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Helicity, an invariant under ideal-fluid (Euler) evolution, has a topological interpretation
in terms of writhe and twist for a closed vortex tube, but accurately quantifying twist is
challenging in viscous flows. With a novel helicity decomposition, we present a framework
to construct the differential twist that establishes the theoretical relation between the total
twisting number and the local twist rate of each vortex surface. This framework can
characterize coiling vortex lines and internal structures within a vortex – important in
laminar–turbulence transition, and in vortex instability, reconnection and breakdown. As
a typical example, we explore the dynamics of vortex rings with differential twist via
direct numerical simulation (DNS) of the Navier–Stokes equations. Two twist waves with
opposite chiralities propagate towards each other along the ring and then collide whence
the local twist rate rapidly surges. Local vortex surfaces are squeezed into a disk-like
dipole structure containing coiled vortex lines, leading to vortex bursting. We derive a
Burgers-equation-like model to quantify this process, which predicts a bursting time that
agrees well with DNS.
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1. Introduction

A complex flow field can be modelled as a collection of flux tubes, such as hydrodynamic
flows (Moffatt & Tsinober 1992; Kleckner & Irvine 2013), superfluids (Koplik & Levine
1996; Kleckner, Kauffman & Irvine 2016) and plasmas (Cirtain et al. 2013). In particular,
the vortex tube is a candidate elementary structure of turbulence (Hussain 1986; Moffatt,
Kida & Ohkitani 1994; Pullin & Saffman 1998) (see figure 1a). Prototypical examples
include rings in jets and wakes, and ‘typical eddies’ in turbulent boundary layers
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Figure 1. Schematic of closed vortex tubes with complex internal structures in transition and turbulence.
(a) Conceptual model of the hairpin vortex in boundary layer transition and a collection of coiled and
linked vortex rings in fully developed turbulence, where the flow visualization data were reported in Zheng,
Yang & Chen (2016). (b) Closed vortex tube with differential twist on coaxial vortex surfaces and along the
vortex centreline. The vortex surfaces are represented by VSF isosurfaces of different isocontour values, with
embedded vortex lines (red solid). (c) A segment of the vortex tube in (b), where the vorticity is constructed
based on the curved cylindrical coordinates (s, ρ, θ), and the vortex centreline C (blue dash-dotted) is described
in the Frenet–Serret frame (T , N , B).

(Robinson 1991). Vortex line coiling within a vortex tube – a topological manifestation
of the helicity (Moffatt 1969; Moffatt & Ricca 1992) – plays an essential role in flow
evolution, such as laminar–turbulence transition (Fritts, Arendt & Andreassen 1998; Ruan
et al. 2022), vortex instability (Mayer & Powell 1992; Pradeep & Hussain 2001) and vortex
reconnection (Zhao et al. 2021; Yao & Hussain 2022) and breakdown (Leibovich 1978).

Coiled vortex lines in a vortex tube can generate twist-wave packets, and their
propagation and collision (Melander & Hussain 1994) can lead to bursting – causing
an increase in the local enstrophy and energy dissipation. Vortex bursting has been
found in aircraft trailing vortices (Tombach 1973), and addressed in theoretical (Arendt,
Fritts & Andreassen 1997), experimental (Cuypers, Maurel & Petitjeans 2003) and
numerical studies, but most are restricted to the configuration of vortex columns
(Melander & Hussain 1994; Ji & van Rees 2022). By contrast, the vortex ring is more
common in practical flows (Shariff & Leonard 1992) and has a well-defined topological
interpretation of helicity in terms of the writhe Wr and twist Tw (Moffatt & Ricca 1992).
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Role of vortex internal structures

Helicity and its decomposition provide a powerful diagnostic tool to understand the
complex three-dimensional (3-D) flow dynamics.

Whether helicity conservation can be extended to real dissipative flows is of particular
interest and has been extensively studied recently (Kleckner & Irvine 2013; Scheeler
et al. 2017; Kerr 2018a; Meng, Shen & Yang 2023). For example, Kleckner & Irvine
(2013) experimentally observed that the knotted vortex is quite unstable and transferred
to unlinked, coiled vortex rings through viscous reconnection. Numerical studies (Yao,
Yang & Hussain 2021; Zhao et al. 2021) reveal that the helicity is not conserved during
this process: while the initial writhe helicity is destroyed, the local twist rapidly surges at
the reconnection site and then travels along the two separated rings. Therefore, studying
twist-wave propagation and bursting can shed light not only on the extreme events in
turbulence and transition (Moffatt 2021; Buaria & Pumir 2022), but also on the helicity
dynamics of flux tubes with complex internal structures.

