A SIMPLE CLOSED GURVE IS THE ONLY HOMOGENEOUS BOUNDED PLANE CONTINUUM THAT CONTAINS AN ARC

R. H. BING

1. Introduction. One of the unsolved problems of plane topology is the following:

Question. What are the homogeneous bounded plane continua?
A search for the answer has been punctuated by some erroneous results. For a history of the problem see (6).

The following examples of bounded homogeneous plane continua are known: a point; a simple closed curve; a pseudo arc (2, 12); and a circle of pseudo arcs (6). Are there others?

The only one of the above examples that contains an arc is a simple closed curve. In this paper we show that there are no other such examples. We list some previous results that point in this direction. Mazurkiewicz showed (11) that the simple closed curve is the only non-degenerate homogeneous bounded plane continuum that is locally connected. Cohen showed (8) that the simple closed curve is the only homogeneous bounded plane continuum that contains a simple closed curve. Cohen showed (8) that the simple closed curve is the only non-degenerate homogeneous bounded plane continuum that is arcwise connected.

In this paper we prove the following theorem:
Theorem 1. The simple closed curve is the only homogeneous bounded plane continuum that contains an arc.

Theorem 1 is proved by listing certain properties possessed by any homogeneous bounded plane continuum that contains an arc but is not a simple closed curve (these properties with their consequences are listed in $\S \S 2,3,5$, 6 , and 10) and then showing (Theorem 6) that no homogeneous bounded plane continuum could have one of these properties. The proof of Theorem 1 is completed in § 10 .

In this paper, all sets are assumed to be metric. For the most part we will deal with planar sets but since some of the results apply to more general metric spaces, we do not suppose that sets discussed are planar unless this is stated. We recall some definitions, related results, and related questions.

A set is homogeneous if for each pair of its points p, q there is a homeomorphism of the set onto itself that takes p to q.

An ϵ collection is a collection each of whose elements is of diameter no more than ϵ.

An ϵ chain is a finite ordered ϵ collection of open sets $d_{1}, d_{2}, \ldots, d_{n}$ such that d_{i} intersects d_{j} if and only if i is adjacent to j.

A compact continuum X is snake-like if for each positive number ϵ, X can be covered by an ϵ chain. It is known (5) that the only non-degenerate homogeneous snake-like continuum is a pseudo arc.

It is convenient to associate with any open covering G a 1 -complex $C(G)$, called the 1 -nerve of G, such that there is a $1-1$ correspondence between the elements of G and the vertices of $C(G)$ and two elements of G intersect if and only if the corresponding vertices of $C(G)$ are joined by a 1 -simplex in $C(G)$. Note that the 1 -nerve of an ϵ chain is topologically an arc.

A compact continuum X is tree-like if for each positive number ϵ there is an ϵ collection G of open sets covering X such that the 1 -nerve of G contains no simple closed curve. Each 1-dimensional compact plane continuum that does not separate the plane is tree-like (3).

Question. Is there a homogeneous tree-like continuum that contains an arc?
Jones has shown (10) that each homogeneous tree-like compact continuum is indecomposable. Perhaps each is hereditarily indecomposable.

A compact continuum X is circle-like if it is not snake-like but for each positive number ϵ there is an ϵ collection G of open sets irreducibly covering X such that the 1 -nerve of G is topologically a circle. A simple closed curve and a circle of pseudo arcs are examples of circle-like homogeneous planar continua. Example 2 of (4) is not known to be non-homogeneous. A solenoid is an example of a compact homogeneous continuum that contains an arc. However, the simple closed curve is the only solenoid that is planar.

A solenoid may be defined as the intersection of a sequence of tori T_{1}, T_{2}, \ldots, such that T_{i+1} runs smoothly around inside $T_{i} n_{i}$ times longitudinally without folding back and T_{i} has cross diameter of less than $1 / i$. The sequence n_{1}, n_{2}, \ldots, determines the topology of the solenoid. If it is $1,1, \ldots$, after some place, the solenoid is a circle. If it is $2,2, \ldots$, the solenoid is the dyadic solenoid.

There is no loss of generality in supposing that each integer in the sequence n_{1}, n_{2}, \ldots, used in defining a solenoid is prime, for if n_{i} is not prime, it may be replaced in the sequence by its prime factors. The order of the elements of the sequence does not affect the topology of the solenoid-that is, if m_{1}, m_{2}, \ldots, is a reordering of n_{1}, n_{2}, \ldots, the solenoids determined by the sequences are topologically equivalent. Also, the first few terms of the sequence does not affect the topology of the solenoid. Hence, solenoids determined by the sequences of primes $n_{1}{ }^{1}, n_{2}{ }^{1}, \ldots$, and $n_{1}{ }^{2}, n_{2}{ }^{2}, \ldots$, are topologically equivalent if it is possible to remove a finite number of elements from each so that each prime greater than 1 occurs the same number of times in each of the remainders. Perhaps the converse of this is true.

Another way of describing a solenoid is to consider a unit circle C in the plane with centre at the origin and a sequence of maps f_{1}, f_{2}, \ldots of C onto itself so that in polar co-ordinates

$$
f_{i}(1, \theta)=\left(1, n_{i} \theta\right)
$$

This solenoid is the inverse limit of the circles and the f_{i} 's and consists of all points $p_{1} \times p_{2} \times p_{3} \times \ldots$ of the Cartesian product $C \times C \times C \times \ldots$ such that for each $i, p_{i}=f_{i}\left(p_{i+1}\right)$.

We show in Theorem 9 that if a circle-like homogeneous continuum contains an arc, it is a solenoid. Although a solenoid may not be planar, it is locally planar. Anderson has shown (1) that the only 1-dimensional locally connected continuum that is not locally planar at any point is the Menger universal curve. It is homogeneous (1).

Question. Are solenoids and the Menger universal curve the only homogeneous 1-dimensional compact continua that contain arcs?*
2. Some elementary properties of M. In $\S \S 2$ and 3 we suppose that M is a homogeneous, non-degenerate, bounded plane continuum that contains an arc but is not a simple closed curve. Our plan is to list enough of the properties of such an assumed M to show that it cannot exist. This section lists some elementary properties of M.

Property 1. M is not locally connected. Mazurkiewicz (11) showed that the simple closed curve is the only non-degenerate homogeneous bounded locally connected plane continuum.

Property 2. M is not connected im kleinen at any point. A set X is connected im kleinen at a point x if for each neighbourhood U of x there is a neighbourhood N of x such that $N \cdot X$ lies in the component of $U \cdot X$ containing x. If M were connected $i m$ kleinen at one point, it would follow from the homogeneity of X that it is connected im kleinen at every point. Since a continuum is locally connected at each point if it is connected im kleinen at each point, Property 1 implies Property 2.

Property 3. M contains an open set U with uncountably many components. Property 3 follows from Property 2 and the following theorem.

Theorem 2. If a complete metric space fails to be connected im kleinen at each point of a dense G_{δ} set, it contains an open set U with uncountably many components.

Proof. Suppose X is a complete metric space that fails to be connected $i m$ kleinen at each point of a dense G_{δ} set Y and Y is the intersection of the open sets $U_{1}, U_{2} \ldots$

[^0]Assume that X fails to contain an open set U with uncountably many components. Let V_{1} be an open subset of U_{1} of diameter less than $\frac{1}{2}$. It follows from the Baire Category Theorem that V_{1} contains an open subset V_{2} such that

$$
\begin{aligned}
& \bar{V}_{2} \subset V_{1} \cdot U_{2}, \\
& \text { diameter } V_{2}<1 / 2^{2}, \text { and } \\
& V_{2} \text { lies in a component of } V_{1} .
\end{aligned}
$$

Similarly, there is an open set V_{3} satisfying

$$
\begin{aligned}
& \bar{V}_{3} \subset V_{2} \cdot U_{3} \\
& \text { diameter } V_{3}<1 / 2^{3} \\
& V_{3} \text { lies in a component of } V_{2} .
\end{aligned}
$$

If one continues to get V_{4}, V_{5}, \ldots, one finds that X is connected im kleinen at $\bar{V}_{1} \cdot \bar{V}_{2} \ldots$ This contradicts the fact that $\bar{V}_{1} \cdot \bar{V}_{2} \ldots$ is a point of Y.

