
MULTIPLY SUBADDITIVE FUNCTIONS 

G. G. LORENTZ 

1. Introduction. Let S denote a Boolean ring with elements e, that is, a 
distributive, relatively complemented lattice with zero element 0 [2, p. 153]. 
In this paper we study real-valued functions $(e), e G 5 which have a represent
ation of the form 

(1.1) *(e) = sup 0(6), 
<t>tC 

C being a certain class of additive functions on S; <t>(e) is additive if <t>(e\\Je2) = 
</>(ei) + 0(02) for any pair eh e2^S, e\C\e2 = 0. We find a relation between (a) 
the possibility of representation (1.1); (b) the possibility of extension of $(e) 
onto a vector space X containing S; (c) some simple intrinsic properties of 
$(e). For instance, one of our results (Theorem 4 in §5) is that $(e) possesses a 
representation (1.1), C being a family of addititive and positive functions </>(e), 
if and only if $(e) is increasing and has the property 

(1.2) pHe) < E He,) 

whenever the ev cover e exactly p times (for a precise definition, see §§2,3). 
Functions <ï>, satisfying (1.2), we call multiply subadditive; this property is 
stronger than the ordinary subadditivity expressed by the inequality 

*(«i U e2) < $(01) + $(e 2 ) , ei H 62 = 0. 

On the other hand, we shall see that (1.2), with = instead of < , holds for any 
additive function $(e). Multiply subadditive functions constitute, therefore, an 
intermediary class between the subadditive and the additive functions. 

The problems treated in this paper arose, in the case when S is a Boolean ring 
of measurable sets, in connection with the study of certain spaces of functions, 
see [5, §4]. 

2. The vector space X(S). A natural extension of a Boolean ring S into a 
space X(S) = X = {x} is obtained as follows. Let x be any finite sum 

n 

X ~~ / j tZ-j/C/j/, 
v=l 

the order of terms being by definition irrelevant, where av are arbitrary real 
numbers and ev arbitrary elements of S (with repetitions allowed). We define 
an equivalence relation x = y for two sums x = £ ^^v, y =2Z VM °f this kind 
to mean that x can be transformed into y by a finite number of changes of the 
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types: (A) a term ae in the sum x is replaced by ae' + ae", if e = e'Ue", e'C\e" 
= 0, or conversely, ae' + ae" is replaced by ae; (B) Oe is omitted, or conversely, 
is added; (C) ae is replaced by a'e + a"e, where a = a' + a", or conversely. 

This equivalence relation is reflexive, symmetric, and transitive. Let X be the 
set of all equivalence classes and let X be provided with operations of addition 
and scalar multiplication as follows, lî x = Y, a^vj y = H VM» then 

ax = ^T, aavevj x + y = ]T) a^v + ^2 VM-

Clearly # = X\ and 3> = y\ imply ax = axi and x + 3; = X\ + 3/1 and it follows 
that X is a vector space with zero of 5 as zero element. 

The following lemma will be useful : 

(2.1) Two sums x =J^avev and y = YL bufn are equivalent if and only if there 
are disjoint elements gh . . . , gN such that every ev and every /M is a union of some of 
these gp in such a way that, if the ev, /M are replaced by the sums of the corresponding 
gp and the terms reduced, the two expressions^ avtv, X ^Jn become identical. 

For the proof, we write x^y, if there are such gp. Clearly, x^y implies x = y. 
But also the converse is true. First, we have x^x for any x. For if ei, . . . , en is a 
finite set of elements of 5, the ev can be expressed as unions of suitable disjoint 
gp. Such gp are obtained by taking all possible intersections ft>Li e'VJ where 
each e'v is either ev or the complement of ev with respect to UjLi M̂- Again, 
the relation x^y is not destroyed when any of the admissible changes (A), (B), 
(C) is performed on x. This shows that x^y is equivalent to # = y and proves our 
assertion. In particular, it follows that if £) ev and XI fv- a r e equivalent then 
\}ev = U/M. As a corollary we obtain that two elements £i,e2 of 5 which are 
equivalent, are identical in S. 