Studying twist-wave propagation and bursting in a vortex ring, or more generally, in
a closed vortex tube, which can be knotted and linked (Ricca, Samuels & Barenghi
1999; Kleckner & Irvine 2013; Kerr 2018b; Yao et al. 2021), is challenging. First, it is
difficult to directly construct a twist wave with a precise amplitude and distribution in
a closed vortex tube. Second, in real flows, vortex lines within vortex tubes can have
differential twist, i.e. different local twist rates on coaxial vortex surfaces or along the
vortex centreline (see figure 1). The differential twist of vortex tubes with finite thickness
cannot be characterized by the existing helicity decomposition (Moffatt & Ricca 1992), nor
could it be directly measured in previous experiments (Kleckner & Irvine 2013; Scheeler
et al. 2017; Angriman et al. 2021) or numerical simulations (Yao et al. 2021; Shen et al.
2022; Yao et al. 2022). The existing ribbon model (Moffatt & Tsinober 1992; Chui &
Moffatt 1995) for twisting is restricted to a vortex tube with uniform twist, and it cannot
characterize the internal twisting structure of vortex tubes.

We develop a novel helicity decomposition – along with numerical construction and
measurement methods – for the differential twist. Moreover, the vortex-surface field (VSF)
(Yang & Pullin 2010, 2011) is used to track and measure the twist of vortex lines. These
methods facilitate the first quantitative study of bursting vortex rings with differential twist.

2. Twisting helicity for differential twist

We introduce here a definition for the differential twist and explain its relation to the
helicity. The total helicity

H =
∫
V

h dV, (2.1)

is the volume integral of the helicity density h = u · ω (Moreau 1961; Moffatt 1969), with
the fluid velocity u and the vorticity ω = ∇ × u. The helicity of a closed vortex tube can
be topologically morphed into H = Γ 2(Wr + Tw) (Moffatt & Ricca 1992), with Γ the
total circulation. Note that, while Wr can be obtained from a measurement of the vortex
tube centrelines alone, it is difficult to characterize and directly measure Tw in practical
flows. As sketched in figure 1(b), the nested coaxial vortex tubes without self-intersection
are distinguished by different isosurfaces of a normalized VSF φv ∈ [0, 1]. The limiting
surface with φv = 1 represents the vortex centreline C. In figure 1(c), the vortex tube is
represented in the curved cylindrical coordinate system (s, ρ, θ) (Xiong & Yang 2019,
2020). Here, s ∈ [0, LC) denotes the arclength along C, LC the length of C, ρ the radial
distance from C(s) and θ the azimuthal angle from N(s) in the plane SC spanned by N(s)
and B(s), where the unit normal N(s), binormal B(s) and tangent T (s) constitute the
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Frenet–Serret frame on C. For such vortex tubes with uniform ω in θ , (s, ρ, θ) is simplified
to (s, φv).

We derive the contribution of coiled vortex lines on different coaxial vortex surfaces to
the total helicity. The twisting helicity (Moffatt & Ricca 1992) of an isolated closed vortex
tube can be expressed as

HT = Γ 2Tw, (2.2)

where Γ denotes the circulation and Tw the total twist number of the vortex tube. For
closed vortex tubes with uniform twist along φv , the twisting number (Fuller 1971; Chui
& Moffatt 1995)

Tw = 1
2π

∮
C
(N s ×N ′s) · T ds, (2.3)

is defined by a ribbon model. Here, the ribbon edges are the vortex centreline C and a
vortex line C∗. Moreover, N s denotes a radial unit vector from C pointing to C∗ in plane
SC (see figure 1c), and N ′s = dN s/ds; T is the unit tangent vector of C. This definition
requires that every vortex line has the same value of Tw calculated from (2.3), so it is
restricted to characterizing a vortex tube with uniform twist or a differential twist along
the vortex centreline.