Grace (9) has given an example of a compact metric continuum that fails to be locally connected anywhere but which contains no open subset with uncountably many components. This shows that Theorem 2 cannot be weakened by replacing the property of not being connected $i m$ kleinen with the property of not being locally connected.

Property 4. M contains no simple triod. A simple triod is the sum of three arcs such that the intersection of any two of them is the same point p. If M contained a simple triod, it would follow from the homogeneity of M that each component of U of Property 3 would contain a simple triod. This would violate the fact that the plane does not contain uncountably many mutually exclusive simple triods. See Theorem 4.

Property 5. M contains no simple closed curve. Cohen showed (8) that if a bounded homogeneous plane continuum contains a simple closed curve, it is one.
3. Arc components of M. An arc component of a set X is a subset of X maximal with respect to the property that each pair of points of the subset belongs to an arc in X. In this section we show that the closure of each arc component of the assumed homogeneous bounded plane continuum M is homogeneous. In doing this we find it convenient to work with only certain parts of the arc components. These parts are called rays and are defined as follows.

Suppose p and q are two points of the same arc component of M. The sum of all arcs in M that have p as end point and contain q is called a ray starting at p. One may note that this ray differs from an ordinary ray of the plane in that it is neither straight nor closed. However, it has a starting point and is the image of an ordinary ray under a $1-1$ continuous transformation.

Property 6. Each ray in M is the sum of a countable number of arcs. Let p be the starting point of a ray R and $\left\{p_{i}\right\}$ be a countable dense subset of R. Then R is the sum of the arcs $p p_{1}, p p_{2} \ldots$ If there were a point r of R not in any $p p_{i}$, we would consider the arc $p r$. It follows from the homogeneity of M that r is the interior point of an arc so $p r$ may be extended to an arc $p s$ so that r is contained in the interior of $p s$. Since M contains no simple triod, each p_{i} belongs to the arc $p r$. However, $\left\{p_{i}\right\}$ would not be dense in R since no p_{i} is near s.

Property 7. For each point p of an arc component A of M, A is the sum of two rays R_{1}, R_{2} starting at p such that $R_{1} \cdot R_{2}=p$. It follows from the homogeneity of M that p is an interior point of an arc $a b$. It follows from the fact that M contains no simple triod (Property 4) that A is the sum of two rays starting at p and going through a, b respectively. Since M contains no simple closed curve (Property 5), these rays intersect only at p.

Property 8. M has uncountably many arc components. If M had only countably many arc components, it would follow from Properties 6 and 7 that M is the sum of a countable collection of arcs. It would then follow from the Baire Category Theorem that one of these arcs contains an open subset of M. The homogeneity of M would then imply that M is a 1-manifold. However, the simple closed curve is the only compact connected 1-manifold.

Property 9. If R is a ray of M and p is a point of \bar{R}, one of the rays starting at p lies in \bar{R}. If neither of the rays starting at p lies in \bar{R}, p belongs to an $\operatorname{arc} a b$ in M such that neither a nor b is a point of \bar{R}. It follows from Property 8 and the homogeneity of M that there is an uncountable family $\left\{h_{\alpha}\right\}$ of homeomorphisms of $(a b+\bar{R})$ into M such that if $\alpha \neq \beta, h_{\alpha}(a b), h_{\beta}(a b)$ belong to different arc components of M.

It follows from Theorem 3 of § 4 that there is an $\operatorname{arc} A_{0}$ of the collection $\left\{h_{\alpha}(a b)\right\}$ with two sequences A_{1}, A_{3}, \ldots, and A_{2}, A_{4}, \ldots, of arcs of $\left\{h_{\alpha}(a b)\right\}$ converging homeomorphically to A_{0} from opposite sides. For convenience we suppose $A_{0}=a b$. Some two of the arcs $A_{2 i}, A_{2 i+1}$ near A_{0} would separate some point of \bar{R} from A_{0} in \bar{R} and hence two points p, q of R from each other in R. But then the arc $p q$ in R would cross either $A_{2 i}$ or $A_{2 i+1}$ and violate Property 4.

Property 10. If \bar{R}_{1} is the closure of a ray of M, it contains a continuum \bar{R} that is irreducible with respect to being the closure of a ray. Let D_{1}, D_{2}, \ldots, be a countable basis of open sets for the plane and R_{1}, R_{2}, \ldots, be a sequence of rays such that

1. R_{i+1} is a ray in \bar{R}_{i} missing D_{i} if any ray in \bar{R}_{i} misses $D_{i} ; R_{i+1}=R_{i}$ if each ray in \bar{R}_{i} intersects D_{i}.

If p is a point common to the elements of the decreasing sequence \bar{R}_{1}, \bar{R}_{2}, \bar{R}_{3}, \ldots, it follows from Property 9 that one of the rays R starting at p lies in infinitely many of the \bar{R}_{i} 's. Hence it lies in $\bar{R}_{1} \cdot \bar{R}_{2} \cdot \bar{R}_{3} \ldots$ If R^{\prime} is a ray
in \bar{R}, it follows from Condition 1 above that R^{\prime} intersects each D_{i} that R intersects. Hence $\bar{R}^{\prime}=\bar{R}$.

Property 11. If R is a ray in an arc component A of $M, \bar{R}=\bar{A}$. Assume p is a point in $A-\bar{R}$. It follows from Property 10 and the homogeneity of M that p is the starting point of a ray R^{\prime} whose closure is irreducible with respect to being the closure of a ray. Then \bar{R}^{\prime} does not contain R and there is a point q of $R-\bar{R}^{\prime}$. Let $R^{\prime \prime}$ be a ray starting at q whose closure is irreducible with respect to being the closure of a ray. Since neither of the rays $R^{\prime}, R^{\prime \prime}$ contains the other and the starting point q of $R^{\prime \prime}$ does not belong to R^{\prime}, the rays $R^{\prime}, R^{\prime \prime}$ do not intersect. Either some point of $p q$ belongs to both \bar{R}^{\prime} and $\bar{R}^{\prime \prime}$ or some point of $p q$ belongs to neither. We show that in either case, the assumption that $\bar{R} \neq \bar{A}$ has led to a contradiction.

If some point r of the arc $p q$ fails to belong to $\bar{R}^{\prime}+\bar{R}^{\prime \prime}$, there is no ray starting at r whose closure is irreducible with respect to being the closure of a ray. This violates Property 10 and the homogeneity of M.

If some point r of $p q$ belongs to both \bar{R}^{\prime} and $\bar{R}^{\prime \prime}$, there are two mutually exclusive rays in A each missing r and such that r belongs to the closure of each. This violates the homogeneity of M since there are not two mutually exclusive rays in A each missing q such that q belongs to the closure of each.

Property 12. If the closures of two arc components of M intersect, the closures are equal. Suppose A_{1}, A_{2} are two arc components whose closures contain the point p. Let A_{p} be the arc component of M containing p. It follows from Property 9 that one of the rays starting at p lies in \bar{A}_{1} and from Property 11 that A_{p} lies in \bar{A}_{1}. Similarly A_{p} lies in \bar{A}_{2}. It follows from Property 10 , Property 11, and the homogeneity of M that the closure of each arc component of M is irreducible with respect to being the closure of an arc component. Hence, $\bar{A}_{p}=\bar{A}_{1}=\bar{A}_{2}$.

