phi(e)| \tag{4.2}
\end{equation*}
$$

if and only if $\Phi(e)$ has an extension $P(x)$ onto X which satisfies the conditions

$$
\begin{array}{rlr}
P(x+y) & \leqslant P(x)+P(y) \\
P(a x) & =a P(x), & a \geqslant 0 \\
P(x) & \geqslant 0 &
\end{array}
$$

$$
\begin{equation*}
P(-x)=P(x) \tag{iv}
\end{equation*}
$$

Proof. If (4.2) holds, we define

$$
\begin{equation*}
P(x)=\sup _{\phi \in C}\left|\sum a_{\nu} \phi\left(e_{\nu}\right)\right|, \quad x=\sum a_{\nu} e_{\nu} \tag{4.3}
\end{equation*}
$$

the value of $\sum a_{\nu} \phi\left(e_{\nu}\right)$ being independent of the choice of the representation $x=\sum a_{\nu} e_{\nu}$. Then $P(x)$ is finite, since

$$
0 \leqslant P(x) \leqslant \sum\left|a_{\nu}\right| \Phi\left(e_{\nu}\right)<+\infty
$$

Also, $P(x)$ satisfies conditions (i)-(iv). Moreover, $P(x)=\Phi(e)$ for $x=e \in S$.
If, on the other hand, $\Phi(e)$ has an extension $P(x)$ of the required kind, we apply the Hahn-Banach theorem [1] and obtain, for each $e_{0} \in S$, a linear functional $F(x)$ on X satisfying $F\left(e_{0}\right)=P\left(e_{0}\right)=\Phi\left(e_{0}\right)$ and $F(x) \leqslant P(x), x \in X$. Then $F(x) \geqslant-P(-x)=-P(x)$, that is, $|F(x)| \leqslant P(x), x \in X$. If C is the class of all functions $\phi(e)=F(e), e \in S$ for all $F(x)$ of this kind, then (4.1) holds.

Theorem 2. $\Phi(e)$ has a representation

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C} \phi(e), \quad \phi(e) \geqslant 0 \tag{4.4}
\end{equation*}
$$

where C is a class of positive additive functions ϕ if and only if $\Phi(e)$ has an extension $P(x)$ onto X with properties (i)-(iv) and

$$
\begin{equation*}
P\left(e_{1}\right) \leqslant P\left(e_{2}\right), \quad e_{1} \subset e_{2} \tag{v}
\end{equation*}
$$

Proof. If $\Phi(e)$ satisfies (4.4), then $P(x)$, defined by (4.3), has the properties (i)-(v), so that they are necessary.

On the other hand, if $\Phi(e)$ has a continuation $P(x)$, then the proof of Theorem 1 establishes (4.4) where, however, the functions $\phi \in \mathrm{C}$ are not necessarily positive. Let

$$
\phi_{1}(e)=\sup _{e^{\prime} C_{e}} \phi\left(e^{\prime}\right) \geqslant 0
$$

be the positive variation of $\phi \in C$. It is easy to see that ϕ_{1} is additive and moreover (since $\Phi(e)$ increases by (v))

$$
\Phi(e)=\sup _{e^{\prime} C_{e}} \Phi\left(e^{\prime}\right)=\sup _{\phi \in C}\left[\sup _{e^{\prime} C_{e}} \phi\left(e^{\prime}\right)\right]=\sup _{\phi_{1} \in C_{1}} \phi_{1}(e),
$$

which establishes (4.4) with $C_{1}=\left\{\phi_{1}\right\}$ instead of C.
5. Representation of multiply subadditive functions. In this section we give the main results of this paper which connect the possibility of representation of a function $\Phi(e)$ in the form $\Phi(e)=\sup \phi(e)$ with the multiple subadditivity of $\Phi(e)$.

