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GEOMETRIC INEQUALITIES FOR PLANE 
CONVEX BODIES 

BY 

G. D. CHAKERIAN 

1. Introduction. In what follows we shall mean by a plane convex body K a 
compact convex subset of the Euclidean plane having nonempty interior. We 
shall denote by h(K, 6) the supporting function of K restricted to the unit 
circle. This measures the signed distances from the origin to the supporting line 
of K with outward normal (cos 0, sin 0). The right hand and left hand deriva­
tives of h(K, 0) exist everywhere and are equal except on a countable set. As 
observed by Blaschke [1], if we define the derivative using a symmetric 
differential quotient, that is, 

(1) h'(K,e) = lunhiK>e + e);h(K>e-S\ 

then h'(K, 0) exists everywhere and is a function of bounded variation. In any 
case, defining h'(K, 0) either as in (1) or in the usual manner, it makes sense to 
define the mixed area A(P, Q) of two plane convex bodies P and Q by 

(2) A(P, Q) = | f h(P, 0)h(Q, 6)-h'(P, 6)h'(Q, 0) d6. 

Several important properties of the mixed area are evident from the definition 
(2). For example, we have symmetry in the arguments, that is, 

(3) A(P,0) = A(Q,P). 

Denoting the area of P by A(P), the well-known formula for the area in terms 
of the supporting function (see Bonnesen and Fenchel [3]) yields, 

(4) A(P, P) = | j ^ h(P, 6)2-h'(P, 6f d6 = A(P). 

With the usual definitions for the Minkowskian sum of convex bodies and 
multiplication by nonnegative real numbers, one has for a, |3 > 0, 

(5) h(aP + |3Q, 0) = ah(P, 0) + ph(Q, 0). 

From (2) and (5) one sees that A(P, Q) is linear in each variable under 
Minkowskian sum and multiplication by nonnegative reals. It follows that for 
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a,0>O, 

(6) A(aP+0Q) = a2A(P) + 2a0A(P, Q) + p2A(Q). 

Minkowski's inequality asserts that 

(7) A(P,Q)2>A(P)A(Q), 

with equality holding if and only if P is homothetic to Q, that is P = x + ÀQ for 
some point x and some À > 0. Letting B denote the closed unit disk centered at 
the origin, as we shall do consistently, one has for the perimeter L(P), 

Ç2-TT 

(8) L(P) = I fi(P, 6) dd = 2A(P, B). 

Thus, taking Q = B in (7) gives the isoperimetric inequality, 

(9) L 2 ( P ) > 4 T T A ( P ) , 

where equality holds if and only if P is a circular disk. 
Hurwitz [11] was the first to apply Fourier series to give a proof of (9). He 

proceeded by using (4) and (8) to represent A(P) and L(P) in terms of the 
Fourier coefficients of h(P, 0). Later Blaschke [1] used the Fourier expansions 
of supporting functions to give a proof of Minkowski's inequality (7). Heil [10] 
used this method to prove that if a is a fixed angle and the Steiner point of P is 
the origin, then 

(10) f "h(P,0)h(P, 0 + a)d0>2A(P), 

with equality only when P is a circular disk. (From the form of the integrand in 
(2), one might at first glance suspect that (10) could be derived directly from 
Minkowski's inequality; however, as shown in [10], this is not the case.) 
Chernoff [7] gave a Fourier series proof of (10) in the special case a = TT/2. This 
case was earlier established by Radziszewski [13] using other methods. 

In §2 of this paper we shall use the method of Fourier series to prove the 
following generalization of Heil's inequality (10). Let P and Q be plane convex 
bodies, with Steiner points s(P) and s(Q). The Steiner point of a plane convex 
body K may be defined, in complex notation, by 

(11) s(K) = - [ * eieh(K, 0) d$, 
TT J 0 

and can be shown to coincide with the center of gravity of a mass distribution 
along the boundary of K with density equal to the curvature at each point. We 
shall show that 

(12) J 2 \ ( P , 0 ) h ( Q , 0 ) d 0 > 7 r < s ( P ) , S ( O ) ) + | ^ A ( P ) + ^ A ( Q ) . 

The bracketed expression in (12) denotes the usual vector inner product of the 
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Steiner points. Since for a, b, À > 0 we have always ka + blk>2j(ab), from 
(12) we obtain 

(13) f 2" h(P, 6)h(Q, 6) s6>7r(s(P), s(Q)>+2V[A(P)A(Q)]. 

If <s(P), s(Q)> = 0, this reduces to 

J *1tr 

h(P, 6)h(Q, 6) de >2V[A(P)A(Q)], 
0 

which in turn gives Heil's inequality (10) when Q is a rotation of P through a 
fixed angle a. Equality can hold in (12), (13), or (14) only if P and Q are 
circular disks. 