Property 13. The closure of each arc component A of M is homogeneous. We show that \bar{A} is homogeneous by showing that if p is a point of A and q is a point of \bar{A}, there is a homeomorphism of \bar{A} onto itself taking p to q. The homogeneity of M implies that there is a homeomorphism h of M onto itself taking p to q. Since such a homeomorphism takes arc components onto arc components, it follows from Property 12 that $h(\bar{A})=\bar{A}$.

If q and r are points of $\bar{A}-A$ and one wishes a homeomorphism of \bar{A} onto itself taking q onto r, one could use the preceding paragraph to show that there is a homeomorphism h_{1} of \bar{A} onto itself taking q to p and a homeomorphism h_{2} of \bar{A} onto itself taking p to r. The required homeomorphism is $h_{2} h_{1}$.
4. Collections of arcs in the plane. In this section we digress from our consideration of homogeneity to consider collections of arcs in the plane.

Theorem 3 is used in establishing Properties 9 and 15 but is of interest aside from these applications.

We recall the following notions concerning the abutting of arcs in the plane E^{2} Suppose $a b, c d$, and $e f$ are arcs in E^{2} such that $a b \cdot c d=c$ and $a b \cdot e f=e$ are interior points of $a b$. Then $c d$ and ef are said to abut on opposite sides of $a b$ if there is a homeomorphism of E^{2} onto itself that takes $a b$ onto a horizontal segment and $c d$, ef onto vertical segments which lie except for their points of contact with $a b$ on opposite sides of the line containing $a b$.

A sequence of arcs A_{1}, A_{2}, \ldots, is said to converge homeomorphically to an $\operatorname{arc} A_{\infty}$ if for each positive number ϵ there is an integer n such that if $n<i$, there is a homeomorphism of A_{i} onto A_{∞} that moves no point more than ϵ.

Suppose $a b, c d$, ef are arcs such that $c d$ and ef abut on $a b$ from opposite sides. A sequence of arcs A_{1}, A_{2}, \ldots, converging homeomorphically to $a b$ is said to converge homeomorphically from the $c d$ side of $a b$ if none of the arcs intersect $a b$ and all but possibly a finite number of these arcs intersect $c d$. Two sequences or arcs converging homeomorphically to $a b$ are said to converge homeomorphically from opposite sides if one of the sequences converges from the $c d$ side of $a b$ and the other from the ef side of $a b$.

Theorem 3. If W is an uncountable collection of mutually exclusive arcs in E^{2}, then there is an element w of W and two sequences of elements of W converging homeomorphically to wrom opposite sides.

This result follows as a corollary of the following result which has a more cumbersome statement.

Theorem 3'. Each uncountable collection of mutually exclusive arcs in E^{2} has a countable subcollection W^{\prime} such that each element wo of $W-W^{\prime}$ has the following property:

For each pair of arcs cd, ef abutting on w_{0} from opposite sides and each positive number ϵ there are uncountable subcollections W_{1}, W_{2} of $W-W^{\prime}$ such that

1. each element of W_{1} intersects $c d$,
2. each element of W_{2} intersects ef, and
3. for each element w of $W_{1}+W_{2}$ there is a homeomorphism of w onto w_{0} that moves no point by more than ϵ.

Proof of Theorem 3^{\prime}. Let W^{\prime} be the collection of all elements w of W with the property that there is an arc $c d$ abutting on w from one side and a positive number ϵ such that no uncountable subcollection W_{1} satisfies Conditions 1 and 3 of the statement of Theorem 3^{\prime}. Theorem 3^{\prime} is established by showing that the collection W^{\prime} does not have uncountably many elements. Assume W^{\prime} is uncountable.

For each element w_{α} of W^{\prime} let v_{α} be an arc abutting on w_{α} from one side and ϵ_{α} be a positive number such that
4. v_{α} intersects only a countable number of elements w of W^{\prime} such that there is a homeomorphism of w_{α} onto w that moves no point by more than ϵ_{α}.

Let ϵ^{\prime} be a positive number so small that for an uncountable subcollection $W^{\prime \prime}$ of $W^{\prime}, \epsilon^{\prime}$ will serve as the ϵ_{α} for each element w_{α} of $W^{\prime \prime}$.

Suppose T is a triod which is the sum of an arc $a b$ and an arc $c d$ abutting on $a b$ from one side. For each element w_{α} of $W^{\prime \prime}$ let h_{α} be a homeomorphism of $a b+c d=T$ onto $w_{\alpha}+v_{\alpha}$ that takes $a b$ onto w_{α}. Let ρ denote the ordinary distance function for the plane. The homeomorphisms h_{α} may be regarded as points of a function space metrized as follows:

$$
D\left(h_{\alpha}, h_{\beta}\right)=\max _{t \in T} \rho\left(h_{\alpha}(t), h_{\beta}(t)\right) .
$$

Then $\left\{h_{\alpha}\right\}$ is a separable metric space and some element h_{0} of it is a limit point of an uncountable order (each neighbourhood of h_{0} contains uncountably many points of $\left\{h_{\alpha}\right\}$).

Let H be the set of all elements of $\left\{h_{\alpha}\right\}$ within $\frac{1}{2} \epsilon^{\prime}$ of h_{0} and $W^{\prime \prime \prime}$ be the set of all elements of $W^{\prime \prime}$ that are images of $a b$ under an element of H. We note that if w_{1}, w_{2} are two elements of $W^{\prime \prime \prime}$ then there is a homeomorphism of w_{1} onto w_{2} that moves no point by more than ϵ^{\prime}.

For convenience we suppose that $h_{0}(a b)=w_{0}$ is the horizontal diameter of a unit circle C with centre at the origin and $h_{0}(c d)=v_{0}$ is a vertical radius of C which extends upward. Also, we suppose $\epsilon^{\prime}<1$.

Since each element of H is within $\frac{1}{2} \epsilon^{\prime}$ of h_{0}, each element of $W^{\prime \prime \prime}$ intersects the y-axis. Let p_{α} be the highest point where w_{α} intersects this axis. Let p_{γ} be one of these p_{α} 's which has uncountably many other p_{α} 's above it. But then v_{γ} intersects all of the w_{α} 's such that p_{α} lies above p_{γ}. This contradicts the definition of v_{γ} given in Condition 4. The assumption that W^{\prime} was uncountable led to this contradiction.

Theorem 4. Suppose B, B_{1}, B_{2}, \ldots, is a sequence of mutually exclusive arcs in E^{2} such that B_{1}, B_{3}, \ldots, and B_{2}, B_{4}, \ldots, converge homeomorphically to B from opposite sides. If C is a continuum intersecting each B_{i} but neither end of B and h is a homeomorphism of $C+B+B_{1}+B_{2}+\ldots$ into E^{2}, then $h\left(B_{1}\right), h\left(B_{3}\right), \ldots$, and $h\left(B_{2}\right), h\left(B_{4}\right), \ldots$, converges homeomorphically to $h(B)$ from opposite sides.

Proof. The proof is divided into two steps.
Step 1. C contains two subcontinua C_{1}, C_{2} such that C_{1} intersects all but possibly a finite number of the odd B_{i} 's but no even B_{i} and C_{2} intersects all but possibly a finite number of the even B_{i} 's but no odd B_{i}. With no loss of generality we suppose that B is the horizontal interval $a b$, that each odd B_{i} intersects the perpendicular bisector of $a b$ at a point above $a b$ and each even B_{i} intersects this perpendicular bisector at a point below C. The two continua C_{1}, C_{2} that we describe will lie except for their intersections with $a b$ on opposite sides of the line containing $a b$.

Let ϵ be a positive number so small that neither a nor b lies within ϵ of C. Let K_{1}, K_{2} be circles with centres at a, b respectively with radii equal to
$\frac{1}{2} \epsilon$. Since we can throw away a finite number of B_{i} 's, we suppose that for each B_{i} there is a homeomorphism of B_{i} onto B that moves no point by more than $\frac{1}{2} \epsilon$.