Theorem 3. A function $\Phi(e)$ on S has a representation

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C}|\phi(e)| \tag{5.1}
\end{equation*}
$$

if and only if $\Phi(e)$ satisfies the condition

$$
\begin{equation*}
\Phi(e) \leqslant \sum_{\nu=1}^{n}\left|a_{\nu}\right| \Phi\left(e_{\nu}\right) \quad \text { whenever } e=\sum a_{\nu} e_{\nu} \tag{5.2}
\end{equation*}
$$

Proof. We begin by remarking that (5.1) and (5.2) both imply $\Phi(e) \geqslant 0$, the latter condition by putting $e=e-e+e$. If (5.1) holds and $e=\sum a_{\nu} e_{\nu}$, then

$$
|\phi(e)|=\left|\sum a_{\nu} \phi\left(e_{\nu}\right)\right| \leqslant \sum\left|a_{\nu}\right| \Phi\left(e_{\nu}\right)
$$

and (5.2) follows. Conversely, if this condition is fulfilled, we set

$$
\begin{equation*}
P(x)=\inf \sum\left|a_{\nu}\right| \Phi\left(e_{\nu}\right) \tag{5.3}
\end{equation*}
$$

where the infimum is taken for all representations $x=\sum a_{\nu} e_{\nu}$. Then $0 \leqslant P(x)$ $<+\infty$ and, by (5.2), $P(e)=\Phi(e), e \in S$. As $P(x)$ satisfies (i)-(iv), we obtain (5.1) by Theorem 1.

Remark. As in the proof of (3.3), we may show that (5.2) is equivalent to the condition

$$
\begin{equation*}
p \Phi(e) \leqslant \sum_{\nu=1}^{n} \Phi\left(e_{\nu}\right) \quad \text { whenever } p e=\sum \pm e_{\nu} \tag{5.4}
\end{equation*}
$$

Theorem 4. A function $\Phi(e)$ on S admits a representation

$$
\begin{equation*}
\Phi(e)=\sup _{\phi \in C} \phi(e), \quad \phi(e) \geqslant 0 \tag{5.5}
\end{equation*}
$$

if and only if $\Phi(e)$ is increasing and multiply subadditive.
Proof. The necessity of the conditions is obvious. Conversely, let $\Phi(e)$ be increasing and multiply subadditive, we show that (5.2) holds. By the Remark, it is sufficient to prove (5.4). But if $p e=\sum \pm e_{\nu}$ then the e_{ν} cover e at least p times (see §2) and therefore, by §3, we obtain (5.4) for the function $\Phi(e)$. As in Theorem 3, (5.3) gives an extension of $\Phi(e)$ onto X satisfying (i)-(iv). Also (v) is satisfied; hence our result follows from Theorem 2.
6. Special classes of multiply subadditive functions. Examples of multiply subadditive functions may be obtained by considering

$$
\begin{equation*}
\Phi(e)=F(\psi(e)) \tag{6.1}
\end{equation*}
$$

where $\psi(e)$ is a fixed positive additive function on S and $F(u)$ a function of the real variable $u \geqslant 0$.

We shall assume that S is ψ-nonatomic, that is, if $\psi(e)=\delta$ for some $e \in S$ and $0 \leqslant \delta_{1} \leqslant \delta$, there is an $e_{1} \subset e$ with $\psi\left(e_{1}\right)=\delta_{1}$. Clearly, with this condition, Φ is increasing if and only if F is increasing. Moreover, we have

Theorem 5. A function (6.1) with an increasing $F, F(0)=0$ is multiply subadditive on a ψ-nonatomic Boolean ring S if and only if F has the property
(6.2) $k F(\delta) \leqslant F(k \delta)$ for $0 \leqslant k \leqslant 1$ and all values $\delta=\psi(e), e \in S$.

Proof. If $p e=\sum_{\nu=1}^{n} e_{\nu}$, then $e_{\nu} \subset e$, and putting $\delta_{\nu}=\psi\left(e_{\nu}\right), \delta=\psi(e)$, we see that $0 \leqslant \delta_{\nu} \leqslant \delta, p \delta=\sum \delta_{\nu}$. If (6.2) holds and $\Phi(e)$ is defined by (6.1), we have, therefore, for $\delta>0$,

$$
p \Phi(e)=p F(\delta)=\sum \frac{\delta_{\nu}}{\delta} F(\delta) \leqslant \sum F\left(\delta_{\nu}\right)=\sum \Phi\left(e_{\nu}\right)
$$

For $\delta=0$ this inequality holds since $F(0)=0$, so that $\Phi(e)$ is multiply subadditive.