We can now describe the relation pe = X)*=i ev in X, that is, the equivalence 

V n 

H=l v=l 

where/1 = . . . = fv = e, more directly in terms of 5. Using the gi, . . . , gN of 
(2.1) it follows that 

(2.2) pe = 22 ev holds if and only if there are disjoint decompositions ev 

= UM=I Cvy. such that e = U*=i evv, as a disjoint decomposition for every /z = 1, 
. . . , £ • 

For instance, we may by induction on v define the decompositions ev — \JeVfi 

as follows: let evy, be the union of those gp which satisfy gpd ev and gpC. ea for 
precisely /x — 1 indices a < v. If (2.2) holds, we shall say that the e\, . . . , en 

cover e exactly p times. In the same way, we shall say that ei, . . . , en cover e 
at least p times if there are disjoint decompositions ev = UjLi eVft with e(Z 
Uv=i eVfl (JJL = 1, . . . , p). It is clear that this is the case if and only if there are 
e'vQ ev(v = 1, . . . , n) which cover e exactly p times. 
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We shall write x < y, x, y £X if there exist representations 
n n 

1 1 

with a„ < bv{v — 1, . . . ,n). This relation is transitive by (2.1). For instance, 
ei C 02 implies ei < e2 in X. 

3. Multiply subadditive functions. As stated in §1, a function $(e), e £ S is 
multiply subadditive if p$(e) < X) ®(ev) whenever pe =^ev in X, that is, 
whenever the ev cover e exactly p times. If $(e) is, moreover, increasing, $(e) < 
$(e') for e C tf', then the last inequality holds even if the ev cover e at least £ 
times. 

Writing 0 = 0 + 0, 2*0 = 0, we obtain $(0) < 2$(0), 2$(0) < $(0). There
fore, a multiply subadditive function has the property $(0) = 0. If, in addition, 
$ is increasing, it follows that 3>(V) > 0, eGS. 

If $(e) is additive on 5, we obtain an extension F(x) of <f> onto X by putting 
F(x) = ]£ av<j>(ev) if x = ^ a*^- Since the first sum is invariant under changes 
(A), (B), (C) of §2, F{x) is a function defined on X. Clearly F{x) is additive. 
In particular, we obtain 

(3.1) P<t>(e) = ^dy^iev), pe = ^ avev, 

so that any additive function 0 on 5 is multiply subadditive with equality in 
(1.1). If, in addition, $ is positive, <j>ie) > 0, e 6 5, then 

(3.2) X^ CLv4>iev) < 2 bv4>iev), ^ a *^ < 2 ^ -

We finally remark that the condition 
n  

iS.3) <i>(e) < ]T) &v$iev) whenever e = ^ a„e„ av > 0, 

is equivalent to multiple subadditivity. If the av are all rational, we write 
av = kv/k with positive integers kv, k, and repeating each ev exactly kv times, 
deduce i3.3) from (1.2). In the general case we see, using (2.1), that, for fixed 
ev, e, the relation e = J2 av^v is equivalent to a system of linear equations, with 
integral coefficients, for the av. Solutions ai, . . . , an of this system can be ap
proximated by positive rational solutions ai{m\ . . . , an

(m). Then av
(m) —>av 

for m —» oo and e = X af^e,. Making m —» oo in 

He) < Z av
im)He>), 

we obtain i3.3). 

4. Extension of functions from S onto X. In this section we connect the 
possibility of representation of the form 

(4.1) $(«) = sup <t>(e), 
<t>eC 

<f>ie) additive, with the possibility of extension of $(e) onto X{S). 
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THEOREM 1. $(e) has a representation 

(4.2) $(e) = sup \4>(e)\ 

if and only if <£> (e) has an extension P (x) onto X which satisfies the conditions 

(i) P{x + y) <P(x)+P(y), 

(ii) P{ax) = aP(x), a > 0, 

(in) P(x) > 0, 

(iv) P ( - x) = P(x). 

Proof. If (4.2) holds, we define 

(4.3) P(x) = sup | ̂  a>v<t>(ev)\, x = ^ avev, 
4>eC 

the value of X a>v<l>(ev) being independent of the choice of the representation 
x = X) a^»" Then P(x) is finite, since 

o<p(*) < E kl$W < + .̂ 
Also, P(x) satisfies conditions (i)-(iv). Moreover, P(x) = <£(e) for x = e Ç 5. 

If, on the other hand, $(e) has an extension P(x) of the required kind, we 
apply the Hahn-Banach theorem [1] and obtain, for each e0G5, a linear functional 
F(x) on X satisfying F(e0) = P(e0) = $(e0) and P(x) < P(x), x É l . Then 
P(x) > - P ( - x ) = - P ( x ) , that is, |p(x)| < P(x), x G l . If C is the class 
of all functions <j>(e) = F(e), e(zS for all F(x) of this kind, then (4.1) holds. 