Let X_{i} be an arc of B_{i} irreducible from K_{1} and K_{2} and Y_{i} be the arc from a to b obtained by adding to X_{i} a radius of K_{1} and a radius of K_{2}. Each of Y_{1}, Y_{3}, \ldots, lies except for a, b above $a b$. We suppose that the ordering is such that $Y_{2 i+1}$ is above (except at $\left.a, b\right) Y_{2 i+3}$.

Let D be the disc bounded by $a b+y_{1}$. If each arc in D from a to b intersects C, it follows from the unicoherence of D that some component C_{1} of $D \cdot C$ separates a from b in D. This continuum C_{1} intersects each $Y_{2_{i+1}}$ and is the C_{1} promised in Step 1. If there is an arc in D from a to b that misses C, there is such an arc Z which intersects $a b$ only at a, b. Let D^{\prime} be the disc bounded by $a b+Z$ and $X_{2 i+1}$ be an arc on the interior of D^{\prime}. Any component C_{1} of $D^{\prime} \cdot C$ that intersects $X_{2 i+1}$ intersects each $X_{2 j+1}(j \geqslant i)$ and this C_{1} will serve as the C_{1} promised by Step 1 . The continuum C_{2} is obtained in a similar fashion.

Step 2. If cd and ef are arcs abutting on $h(B)$ from opposite sides and infinitely many of the $h\left(B_{2 i+1}\right)$'s intersect cd, all but a finite number of the $h\left(B_{2 i}\right)$'s intersect ef. We suppose with no loss of generality that $h(B)=a b$ is a horizontal segment, $c d$ is a vertical segment pointing upward from $a b$, and ef is a vertical segment pointing downward from $a b$.

Let ϵ be a positive number so small that neither a nor b is within ϵ of $c d+e f+h\left(C_{1}\right)+h\left(C_{2}\right)$. Following Step 1, we let K_{1}, K_{2} be circles with centres at a, b respectively and radii equal to $\frac{1}{2} \epsilon$. Since we can disregard any finite collection of the $h\left(B_{i}\right)$'s, we suppose with no loss of generality that there is a homeomorphism of each $h\left(B_{i}\right)$ onto $h(B)$ that moves no point by more than $\frac{1}{2} \epsilon$.

We let X_{i} be a subarc of $h\left(B_{i}\right)$ irreducible from K_{1} to K_{2} and Y_{i} be the arc from a to b obtained by adding to X_{i} radii of K_{1} and K_{2} respectively. Since infinitely many of the $h\left(B_{2 i+1}\right)$'s intersect $c d$, infinitely many of the $Y_{2 i+1}$'s lie above $a b$ (except for a, b).

Suppose Y_{1} lies above $a b$ (except for a, b) and let D be the disc bounded by $Y_{1}+a b$. Since each point of Int D is separated from $a b$ by a $Y_{2 i+1}$ and each $Y_{2 i+1}$ misses C_{2}, C_{2} does not intersect the interior of D. Since no $X_{2 i}$ lies interior to D (each intersects C_{2}), all but a finite number of these X_{2} 's lie below $a b$. Hence, all but a finite number of the $X_{2 i}$'s (and hence the $h\left(B_{2 i}\right)$'s) intersect ef.

Since all but a finite number of the $h\left(B_{i}\right)$'s intersect $c d+e f$ we suppose with no loss of generality that infinitely many $h\left(B_{2 i+1}\right)$'s intersect $c d$. It follows from Step 2 that all but a finite number of the $h\left(B_{2 i}\right)$'s intersect ef and by a repetition of Step 2 that all but a finite number of the $h\left(B_{2 i+1}\right)$'s intersect $c d$.

It is known that the plane does not contain uncountably many mutually
exclusive triods (3, Theorem 5, p. 254). In extending this result to higher dimensions it is convenient to think of a simple triod as having a topological 1 -simplex as base and having a feeler sticking out from an interior point of this base. The following theorem is a strengthening of this result concerning triods in the plane.

Theorem 5. Suppose W is an uncountable collection of simple triods in the plane such that each of these triods has a designated base and feeler. If no two of the bases of the elements of W intersect, some feeler intersects uncountably many bases.

Proof. If the bases are mutually exclusive, it follows from Theorem 3^{\prime} that there is a base b_{0} with uncountably many bases arbitrarily close on either side of b_{0}. The feeler from b_{0} would intersect uncountably many of these nearby bases.
5. The reduced continuum M^{\prime}. In this section we return to a study of the assumed homogeneous bounded plane continuum M studied in $\S \S 2$ and 3 which contains an arc but is not a simple closed curve. It follows from Properties 5 and 13 that if there is such an M, there is a continuum M^{\prime} that is the closure of one of its arc components. We list some properties that such an M^{\prime} would need to possess in order to show that there is no such M^{\prime} and hence no M. In $\S \S 5,6,10$, we use M^{\prime} to denote a homogeneous bounded plane continuum one of whose arc components is dense in M^{\prime} but which is not a simple closed curve.

Property 14. If C is a non-degenerate subcontinuum of M^{\prime} that is not an arc, C intersects uncountably many arc components of M^{\prime}. This is true by Property 8 if $C=M^{\prime}$ so we suppose C is a proper subcontinuum of M^{\prime}. Let p be a point of $M^{\prime}-C$ and A be the arc component of M^{\prime} containing p. Since each ray is dense in M^{\prime}, there is a sequence of points $p_{1}, p_{-1}, p_{2}, p_{-2}, \ldots$, of $A-C$ such that A is the sum of the $\operatorname{arcs} p_{i} p_{i+1}$ and no two of the $p_{i} p_{i+1}$'s intersect except possibly at an end point of each. If one considers the intersections of these arcs $p_{i} p_{i+1}$ with C, one finds that $A \cdot C$ is the sum of a countable collection of mutually exclusive closed sets. Since no continuum is the sum of a countable number more than one of mutually exclusive closed point sets, C intersects uncountably many arc components of M^{\prime}.

Property 15. Each non-degenerate proper subcontinuum of M^{\prime} is an arc. If M^{\prime} contains a non-degenerate proper subcontinuum C that is not an arc, it follows from Property 14 and the fact that each ray is dense in M^{\prime} that M^{\prime} contains an uncountable collection of mutually exclusive arcs each of which intersects C but no one of which has an end on C. It follows from Theorem 3 of $\S 4$ that there is one of these arcs B that has two sequences of $\operatorname{arcs} B_{1}, B_{3}, \ldots$, and B_{2}, B_{4}, \ldots, of the arcs converging homeomorphically to B from opposite sides. It follows from Theorem 4 of $\S 4$ that under no homeomorphism h of
$C+B+B_{1}+B_{2} \ldots$ into the plane is the image of any interior point of B accessible from the complement of $h\left(C+B+B_{1}+B_{2}+\ldots\right)$. This violates the homogeneity of M^{\prime} since some points of it are accessible from the complement of M^{\prime}.

Property 16. M^{\prime} is indecomposable. If M^{\prime} were the sum of two proper subcontinua, it would follow from Property 15 that these subcontinua were arcs. The only homogeneous continuum that is the sum of two arcs is a simple closed curve.
6. Continua each of whose proper subcontinua is an arc. A solenoid is a non-degenerate homogeneous compact continuum each of whose proper subcontinua is an arc. Other examples are not at hand. We note that Property 15 shows that M^{\prime} has this property. The following question is related to the last two given in § 1 .

Question. Are solenoids the only non-degenerate homogeneous compact continua each of whose proper subcontinua is an arc?

Theorems 7 and 9 answer this question in the affirmative for the cases of tree-like and circle-like continua.

In developing the following property, we use merely the fact that each proper subcontinuum of M^{\prime} is an arc (Property 15) rather than the facts that M^{\prime} is homogeneous and lies in the plane.