Conversely, suppose that Φ has this property and that $\psi(e)=\delta$ for some $e \in S$; further, let $0 \leqslant k^{\prime}=p / n \leqslant 1$ be a rational number and p, n be relatively prime. We decompose e into a disjoint union $e=\bigcup_{j=1}^{n} \bar{e}_{j}$ of elements \bar{e}_{j} with $\psi\left(\bar{e}_{j}\right)=$ δ / n. For any integer $1 \leqslant i \leqslant p n$ let $\bar{e}_{i}=\bar{e}_{j}$, where j is the residue of i modulo n in the interval $1 \leqslant j \leqslant n$. Then

$$
e_{\nu}=\bigcup_{(\nu-1) p<i \leqslant \nu \nu} \bar{e}_{i}
$$

is a disjoint union and the e_{ν} cover e exactly p times. Moreover, $\psi\left(e_{\nu}\right)=p \delta / n$ $=k^{\prime} \delta$. Therefore,

$$
p F(\delta)=p \Phi(e) \leqslant \sum \Phi\left(e_{\nu}\right)=\sum_{\nu=1}^{n} F\left(k^{\prime} \delta\right)=n F\left(k^{\prime} \delta\right)
$$

or

$$
k^{\prime} F(\delta) \leqslant F\left(k^{\prime} \delta\right)
$$

If now k is a real number $0 \leqslant k \leqslant 1$, we take an increasing sequence of rationals $k_{n}^{\prime} \rightarrow k$ and deduce $k^{\prime}{ }_{n} F(\delta) \leqslant F\left(k^{\prime} \delta\right) \leqslant F(k \delta)$, which gives (6.2).

A function $F(u)$ satisfying (6.2) is easily seen to be continuous. Conversely, any positive, continuous, and concave function $F(u)$ satisfies (6.2). For it is known that F with $F(0)=0$ has these properties if and only if

$$
\begin{equation*}
F(u)=\int_{0}^{u} f(x) d x \tag{6.3}
\end{equation*}
$$

f positive and decreasing, and this implies (6.2). There are functions of the type (6.1) which are subadditive, but not multiply subadditive. Let S be the Boolean algebra of measurable sets $e \subset(0,1)$ and $\psi(e)$ be the Lebesgue measure of the set $e \subset(0,1)$. Set $F(u)=\frac{3}{2} u$ in $\left(0, \frac{1}{3}\right), F(u)=\frac{1}{2}$ in $\left(\frac{1}{3}, \frac{2}{3}\right)$, and $F(u)=\frac{3}{2} u-\frac{1}{2}$ in $\left(\frac{2}{3}, 1\right)$. Then the function (6.1) is subadditive because $F(u)$ has the property $F\left(u_{1}+u_{2}\right) \leqslant F\left(u_{1}\right)+F\left(u_{2}\right)$. However, condition (6.2) is not satisfied, for $\frac{2}{3}=\frac{2}{3} F(1)>F\left(\frac{2}{3}\right)=\frac{1}{2}$.
We can also describe functions of type (6.1) by means of their representations. Assume for simplicity that $\Phi(e)=m e$ is the Lebesgue measure of a measurable set $e \subset(0,1)$. Let T denote one-to-one measure-preserving transformations of
$(0,1)$ into itself, so that $e^{\prime}=T(e)$ has the same measure as e for any measurable e. Then we have:
(6.4) An increasing multiply subadditive function $\Phi(e)$ is of the form $\Phi(e)=$ $F(m e)$ if and only if Φ has a representation

$$
\begin{equation*}
\Phi(e)=\sup _{\phi e C} \phi(e) \tag{6.5}
\end{equation*}
$$