The width function of K describes the distance between parallel supporting 
lines and is given by 

(15) w(K, 0) = h(K, 6) + h(K, d + <n) = h(K, 6) + h(-K, 0), 

where -K is the reflection of K through the origin. Using (13) and the fact 
that s(-K) = -s(K), one obtains the following generalization of another result 
of Heil [10], 

J*2lT 

w(P, 0)w(Q, 6) d6>8j[A(P)A(Q)l 
o 

Equality holds only if P and Q are circular disks. Lutwak [12] has recently 
proved an interesting n-dimensional generalization of (16). Schneider [14] and 
the author [4,5] have given various generalizations of (16) in the case where P 
and Q are congruent. 

In §3 we give a proof of an inequality which may be viewed as a common 
generalization of (7) and (14). Let E be a fixed plane convex body having the 
origin as an interior point. For any other plane convex body K the inradius of 
K relative to E is the largest r such that x + rE ç K for some x. This reduces to 
the usual definition of inradius in case E = B. The kernel of K relative to E, 
denoted by K0, is 

(17) K0 = {x:x + rE<=K} 

where r is the inradius of K relative to E. In case E = B, this is the locus of the 
centers of the inscribed circles of K. The kernel is always either a point or a 
closed line segment. Now suppose P and Q are plane convex bodies such that 
their respective kernels P0 and Q0 relative to E both contain the origin. Let rx 

and r2 be the inradii of P and Q respectively relative to E. Then we shall prove 
that 

J n(E, 6) rx r2 
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where the integration is with respect to arc length along the boundary of E. 
More precisely, the integral is taken with respect to the arc length measure 
induced on the unit circle by E, in the sense given by Fenchel and Jessen [8]; 
hence the integral in (18) is actually with respect to a certain Borel measure on 
the unit circle. From (18) we obtain immediately that 

(19) | MP.WQ, e) ME^ e) s 2 V [ A ( P ) A ( Q ) ] . 

Assuming P 0 and Q 0 contain the origin, we shall see that equality holds in (19) 
if and only if P = rxE and Q = r2E. 

The inequality (19) is proved in [6] using the method of inner parallel bodies. 
The proof we give here follows different lines and is somewhat more elemen­
tary. 

The inequality (14) is obtained as a special case of (19), although with a 
different condition on the positioning of P and Q, when we take E = B. 

If we take Q = E in (19) we obtain Minkowski's inequality, using the fact 
(see Fenchel and Jessen [8]) that 

(20) A(P,Q) = ^h(P,Q)ds(Q,0l 

One may also view (18) as a generalization of Bonnesen's inequality [3, pp. 
112-113]. Letting J(P, Q) denote the integral on the left hand side of (18), 
where we think of E as being fixed throughout the discussion, we obtain from 
(18) 

(21) / ( P , O ) 2 - 4 A ( P ) A ( Q ) > [ ^ A ( P ) - ^ A ( Q ) T > 0 , 
Lrx r2 J 

in the same way one obtains the isoperimetric inequality from Bonnesen's 
inequality. Indeed, for a, b, c > 0 and A > 0 , the inequality b > A a + c/A is 
equivalent to b2- Aac > (ka - c/\)2. 

2. Proof of the generalization of Heil's inequality. As in [10] we expand 
h(P, 6) and in h(Q, 6) in Fourier series 

(22) f i (P ,Q)= £ One™, h(Q,6)= £ bne
in\ 

n = —oo n = — °° 

where a_n = an and b_n = bn since the functions are real valued. Then 

(23) f rrh(P,Q)h(Q,8)de = 27ra0b0 + 27r £ ( o Â + ô A ) . 

From the area formula (4) one has 

(24) A(P) = 7mg + 277 £ ( l - n 2 ) k | 2 , 
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and a corresponding formula for A(Q). We have with a simple rearrangement 
then, 

(25) \27rh(P,6)h(Q,e)dO-A(P)-A(Q) + TT(a0-b0)
2 

= 2ir(a1b1 + fi161) + 2w £ [ k + bn|2 + (n 2 -2 ) (k | 2 + |b„|2)]. 
n = 2 

From (8) we obtain 

(26) L(P) = 2<7ra0 and L(Q) = 27rb0, 

and from (11), 

(27) s(P) = 2fi1 and s(Q) = 2b1. 

Substituting these relations in (25), and observing that the infinite sum on the 
right hand side is nonnegative, we find 

(28) f 2^MP,e)MQ^)^4- ( L ( P )~L ( Q ) ) 2^7r<s(P) ,5(Q)) + A(P) + A(Q). 

For convenience, let L1 = L(P), L2 = L(Q), A1 = A(P), and A2 = A(Q). In 
(28), replace P by (1/L^P and Q by (1/L2)Q and multiply both sides by L^. 
This gives 

(29) [2 i rh(P,O)h(Q,e)d0>7r(S(P),s(O))+^A1+^A2 , 

where we have used the fact that h(\K, 0), L(\K), and s(kK) are homogene­
ous of degree 1 in A>0 and A(kK) is homogeneous of degree 2. This 
completes the proof of (12). 