Property 17. For each positive number ϵ and each arc $x y$ in M^{\prime} there is an ϵ-chain $d_{1}, d_{2}, \ldots, d_{n}$ covering xy such that x, y belong to d_{1}, d_{n} respectively and $M^{\prime} \cdot B d \sum d_{i} \subset \bar{d}_{1}+\bar{d}_{n}$. Let $e_{1}, e_{2}, \ldots, e_{n}$ be an ϵ-chain covering $x y$ such that x, y belong to e_{1}, e_{n} respectively. There are open sets O_{1}, O_{2} in e_{1}, e_{2} respectively such that $x y$ is an arc component of $M^{\prime}-\left(O_{1}+O_{2}\right)$. It follows from Property 15 that $x y$ is a component of $M^{\prime}-\left(O_{1}+O_{2}\right)$.

Since no component of $M^{\prime}-\left(O_{1}+O_{2}\right)$ intersects both $x y$ and $M^{\prime}-\sum e_{i}$, then $M^{\prime}-\left(O_{1}+O_{2}\right)$ is contained in two mutually exclusive open sets A, B such that $x y \subset A, M^{\prime}-\sum e_{i} \subset B$ (see 13, Theorem 35, p. 21). The link d_{i} of the chain $d_{1}, d_{2}, \ldots, d_{n}$ is defined to be $e_{i} \cdot\left(A+O_{1}+O_{2}\right)$.

Since

$$
M^{\prime} \cdot \sum \bar{d}_{i}=M^{\prime} \cdot A+M^{\prime} \cdot\left(B+O_{1}+O_{2}\right) \cdot \sum \bar{d}_{i} \subset \sum d_{i}+\left(\bar{O}_{1}+\bar{O}_{2}\right)
$$

one finds on subtracting $\sum d_{i}$ from the ends of the above inequality that

$$
M^{\prime} \cdot B d \sum d_{i} \subset \bar{O}_{1}+\bar{O}_{2} \subset \bar{d}_{1}+\bar{d}_{n}
$$

Property 18. For each positive number ϵ there is a positive number δ such that if $a b$ is an arc in M^{\prime} such that $\rho(a, b)<\delta$, then either diameter $a b<\epsilon$ or $a b$ is ϵ dense in M^{\prime}. Assume that there is no such δ. Then for each integer i there is an arc $a_{i} b_{i}$ in M^{\prime} such that

$$
\begin{aligned}
& \rho\left(a_{i}, b_{i}\right)<1 / i \\
& \text { diameter } a_{i} b_{i}>\epsilon \\
& a_{i} b_{i} \text { is not } \epsilon \text { dense in } M^{\prime} .
\end{aligned}
$$

Some subsequence of $a_{1} b_{1}, a_{2} b_{2}, \ldots$, converges to a non-degenerate proper subcontinuum. Hence it is an arc. Some subarc of this arc is the limit of a folded sequence of arcs in M^{\prime} (each in an $a_{i} b_{i}$). The assumption that there is no δ leads to the contradiction of Theorem 6 of the next section.

Property 19. If a point p of M^{\prime} is accessible from a component U of $E^{2}-M^{\prime}$, each point of any arc in M^{\prime} containing p is accessible from the same side that p is. Let $x y$ be an arc containing the two points p, q on its interior. With no loss of generality we suppose that $x y$ is horizontal, q is between p and y, and $r p$ is a vertical interval lying except for p below $x y$ and in U. We show that q is accessible from U from below.

Let

$$
\epsilon=\min \rho(r, p), \quad \rho(x, p), \quad \frac{1}{2} \rho(q, y),
$$

δ be the positive number promised by Property 18, with $\delta<\epsilon$, and D be a δ-chain covering $x y$ and satisfying the conditions of Property 17. We use D^{*} to denote the sum of the links of D. If q is not accessible from U from below, there is a point s in $M^{\prime} \cdot D^{*}$ which is beneath the point q. Let $a b$ be an arc in $M^{\prime} \cdot D^{*}$ containing s such that $a b$ lies below $x y$ and each end of $a b$ is in an end link of D. The arc $r p$ prevents either a or b from being in the end link of D containing x so $\rho(a, b)<\delta$. Also, $a b$ is not ϵ dense in M^{\prime} since it is not near x. However, diameter $a b>\epsilon$ since $\frac{1}{2} \rho(q, y) \geqslant \epsilon$. The assumption that q was not accessible from U from below led to a contradiction of Property 18 .
7. Folded sequences of arcs. A solenoid is an example of a homogeneous continuum each of whose proper subcontinua is an arc. The arcs in this continuum seem to run in a parallel fashion and not to "zig-zag" or "fold back." We find from Theorem 6 that such folding is impossible in a homogeneous continuum each of whose proper subcontinua is an arc. No use is made of the fact that the continuum lies in the plane.

Suppose $a_{1} b_{1}, a_{2} b_{2}, \ldots$, is a sequence of arcs converging (not necessarily homeomorphically) to an arc $x y$. The sequence is called a folded sequence converging to $x y$ if $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, converges to x.

Theorem 6. Suppose X is a homogeneous compact continuum each of whose proper subcontinua is an arc. Then no folded sequence of arcs in X converges to an arc.

Proof. Assume $a_{1} b_{1}, a_{2} b_{2}, \ldots$, is a sequence of arcs converging to an arc $x y$ such that $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, converges to x. If $\epsilon<\frac{1}{2} \rho(x, y), y$ has the following property:

Property (y, ϵ). For each positive integer n there is a $1 / n$ chain E such that X intersects each link of E, the distance between y and the first link of D is less than $1 / n$, the distance between the end links of E is more than ϵ, and $X \cdot B d E^{*}$ lies in the closure of the last link of E.

We can obtain such an E as follows.

1. Let D be a $1 / n$ chain covering $x y$ such that the first link of D contains y, the last link contains x, and for each other link $d, \bar{d} \cdot X \subset D^{*}$. The existence of such a D is guaranteed by the proof given in Property 17 of the last section.
2. Let $a_{i} b_{i}$ be an arc of the folded sequence converging to $x y$ such that each of a_{i}, b_{i} lies in the last link of D, some point of $a_{i} b_{i}$ lies in the first link of D, and D covers $a_{i} b_{i}$.
3. Let D^{\prime} be a chain covering $a_{i} b_{i}$ such that D^{\prime} refines D, the first and last link of D^{\prime} lie in the last link of D, some link of D^{\prime} lies in the first link of D, and $X \cdot B d D^{\prime *}$ lies in the sum of the closures of the two end links of D^{\prime}.

Then E can be formed as follows. The j th link of E is the sum of the elements of D^{\prime} in the j th link of D.

Let $X(\epsilon)$ be the set of all points y of X such that y has $\operatorname{Property}(y, \epsilon)$. Then $X(\epsilon)$ is closed and it follows from the homogeneity of X that each point of X belongs to some $X(\epsilon)$ for some ϵ. It follows from the Baire Category Theorem that there is an integer m and an open set U such that $U \subset X(1 / m)$.

We obtain a sequence of chains E_{1}, E_{2}, \ldots, such that

1. E_{i} is a $1 / i$ chain such that the distance between its end links is more than $1 / m$,
2. $X \cdot B d E_{i}^{*}$ lies in the closure of the last link of E_{i}, and
3. the first link $e_{1}{ }^{1}$ of E_{1} lies in U, and the closure of the first link $e_{1}{ }^{i+1}$ of each E_{i+1} lies in the first link of E_{i}.

The intersection of the $e_{1}{ }^{i}$'s is a point that cannot be the interior point of any arc in X. This contradiction results from the false assumption that there is a folded sequence of arcs in X converging to an arc.

