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Due to the attractive properties such as high strength-to-weight ratio and excellent high temperature 

creep and oxidation resistance, TiAl-based alloys with fully lamellar microstructure have been widely 

applied in producing aerospace and car engines [1-3]. The distribution of α2 and γ phases, strongly 

affected by their interface, plays an important role in determining their mechanical properties at high 

temperature [4-6]. Although many researchers have investigated it by transmission electron microscopy 

[4, 7], the atomic interfacial arrangement and the chemical bonding nature have not been fully clarified. 

Therefore, we aim on analysing of the detailed interfacial structure in TiAl alloys. 

 

We studied TiAl-based alloys synthesized by arc melting (at China Iron and Steel Research Institute 

Group). The lamellar structure was achieved by the heat treatment including 1340 °C for 0.5 h, 1 h and 2 

h followed by air cooling. The microstructure morphology was studied by the optical microscopy and 

scanning electron microscopy. The samples were mechanically polished and etched by the aqueous 

reagent of 2% hydrofluoric acid and 10% hydrogen nitrate prior to the optical characterization. The 

TEM samples were prepared by the twin-jet electro-polishing technique with an electrolyte of 4% 

perchloric acid. The detailed atomic structure was investigated using a JEOL ARM200F Scanning 

Transmission Electron Microscopy (STEM) with a probe corrector. 

 

The lamellar structure, consisting of α2 (Ti3Al, DO19) and γ (TiAl, L10) phases, was successfully 

synthesized through the above approaches. The lamellar spacing increases with increasing annealing 

time. A well-defined orientation relationship of {111}γ//(0001)α2 & <1-10>γ//<11-20>α2 was additionally 

confirmed using the selected area diffraction (SAD) technique (see Figure 1). There are always three 

sets of diffraction patterns co-existing within the same regions. The diffraction labeled by the yellow 

rectangle in figure 1 is from α2 phase. The other two diffraction patterns, indicated by the red and green 

rectangles, belong to <011]γ and <1-10]γ, respectively. The atomic arrangement of γ phase viewed along 

<011]γ and <1-10]γ is different (see the STEM-high-angle annular dark-field (HAADF) images in figure 

2 (b) and (c)) due to the ordered L10 structure with a slightly larger c axis. Although the c axis is not 

equivalent to the other two axes in γ structure, the c/a ratio is only in the range of 1.01-1.03 depending 

on the Al content. As shown in the STEM-HAADF images in figure 2, α2 phase has brighter Z-contrast 

compared to the γ phase. Viewed from <11-20>α2, the Ti column has slight brighter contrast compared 

to the Ti-Al column. The interface between α2 and γ phase is atomic sharp, as shown in figure 2 (d) and 

(e). In addition, we always detected the twining (figure 2 (e)) and pseudo-twining (figure 2(f)) of γ phase 

viewed along <011]γ. The pseudo-twinning refers as the mirror structure of γ phase forming at sides of 

α2 phase with a dimension of ~2 nm.     

 

The detailed atomic arrangement of the α2/γ interface is currently under investigated by atomic 

resolution STEM and electron energy-loss spectroscopy techniques (EELS). Different atomic models 

can be built to study their interface energy by applied first principles computation.  
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Figure 1.  The lamellar structure. (a) the bright field image (b) the corresponding diffraction pattern. 

 
Figure 2.  The atomic structure of lamellar microstructure. (a) the low magnification HAADF image 

(b)-(c) shows the atomic structure of γ phase when the beam is parallel to <1-10]γ and <011]γ, 

respectively (d) the interface of γ and α2 (e)-(f) the twining and pseudo-twining, respectively.  
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