Expressing the quantities in (12) in terms of the Fourier coefficients shows 
that equality holds if and only if an = bn = 0 for n > 2, in which case P and Q 
are both circular disks. If equality holds in (13) then it must hold in (12), so 
again both P and Q are circular disks. A direct calculation also shows that if P 
and Q are any circular disks, then equality holds in both (12) and (13). 

3. Proof of the general inequality. Let r be the inradius of K relative to the 
fixed plane convex body E. For each À, 0 < A < r, the inner parallel body Kk of K 
relative to E is defined by 

(30) Kk={x:x + (r-\)E^K}. 

Then K0 is the kernel of K relative to E and Kr = K. The pertinent properties 
of relative inner parallel bodies that we shall use can be found in Bol [2] and 
Hadwiger [9, p. 142]. For example, we have 

(31) K, + ( r -À)£çK, 0<A<r, 
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from which it follows that 

(32) h(Kk90) + (r-\)h(E90)^h(K90)9 0<A<r. 

Integrating (32) over [0, r] with respect to À yields the fundamental relation 

(33) 2rh(Kk,6)>2\ h(Kk96) dk + r2h(E,6). 

The main inequality (18) will be obtained by taking K = P and K = Q succes­
sively in (33), multiplying the resulting inequalities, and integrating with 
respect to ds(E, 6). Indeed, if rx and r2 are the inradii of P and Q respectively 
relative to E, multiplying the inequalities obtained from (33) gives 

(34) 4r1r2h(P,e)h(Q,B)^4h(E,0) 

x [r! p h(Px, 0) dk + r\ j " * h(Qk9 0) dx] + A, 

where A is the expression 

(35) [2 J'1 h(Pk9 6) dk - r2ME, 0)][2 ^ h(Qk, 6) dk - r2
2h(E, »)]. 

Hence if we can show that (35) is nonnegative, it will follow from (34) that 

(36) r1r2h(P, S)fe(Q, 0)>h(E, 0)\ r\ h(Pk9 0)dk + r\ :,e)[rl[\ h(a, 9) d\ 

To see that the expression in (35) is indeed nonnegative, we use the fact that 
KK^K0+\E, 0<A<r, from which follows h(Kk, 8)>fi(K0, 0) + \h(E, 6). If 
the origin belongs to X0, we have h(K0, 0)>O and so obtain h(Kx, 0)2: 
X.h(E, 6). Integrating this over [0, r], with respect to A, gives finally 

(37) 2 H h(Kk, 6) dk - r2h(E, 6) >0, 

valid for any plane convex body K having the origin in K0. Applying (37) with 
K replaced by P and Q respectively, we see that (35) is nonnegative if the 
origin belongs to both P0 and Q0. Hence, with this restriction, (36) holds. 

Using the relation 

(38) A (K) = 2 f ' A (Kx, E) dk, 

(see [2] or [6]), we have 

(39) | { f h(Kk, 6) dk}ds(E, « ) = [ ' { } HKk, 6)ds(E, 0)] dk 

= | 2A(KX, E) dk = A(K). 
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Since the origin is an interior point of E, we may divide both sides of (36) by 
h(E, 0). Then integrating the resulting inequality with respect to ds(E, 0), and 
applying (39) with K replaced by P and Q respectively, we obtain 

(40) v* Ch(Ph(E,f)e)ds(E> <»^MP) + rlA(Q), 

valid when the origin belongs to both P0 and Q0. Division by rtr2 gives the 
required inequality (18). 

If equality holds in (40) then it must hold in the inequalities leading to (40) 
and, because of the continuity of the functions involved, we must have equality 
in (32) for all 0 and 0 < A < r, with K replaced by P and by Q. In particular, 
with A = 0 we obtain HPo + ^E, 0) = h(P, 0) and h(Q0 + r2E, 0) = h(Q, 0), for 
all 0, so P = P0 + r1E and Q = Q0 + r2E. To avoid strict inequality in (36), the 
expression (35) must be zero, which implies, by the discussion following (36), 
that either P0 or Q0 is the origin. Thus if equality holds in (18), then 
P = P0 + rxE and Q = Q0 + r2E and either P0 or Q0 is the origin (where we are 
still operating under the hypothesis that the origin belongs to both P0 and Q0). 
On the other hand, one checks directly that if P = P0 + rxE and Q = Q0 + r2E, 
where one of P0 or Q0 is the origin and the other a closed line segment 
containing the origin, then equality holds in (18). 

With our assumption about the kernels, equality holds in (19) if and only if 
P = P0 + r1E and Q = Q0 + r2E, either P0 or Q0 is the origin, and additionally 
A[(l/r1)P] = A[(l/r2)Q]. If, for instance, P0 is the origin, this implies 
A[(l/r2)Q0 + E ] = A(E), which can happen only if Q0 is a single point and 
hence also coincides with the origin. Thus, assuming the origin belongs to both 
relative kernels, equality holds in (19) if and only if P = rxE and Q = r2E. 
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