The following result gives an immediate application of Theorem 6. The result is not needed in the proof of Theorem 1 but it can be used in lieu of Property 19 in finishing the proof of Theorem 1 for the case where M does not separate the plane, since each 1-dimensional bounded plane continuum that does not separate the plane is tree-like (3).

Theorem 7. There exists no non-degenerate, homogeneous, tree-like continuum each of whose proper subcontinua is an arc.

Proof. Assume X is a non-degenerate, homogeneous, tree-like continuum each of whose proper subcontinua is an arc. It follows from (10) that X is indecomposable. Let D_{i} be a $1 / i$ tree-chain covering X and $a_{i} b_{i}$ be an arc in X such that both ends of $a_{i} b_{i}$ lie in the same link of D_{i} and

$$
\text { diameter } X / 4-1 / i<\operatorname{diameter} a_{i} b_{i}<\text { diameter } X / 2
$$

Such an arc $a_{i} b_{i}$ may be found by considering an arc of large diameter in X both of whose ends lie in the same link of D_{i}, reducing this arc by throwing away the part of it in this link and considering one of the larger components of the remainder, reducing the component in a similar fashion, . . ., and stopping this reduction when an arc of the required diameter is found.

Some subsequence of $a_{1} b_{1}, a_{2} b_{2}, \ldots$, converges to a proper subcontinuum of X. It follows from the hypothesis that this subcontinuum is an arc $a b$. However, there is a folded sequence of arcs (each in one of the $a_{i} b_{i}$'s) converging to a subarc of $a b$. This contradicts Theorem 6.
8. A nearly homogeneous example. Consider the example Y shown in Figure 1. At a glance it might appear to be homogeneous. The example Y intersects the x axis in a Cantor set and is the sum of semicircles with ends on this Cantor set. Also, the example may be obtained by starting with a punctured disc with three holes and digging canals into the disc from the four complementary domains of the punctured disc.

Figure 1
The canal from the unbounded complementary domain may be defined in terms of its right bank as follows. Let p_{0} be the point furthest to the left of Y and consider the ray R starting at p_{0}, going along the upper semicircle of X, then along the lower right semicircle, and then down the right bank of the canal leading from the unbounded complementary domain of Y. Let p_{1} be
the first point on R which is between p_{0} and A on the x axis, p_{2} be the first point of R that is between p_{0} and p_{1} on the x axis, and in general, p_{i+1} is the first point of R that is between p_{0} and p_{i} on the x axis.

As viewed from C, $p_{0} p_{1}$ circles C. However, it circles neither A nor B when viewed from A, B respectively. Furthermore, $p_{0} p_{2}$ circles B and C but not $A, p_{0} p_{3}$ circles $B, p_{0} p_{4}$ circles A and $B, p_{0} p_{5}$ circles $A, p_{0} p_{6}$ circles A and C, $p_{0} p_{7}$ circles $C \ldots$ The other canals from A, B, C run between the canals from the unbounded complementary domains and each canal is dense in Y. Figure 1 does not show the banks of the canals from A, B, C but shows only an arc on the outer bank. This arc does not separate the plane. There are points of X not shown in the figure that are nearer A, B, C than any point on the outer bank. These points keep the complementary domains containing A, B, C from running into each other.

We could write the equation of Y by giving functions f, g such that $(x, f(x))$ are abscissas of the ends of semicircles of Y in the upper half-plane and $(x, g(x))$ are the abscissas of the ends of semicircles of Y in the lower halfplane. However, we shall not do this since we are interested in Y's topological properties rather than its equation.

Example Y is locally homogeneous-that is, for each pair of points p, q of Y there are arbitrarily small homeomorphic open subsets N_{p}, V_{q} containing p, q respectively. In fact, the open subsets may be taken to be homeomorphic with the Cartesian product of a Cantor set with an open interval.

Also, example Y is nearly homogeneous-if p and q are points of Y, then for each open subset U of Y containing q there is a homeomorphism of Y onto itself taking p into U. One may see that this is true since each arc component is dense in Y and each arc lies in an open subset homeomorphic with the Cartesian product of a Cantor set and an open interval. See (7) for a discussion of various types of homogeneity.

However, M is not homogeneous. If it were, for each positive number ϵ and each point p there would be a homeomorphism h of Y onto itself such that h moves no point by more than ϵ and $p, h(p)$ belong to different composants of Y. (See Theorem 8 of § 9.) Suppose that ϵ is taken to be less than the distance across the canal leading from the unbounded complementary domain at a wide point and p is taken to be the highest point of Y. There is a canal leading from the outside that locally separates p from $h(p)$ in the plane. As p is moved parallel to this canal and in the direction of its wide spot, the canal continues to separate the moving p from the corresponding $h(p)$. However, as the canal widens, it is no longer possible for p to be within ϵ of its image under h.

This intuitive reason of why Y is not homogeneous is refined in $\S 10$ to establish Property 20 and finish the proof of Theorem 1.
9. Homeomorphisms near the identity. In indicating why the nearly homogeneous Example Y of $\S 8$ is not homogeneous, we made use of the
fact that if Y were homogeneous there would be a homeomorphism of Y onto itself that does not move any point far but which takes one arc component of Y onto another. We formalize this in the following theorem.

Theorem 8. If p is a point of a homogeneous, compact, indecomposable, non-degenerate continuum X, then there is a sequence of homeomorphisms h_{1}, h_{2}, \ldots, converging to the identity such that no two $h_{i}^{-1}(p)$'s belong to the same composant of X.

Proof. Let $\left\{x_{\alpha}\right\}$ be an uncountable collection of points all belonging to different composants of X and h_{α} be a homeomorphism of X onto itself that takes x_{α} to p.

If the collection of homeomorphisms $\left\{h_{\alpha}\right\}$ is metrized by the distance function

$$
D\left(h_{\alpha}, h_{\beta}\right)=\max _{x \in X} \rho\left(h_{\alpha}(x), h_{\beta}(x)\right),
$$

the collection $\left\{h_{\alpha}\right\}$ becomes an uncountable subset of a separable metric function space and some sequence $h_{1}{ }^{\prime}, h_{2}{ }^{\prime}, \ldots$, of elements of $\left\{h_{\alpha}\right\}$ converges to an element $h_{0}{ }^{\prime}$ of $\left\{h_{\alpha}\right\}$. Then

$$
h_{i}=h_{i}^{\prime} h_{0}^{\prime-1} .
$$

Since x_{1}, x_{2}, \ldots, belong to different composants of $X, h_{0}{ }^{\prime}\left(x_{1}\right), h_{0}{ }^{\prime}\left(x_{2}\right), \ldots$, also belong to different composants. These are the $h_{i}^{-1}(p)$'s.
10. M^{\prime} contains a folded sequence of arcs. In this section we complete the proof of Theorem 1 . We showed in $\S \S 2$ and 3 that if there is a homogeneous bounded plane continuum M that contains an arc, there is one such M^{\prime} each of whose proper subcontinua is an arc. Theorem 6 showed that no such M^{\prime} contains a folded sequence of arcs converging to an arc. Finally, we show that there is no such M^{\prime} except a circle, for if there were, it would have the following property.

Property 20. M^{\prime} contains a folded sequence of arcs converging to an arc. Let $a_{0} a_{6}$ be an arc in M^{\prime} which is accessible from a component of $E^{2}-M^{\prime}$. With no loss of generality we suppose that $a_{0} a_{6}$ is horizontal and $a_{1}, a_{2}, \ldots, a_{5}$ are points of $a_{0} a_{6}$ such that

$$
\text { abscissa } a_{i}=i(i=0,1, \ldots, 6)
$$

We suppose furthermore that $a_{0} a_{6}$ is accessible from $E^{2}-M$ from below. It follows from the methods used in establishing Property 19 that there is a positive number ϵ_{1} such that

$$
\text { no point of } M^{\prime} \text { below } a_{0} a_{6} \text { is within } \epsilon_{1} \text { of } a_{1} a_{5}
$$

Assume M^{\prime} contains no folded sequence of arcs converging to an arc. Then there is a positive number ϵ_{2} such that if D is an ϵ_{2}-chain covering $a_{1} a_{5}$ with
a_{1} in one end link of D and a_{5} in the other, then each arc of M^{\prime} being covered by D and having both ends in the same link of D is of diameter less than $\frac{1}{2}$. Note that $\epsilon_{2} \leqslant \frac{1}{2}$. Let D be such an ϵ_{2} chain covering $a_{1} a_{5}$ satisfying conditions of Property 17.