where the class C contains with any $\phi(e)$ also any function $\phi(T(e))$.
If Φ has a representation of this kind, $\Phi(e)$ depends only on $m e$, since, for any two sets e, e^{\prime} with $m e=m e^{\prime}$, there is a T with $e^{\prime}=T(e)$. Therefore, $\Phi(e)$ is of the form $F(m e)$. On the other hand, if a multiply subadditive and increasing function (6.5) depends only on $m e$, we may replace C by the class C_{1} of all additive functions $\phi(T(e)), \phi \in C, T$ arbitrary, and have again

$$
\Phi(e)=\sup _{\phi \in C_{1}} \phi(e)
$$

A special case of the above class is described as follows. Let S be as before; we define the rearrangement of a set-function

$$
\phi(e)=\int_{e} g(x) d x, \quad e \in S
$$

to be any function

$$
\bar{\phi}(e)=\int_{e} \bar{g} d x
$$

where $\bar{g}(x)$ is a rearrangement of $g(x)$ (for rearrangements of a point-function see [4, p. 276]).
(6.6) In order that $\Phi(e)$ be of the form $\Phi(e)=\sup _{c} \phi(e)$, where C is the class of all rearrangements of a single, absolutely continuouus positive function $\phi_{0}(e)$, it is necessary and sufficient that $\Phi(e)=F(m e)$ where $F(u)$ is continuous, increasing and concave.

If $\Phi(e)=\sup \phi(e)$ with the stated specification, and

$$
\phi_{0}(e)=\int_{e} g d x, \quad g \geqslant 0
$$

then we have

$$
\Phi(e)=\int_{0}^{m e} g^{*}(x) d x
$$

where g^{*} is the decreasing rearrangement of g. Thus $\Phi(e)=F(m e)$, where

$$
F(u)=\int_{0}^{u} g^{*} d x
$$

is continuous, increasing and concave. Conversely, if $\Phi(e)=F(m e)$ and

$$
F(u)=\int_{0}^{u} g d x
$$

with an integrable, positive and decreasing g, then $\Phi(e)=\sup \phi(e)$, where $\phi(e)$ are all rearrangements of

$$
\phi_{0}(e)=\int_{0}^{m e} g d x .
$$

We finally indicate a generalization of the Hahn decomposition theorem for subadditive functions. Let S be a Boolean σ-ring with zero element [2] and $\Phi(e)$ a subadditive function on S (compare $\S 1)$. An element $e \in S$ is called Φ positive, Φ-negative, or Φ-zero if $\Phi\left(e^{\prime}\right) \geqslant 0, \Phi\left(e^{\prime}\right) \leqslant 0$, or $\Phi\left(e^{\prime}\right)=0$, respectively, for each $e^{\prime} \subset e, e^{\prime} \in S$. Then the following statement holds:
(6.7) If a bounded subadditive function $\Phi(e)$ on S has the property

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Phi\left(e_{n}\right)=0, \quad e_{1} \supset e_{2} \supset \ldots, \cap e_{n}=0 \tag{6.8}
\end{equation*}
$$

and takes values of different sign, then there are disjoint elements $e^{-}, e_{a}^{+}, a \in A$ of S such that e^{-}is Φ-negative, each e_{a}^{+}is Φ-positive, $\Phi\left(e_{a}^{+}\right)>0$, and each $e \in S$ disjoint with all e^{-}, e_{a}^{+}is Φ-zero.

The proof is similar to the usual proof of Hahn's theorem [3, p.121], but requires transfinite induction for Φ-positive elements.

References

1. S. Banach, Théorie des opérations linéaires (Warszaw, 1932).
2. G. Birkhoff, Latticc theory (2nd ed., New York, 1948).
3. P. R. Halmos, Measure theory (New York, 1950).
4. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (Cambridge, 1934).
5. G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math., vol. 1 (1951), 411-429.

The University of Toronto

[^0]: Received April 14, 1951. This investigation was carried out while the author held a Fellowship at the Summer Institute of the Canadian Mathematical Congress in 1950.