THEOREM 2. $(e) Ms a representation 

(4.4) $(*) = sup 0(e), 0(e) > 0, 
<t>eC 

where C is a class of positive additive functions cj> if and only if $ (e) has an ex
tension P(x) onto X with properties (i)-(iv) and 

(v) P ( « i ) < P ( * 2 ) , e1Qe2. 

Proof. If 4>(e) satisfies (4.4), then P(x), defined by (4.3), has the properties 
(i)-(v), so that they are necessary. 

On the other hand, if $(e) has a continuation P(x), then the proof of Theorem 
1 establishes (4.4) where, however, the functions <££ C are not necessarily positive. 
Let 

4>i{e) = sup <j>(e') > 0 
e' Ce 

be the positive variation of <j> € C. It is easy to see that <j>i is additive and more
over (since <£(e) increases by (v)) 

$(e) = sup <£>(e') = sup [sup <j>(e')] = sup <t>i(e)t 
e'Ce <j>eC e'Ce <f>itCi 

which establishes (4.4) with C\ = {<£i} instead of C. 
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5. Representation of multiply subadditive functions. In this section we 
give the main results of this paper which connect the possibility of representation 
of a function $(e) in the form $(e) = sup <j>(e) with the multiple subadditivity 
of $(e). 

THEOREM 3. A function <&(e) on S has a representation 

(5.1) He) =sup |0(<O| 
<f>eC 

if and only if <£ (e) satisfies the condition 
n 

(5.2) $(e) < 22 |ay|$(e„) whenever e = ^ avev. 
v=l 

Proof. We begin by remarking that (5.1) and (5.2) both imply <£(e) > 0, the 
latter condition by putting e = e — e + e. If (5.1) holds and e = £ a„e„, then 

and (5.2) follows. Conversely, if this condition is fulfilled, we set 

(5.3) P(x) = inf £ k |<K«0 

where the infimum is taken for all representations x = £ a„e„. Then 0 < P(x) 
< + oo and, by (5.2), P(e) = $(e), eGS. As P(x) satisfies (i)-(iv), we obtain 
(5.1) by Theorem 1. 

Remark. As in the proof of (3.3), we may show that (5.2) is equivalent to the 
condition 

n 

(5.4) p$(e) < X $(?v) whenever^ = ^ zt ev. 

THEOREM 4. 4̂ function $ (e) ow 5 admits a representation 

(5.5) $(e) = sup 0(e), 0(e) > 0, 
<f>eC 

if and only if <£(e) is increasing and multiply subadditive. 

Proof. The necessity of the conditions is obvious. Conversely, let $(e) be 
increasing and multiply subadditive, we show that (5.2) holds. By the Remark, 
it is sufficient to prove (5.4). But if pe = £ ± ev then the ev cover e at least p 
times (see §2) and therefore, by §3, we obtain (5.4) for the function $(e). As in 
Theorem 3, (5.3) gives an extension of $(e) onto X satisfying (i)-(iv). Also (v) 
is satisfied; hence our result follows from Theorem 2. 

6. Special classes of multiply subadditive functions. Examples of multiply 
subadditive functions may be obtained by considering 

(6.1) He) = FMe)), 

where \f/(e) is a fixed positive additive function on S and F(u) a function of the 
real variable u > 0. 

We shall assume that 5 is yp-nonatomic, that is, if \p(e) = 5 for some e (E 5 and 
0 < ôi < 5, there is an eiQ e with ^(ei) = ôi. Clearly, with this condition, $ is 
increasing if and only if F is increasing. Moreover, we have 
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THEOREM 5. A function (6.1) with an increasing F, F(0) = 0 is multiply 
subadditive on a \f/-nonatomic Boolean ring S if and only if F has the property 

(6.2) kF(ô) < F (ko) for 0 < k < 1 and ail values Ô = ^(e), e <E S. 

Proof. If pe — X^=i ev, then ev(Ze, and putting ôy = ^(e„), ô = ^(e), we see 
that 0 < ôv < ô, £ô = X! f̂. If (6.2) holds and $(e) is defined by (6.1), we have, 
therefore, for ô > 0, 

pHe) = PF(8) = E y F(S) < E F(fi>) = E He,)-

For 5 = 0 this inequality holds since F(0) = 0, so that $(e) is multiply sub
additive. 