Let $r s$ be an arc such that $r s$ lies above $a_{1} a_{5} ; r s$ misses $M^{\prime} ; r s$ is irreducible from the vertical line containing a_{1} to the vertical line containing a_{5}; the vertical segments $r a_{1}, s a_{5}$ lie in end links of D, and each point between $r s$ and $a_{1} a_{5}$ lies in a link of D. We find that there is such an $r s$ as follows. Cover $a_{0} a_{6}$ by a chain of small mesh satisfying the conditions of Property 17, consider an accessible point of M^{\prime} above a_{3} and in one link of this chain, and note from Property 17 and Theorem 6 that this point lies in an accessible arc in M^{\prime} slightly above $a_{0} a_{6}$ and with ends near the ends of $a_{0} a_{6}$. It follows from Property 19 that there is an arc in the complement of M^{\prime} slightly to one side of this first arc. It is this second arc that contains r s.

Let K be the topological disc bounded by $a_{1} a_{5}, a_{1} r, r s$, and $a_{5} s$. We note that if p is a point of $M^{\prime} \cdot K$ that is above $a_{2} a_{4}$, then the closure of the component of M^{\prime}. Int K containing p is an arc irreducible from $a_{1} r$ to $a_{5} s$. If it were not, an arc being covered by D and having diameter more than $\frac{1}{2}$ would have ends in the same link of D.

Let

$$
\epsilon_{3}=\min \left(\epsilon_{1}, \rho\left(r s, M^{\prime}\right)\right) .
$$

It follows from Property 18 that there is a positive number ϵ_{4} such that if $a b$ is an arc in M^{\prime} with $\rho(a, b)<\epsilon_{4}$, then either

$$
\begin{aligned}
& \text { diameter } a b<\epsilon_{3}, \text { or } \\
& a b \text { is } \epsilon_{3} \text { dense in } M^{\prime} .
\end{aligned}
$$

Let A be the arc component of M^{\prime} containing a_{3}. It follows from Theorem 8 that there is a homeomorphism h of M^{\prime} onto itself that moves no point by more than ϵ_{4} and which takes a_{3} into a point of $M^{\prime}-A$. Then $h\left(a_{3}\right)$ is a point of K and lies above $a_{2} a_{4}$. Also, $h\left(a_{3}\right)$ lies on an arc in $M^{\prime} \cdot K$ that is irreducible from $a_{1} r$ to $a_{5} s$.

Since A is dense in M^{\prime}, there is an arc $x y$ in $A \cdot K$ such that $x y$ is irreducible from $a_{1} r$ to $a_{5} s$ and $x y$ separates $h\left(a_{3}\right)$ from $a_{1} a_{5}$ in K. By considering points slightly above a_{3} we find that $x y$ has the following property.

Special Separating Property. The arc $x y$ separates two points of $K \cdot\left(M^{\prime}-A\right)$ from each other in K such that the first of the points is above a_{3} and the other is the image of the first under h.

Let $x_{1} x_{2} x_{3} \ldots x_{2 n}$ be the arc in A such that $x_{1} x_{2}=x y, x_{2 n-1} x_{2 n}=a_{1} a_{5}$, and $x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}, \ldots, x_{2 n-1} x_{2 n}$ are the closures of the components of $x_{1} x_{2} x_{3} \ldots x_{2 n}$. Int K that are irreducible from $a_{1} r$ to a_{5}. Then $x_{1} x_{2}$ has the special separating property but $x_{2 n-1} x_{2_{n}}$ does not.

We now show that if $x_{2 i-1} x_{2 i}$ has the special separating property, then so does $x_{2 i+1} x_{2 i+2}$. The resulting contradiction arises as a result of consequences
of our false assumption that there is an M^{\prime} that contains no folded sequence of arcs converging to an arc.

Suppose $p, h(p)$ are points of $K \cdot\left(M^{\prime}-A\right)$ such that p is above a_{3} and $x_{2 i-1} x_{2 i}$ separates p from $h(p)$ in K. For convenience we suppose that $x_{2 i+1} x_{2 i+2}$ is below $x_{2 i-1} x_{2 i}$ and $h(p)$ is above $x_{2 i-1} x_{2 i}$. (Other cases are handled with similar arguments to that given in this case.) Then $x_{2 i+1} x_{2 i+2}$ separates p from $h(p)$ in K unless p is above $x_{2 i+1} x_{2 i+2}$, so we suppose p is between $x_{2 i-1} x_{2 i}$ and $x_{2 i+1} x_{2 i+2}$. Our proof now breaks down into two cases.

Case 1. If $x_{2 i}, x_{2 i+1}$ belong to the same one of $a_{1} r, a_{5} s$, (see Figure 2). Let $t u$ be the closure of the component of M^{\prime}. Int K containing p. It is an arc irreducible from $a_{1} r$ to $a_{5} s$. We suppose u belongs to the vertical line through a_{1} containing $x_{2 i}$ and $x_{2 i+1}$.

Suppose a point moves in an arc in M^{\prime} through p, past u, and (vw) is the next component of M^{\prime}. Int K it meets whose closure $v w$ is an arc irreducible from $a_{1} r$ to $a_{5} s$. Let q be a point of $v w$ directly above a_{3}. It follows from the Jordan curve theorem that q lies between $x_{2 i-1} x_{2 i}$ and $x_{2 i+1} x_{2 i+2}$. Also, q is below $t u$ and $\rho\left(q, x_{2 i-1} x_{2 i}\right) \geqslant \epsilon_{4}$ or else the arc tuvw contains an arc $a b$ such that

$$
\begin{aligned}
& \rho(a, b)<\epsilon_{4}, \\
& \text { diameter } a b>\epsilon_{3} \text {, and } \\
& \rho\left(a b, a_{4}\right)>\epsilon_{3} .
\end{aligned}
$$

If q were above $t u$, we would take $p=a$ and let b be a point of $v w$ between p and $x_{2 i-1} x_{2 i}$. If q were below $t u$ and $\rho\left(q, x_{2 i-1} x_{2 i}\right)<\epsilon_{4}$, we would take q to be b and a to be a point of $t u$ between q and $x_{2 i-1} x_{2 i}$. Since the existence of such an arc $a b$ violates the definition of ϵ_{4}, we suppose that

$$
\rho\left(q, x_{2 i-1} x_{2 i}\right) \geqslant \epsilon_{4} .
$$

We now show that $x_{2 i+1} x_{2 i+2}$ separates q from $h(q)$ in K. Note that q is above $x_{2 i+1} x_{2 i+2}$.

Consider the simple closed curve J that is the sum of a vertical interval in K above a_{4} and an arc in $x_{2 i-1} x_{2 i+2}$ that contains $x_{2 i} x_{2 i+1}$. Note that no point of the arc $p q$ in M is within ϵ_{4} of this vertical part of J above a_{4}. As a point moves from p to q, the image of the point under h does not intersect J. Hence, $h(q)$ is either above $x_{2 i-1} x_{2 i}$ or below $x_{2 i+1} x_{2 i+2}$. It is not above $x_{2 i-1} x_{2 i}$ because $\rho\left(q, x_{2 i-1} x_{2 i}\right)>\epsilon_{4}$ and $\rho(q, h(q))<\epsilon_{4}$. Hence $x_{2 i+1} x_{2 i+2}$ has the special separation property.

Case 2. If $x_{2 i}$ and $x_{2 i+1}$ belong to different vertical lines, see Figure 3. We suppose $x_{2 i}, u, x_{2 i+2}$ belong to a_{5} s and define $v w$ and q as in Case 1 .

Figure 3

If v is below $x_{2+1} x_{2 i+2}, q$ is below $x_{2 i+1} x_{2 i+2}$ and $h(q)$ is above.
If v is above $x_{2 i+1} x_{2 i+2}$ it is between the points $x_{2 i}$ and $x_{2 i+2}, q$ is between $x_{2 i-1} x_{2 i}$ and $x_{2 i+1} x_{2 i+2}$, and $h(q)$ is above $x_{2 i-1} x_{2 i}$. Since each of p, q is within ϵ_{4} of $x_{2 i-1} x_{2 i}$, it follows as in Case 1 that tuvw contains an arc $a b$ such that

$$
\begin{aligned}
& \rho(a, b)<\epsilon_{4}, \\
& \text { diameter } a b>\epsilon_{3}, \\
& \rho\left(a b, a_{2}\right)>\epsilon_{3} .
\end{aligned}
$$

These conditions violate the definition of ϵ_{4}.
We note that in establishing Property 20 we used properties of the plane or 2 -sphere and not just properties of an arbitrary 2 -manifold alone. If this could be by-passed, one might get an affirmative answer to the following question.

Question. Suppose X is a 1-dimensional homogeneous compact continuum that contains an arc and lies on a compact 2 -manifold. Is X necessarily a simple closed curve?
11. Circle-like continua and tree-like continua. Solenoids and a circle of pseudo-arcs are the known examples of homogeneous circle-like continua. Since each proper subcontinuum of a circle-like continuum is snake-like and each homogeneous non-degenerate snake-like continuum is a pseudo-arc, one might suspect that the answer to the following is in the affirmative.

Question. Does each homogeneous circle-like continuum other than a solenoid contain a pseudo-arc? We do not provide an answer.

Theorem 9. Each homogeneous circle-like continuum that contains an arc is a solenoid.

Indication of proof. This theorem is much easier to establish than Theorem 1 but the same method of attack may be used.

By using rays as in § 3, it may be shown that the homogeneous circle-like continuum X contains a non-degenerate subcontinuum X^{\prime} such that each proper subcontinuum of X is an arc. In proving the counterpart of Property 9 , we cannot use Theorem 3 (which is a theorem about the plane) to show that $a b+\bar{R}$ cannot lie in X, but instead we use the fact that each proper subcontinuum of X is snake-like to prove this.

We may as well suppose that $X^{\prime}=X$, for if it is not, it is snake-like, it is a pseudo-arc (5), and it contains no arc.

We finish the indication of proof of Theorem 9 by showing that there is a sequence of circular chains (open coverings whose 1 -nerves are simple closed curves) D_{1}, D_{2}, \ldots, covering X such that

1. D_{i+1} is a refinement of D_{i},
2. D_{i+1} circles around $D_{i} n_{i}$ times without any folding back, and
3. the mesh of D_{i+1} is less than $1 / 2^{i}$ times the distance between any two non-adjacent elements of D_{i}.

It is then only a matter of getting an open covering of a similar kind of the solenoid which is the intersection of the tori T_{1}, T_{2}, \ldots, where T_{i+1}
winds about $T_{i} n_{i}$ times and use the two coverings to get a homeomorphism of X onto the solenoid. (D_{i+1} is said to fold back in D_{i} if D_{i} contains two adjacent links d_{x}, d_{y}, and D_{i+1} contains a subchain E such that each link of E lies in either d_{x} or d_{y}, each end link of E intersects $d_{x}-d_{y}$ but not each link of E lies in d_{x}.)

Suppose that D_{i} has already been obtained and it is such that there is a positive number ϵ such that if D^{\prime} is any circular chain of mesh less than ϵ covering X, then D^{\prime} refines D_{i} and circles about D_{i} without any folding back. We show how to get D_{i+1}, With no loss of generality we suppose that $\epsilon<1 / 2^{i}$ times the distance between any two non-adjacent elements of D_{i}.

We apply Theorem 6 to show that no folded sequence of arcs in X converges to an arc. Hence, there is a δ such that if $a b$ is an arc of diameter greater than $\epsilon / 14$, no δ chain $D^{\prime \prime}$ covers $a b$ in such a way that both a, b lie in the same link of $D^{\prime \prime}$. We suppose $\delta<\epsilon / 14$.

Let D be a δ circular chain covering X with its links ordered $d_{1}, d_{2}, \ldots, d_{n}$. Let $d_{n_{1}}=d_{1} ; d_{n_{2}}$ is the first link of D whose distance from $d_{n_{1}}$ is more than $\epsilon / 14 ; d_{n_{3}}$ is the next link of D after $d_{n 2}$ whose distance from $d_{n 2}$ is more than $\epsilon / 14 \ldots$ Let $d_{n_{2 r-1}}$ or $d_{n_{2} r}$ be the last such link obtained.

The first link of D_{i+1} is the sum of the links between $d_{n_{1}}$ and $d_{n_{4}}$ inclusive; the next link of D_{i+1} is the sum of the links of D between $d_{n_{3}}$ and $d_{n 6}$ inclusive; \ldots; and the last link of D_{i+1} is the sum of the links between $d_{n 2 r-1}$ and $d_{n 2}$ inclusive (this link contains d_{n} and d_{1}). Each link of D_{i+1} other than the last is of diameter less than $4 \epsilon / 14+7 \delta$ and the last is of diameter less than $5 \epsilon / 14+9 \delta$. In either case, D is of mesh less than ϵ. If D^{\prime} is a refinement of D_{i+1} of mesh less than δ, D^{\prime} circles about D_{i+1} without any folding back.

A triodic continuum is the sum of three continua A, B, C such that $A \cdot B=A \cdot C=B \cdot C$ is a proper subcontinuum of each of A, B, C. Theorem 7 did not provide an answer as to whether or not each homogeneous tree-like continuum fails to contain an arc. Our methods do not give this because we fail to prove the counterpart of Properties 4 and 9.

Theorem 10. A homogeneous tree-like continuum contains no arc if it contains no triodic continuum.

To establish Theorem 10 we use the hypothesis that the continuum contains no triodic continuum to establish the counterpart of Property 9. Property 15 then follows and reduces Theorem 10 to Theorem 7.

References

1. R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. Math., 67 (1958), 313-324.
2. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
3. - Snake-like continua, Duke Math. J., 18 (1951), 653-663.
4. - Concerning hereditarily indecomposable continua, Pac. J. Math., 1 (1951), 43-51.
5. Each homogeneous chainable continuum is a pseudo arc, Proc. Amer. Math. Soc., 10 (1959), 345-346.
6. R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc., 90 (1959), 171-192.
7. C. E. Burgess, Continua and various types of homogeneity, Trans. Amer. Math. Soc., 88 (1958), 366-374.
8. H. J. Cohen, Some results concerning homogeneous plane continua, Duke Math. J., 18 (1951), 467-474.
9. E. E. Grace, Totally nonconnected im kleinen continua, Proc. Amer. Math. Soc., 9 (1958), 818-821.
10. F. B. Jones, Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc., 2 (1951), 855-859.
11. S. Mazurkiewicz, Sur les continus homogènes, Fund. Math., 5 (1924), 137-146.
12. E. E. Moise, A note on the pseudo-arc, Trans. Amer. Math. Soc., 64 (1949), 57-58.
13. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Coll. Publ., 13 (1932).

University" of Wisconsin

[^0]: *At the 1959 Summer Meeting of the American Mathematical Society J. H. Case presented an abstract announcing another such continuum.