Conversely, suppose that <ï>has this property and that \p(e) = ô for some e Ç 5 ; 
further, let 0 < &' = £>/?z < 1 be a rational number and p, n be relatively prime. 
We decompose e into a disjoint union e = Uy=i ëy of elements ëj with ^(ëy) = 
b/n. For any integer 1 < i < ^n let ë* = ë;-, where j is the residue of i modulo n 
in the interval 1 < j < n. Then 

£? = U êt 
{v— \)p<i<,vp 

is a disjoint union and the ev cover e exactly p times. Moreover, \p(ev) = pd/n 
= k'b. Therefore, 

n 

PF(8) = p$(e) < E *(«>) = X ^(*'«) = nF(k'ô), 

or 

If now k is a real number 0 < k < 1, we take an increasing sequence of rationals 
k'n->k and deduce k'nF{5) < F{k'n$) < F(ifeô), which gives (6.2). 

A function /̂ (w) satisfying (6.2) is easily seen to be continuous. Conversely, 
any positive, continuous, and concave function F{u) satisfies (6.2). For it is 
known that F with F(0) = 0 has these properties if and only if 

(6.3) F(u) = / (x)dx, 
o 

/positive and decreasing, and this implies (6.2). There are functions of the type 
(6.1) which are subadditive, but not multiply subadditive. Let 5 be the Boolean 
algebra of measurable sets eC (0,1) and \[/(e) be the Lebesgue measure of the set 
eC (0,1). Set F{u) = \u in (0, £), F(u) = J in ( i f), and F(u) = \u - \ in 
(f, 1). Then the function (6.1) is subadditive because F{u) has the property 
F(ui + u2) < F(ui) + F(u2). However, condition (6.2) is not satisfied, for 
| = | ^ ( 1 ) > J F ( | ) _ = | . 

We can also describe functions of type (6.1) by means of their representations. 
Assume for simplicity that $(e) = me is the Lebesgue measure of a measurable 
set eC(0, 1). Let T denote one-to-one measure-preserving transformations of 
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(0, 1) into itself, so that e' — T(e) has the same measure as e for any measurable 
e. Then we have: 

(6.4) An increasing multiply subadditive function $>(e) is of the form $(e) = 
F (me) if and only if <£ has a representation 

(6.5) $(e) = sup 0(e), 
<t>eC 

where the class C contains with any <j>(e) also any function <j>(T(e)). 

If $ has a representation of this kind, $(e) depends only on me, since, for 
any two sets e, e' with me = me', there is a T with e! — T(e). Therefore, $(e) 
is of the form F (me). On the other hand, if a multiply subadditive and increasing 
function (6.5) depends only on me, we may replace C by the class Ci of all 
additive functions <t>(T(e)), <j>(zC, T arbitrary, and have again 

$(e) = sup 4>(e). 
QtCi 

A special case of the above class is described as follows. Let S be as before ; we 
define the rearrangement of a set-function 

to be any function 

4(e) 

f(e) = 

g(x)dx, 

ix, 

e 6 S 

where g(x) is a rearrangement of g(x) (for rearrangements of a point-function 
see [4, p. 276]). 

(6.6) In order that $(e) be of the form $(e) = supc<t>(e), where C is the class of 
all rearrangements of a single, absolutely continuouus positive function <t>o(e), 
it is necessary and sufficient that $(e) = F (me) where F(u) is continuous, increasing 
and concave. 

If <£(e) = sup <t>(e) with the stated specification, and 

then we have 

0o (e) = 

He) = 

gdx, 

g* (x)dx, 

g>0, 

where g* is the decreasing rearrangement of g. Thus $(e) = F (me), where 

F(u) = g*dx 

is continuous, increasing and concave. Conversely, if $(e) = F (me) and 

F(u) = gdx 
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with an integrable, positive and decreasing g, then $(e) = sup 4>(e), where <j>(e) 
are all rearrangements of 

<£o 0 ) = gdx. 

We finally indicate a generalization of the Hahn decomposition theorem 
for subadditive functions. Let 5 be a Boolean cr-ring with zero element [2] and 
$(e) a subadditive function on 5 (compare §1). An element e£S is called <£-
positive, ^-negative, or $-zero if $(e') > 0, $(e') < 0, or $(e') = 0, respective
ly, for each e'Ce, e' G 5. Then the following statement holds: 

(6.7) If a bounded subadditive function $(e) on S has the property 

(6.8) lim $ ( 0 = 0, e O e 2 D . . . , n ^ = 0, 
W-400 

and /a&es values of different sign, then there are disjoint elements e~, et, a(zA of S 
such that e~ is ^-negative, each et is ^-positive, $(et) > 0, and each e(zS disjoint 
with all er, et is §-zero. 

The proof is similar to the usual proof of Harm's theorem [3, p. 121], but 
requires transfini te induction for «^-positive elements. 
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