In order to characterize the differential twist both along the vortex centreline and on
different vortex surfaces, we establish a more complete definition of Tw than (2.3). For
generalized closed tubes with differential twist, we introduce the local twist rate

η (s, φv) =
(
N s ×N ′s

) · T , (2.4)

for a vortex line on a vortex surface of φv at different locations, and the circulation

Γφ = Γφ(φv) ∈ [0, Γ ], (2.5)

through the tube enclosed by a vortex surface of φv . If η is circumferentially uniform on
each vortex surface, i.e. η is constant on the intersection of the isosurface of φv and the
plane SC normal to C, we define the twisting number

Tφ (φv) = 1
2π

∮
C

η (s, φv) ds, (2.6)

for each vortex surface.
We first calculate the twisting helicity �HT(Φ) for a single vortex surface of φv = Φ

(see figure 2) with a given constant Φ. This surface with infinitesimal thickness has Γφ(Φ)

and Tφ(Φ). As illustrated in figure 2

�HT(Φ) = H̄T,1 − H̄T,2, (2.7)

of a twisted vortex tube can be obtained by the difference of twisting helicities for two
adjacent co-axial virtual vortex tubes 1 and 2 with

Γ̄1 = Γφ (Φ) , T̄w,1 = Tφ (Φ) , (2.8a,b)

and
Γ̄2 = Γφ (Φ +�φv) , T̄w,2 = Tφ (Φ) , (2.9a,b)

respectively, where the overline denotes the quantity in a virtual tube. All co-axial vortex
surfaces inside the two virtual tubes have the same twist distribution as the vortex surface
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Role of vortex internal structures

Vortex tube with differential

twist along s and φv

Vortex surface of φv = Φ with

ΔHT(Φ), Γφ(Φ) and Tφ(Φ)

Virtual tube 1 with

H–T,1, Γ
–

1 and T–w,1

Virtual tube 2 with

H–T,2, Γ
–

2 and T–w,2

= –

Figure 2. Schematic for calculating the twisting helicity of a vortex surface with infinitesimal thickness by
two adjacent co-axial virtual tubes with uniform twist along φv . The vortex surface of φv = Φ is peeled off
from the vortex tube with differential twist along s and φv . All co-axial vortex surfaces inside the two virtual
tubes have the same twist distribution as the vortex surface of φv = Φ.

φv = Φ, so the two virtual tubes have uniform twist along φv and their twisting helicities
can be obtained by (2.2).

Substituting (2.2), (2.8a,b) and (2.9a,b) into (2.7) yields

�HT(Φ) = Γφ(Φ)2Tφ(Φ)− Γφ(Φ +�φv)
2Tφ(Φ). (2.10)

Applying the Taylor expansion of Γφ(Φ +�φv) to (2.10) yields

�HT(Φ) = −2Γφ(Φ)
dΓφ(Φ)

dφv

Tφ(Φ)�φv + O(�φ2
v). (2.11)

Then, we obtain

dHT(Φ)

dφv

= lim
�φv→0

�HT(Φ)

�φv

= −2Γφ(Φ)
dΓφ(Φ)

dφv

Tφ(Φ). (2.12)

Thus each vortex surface of φv in a vortex tube with differential twist along s and φv has

dHT(φv) = −2Γφ(φv)
dΓφ(φv)

dφv

Tφ(φv) dφv. (2.13)

Finally, we obtain the total twisting helicity

HT = − 1
π

∫ 1

0
Γφ(φv)

dΓφ(φv)

dφv

(∮
C

η(s, φv) ds
)

dφv, (2.14)

of a vortex tube with the total circulation Γ and differential twist along s and φv by the
integration

∫
dHT with (2.6), which is a circulation-weighted average of twisting numbers

over all co-axial vortex surfaces. Substituting (2.14) into (2.2) yields

Tw = − 1
πΓ 2

∫ 1

0
Γφ(φv)

dΓφ(φv)

dφv

(∮
C

η(s, φv) ds
)

dφv. (2.15)

This equation is further verified with several numerical examples in Appendix A.
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3. Construction of differential twist

We construct the vorticity field ω for a closed vortex tube with differential twist. This
construction method with its numerical algorithm is an extension of that in Xiong & Yang
(2019, 2020) by incorporating variations of the core size and local twist rate in terms of s
and φv .

First, the tube centreline C is described by a given parametric equation

x = c(s)+ ρ cos θN(s)+ ρ sin θB(s). (3.1)

The Frenet–Serret formulas on C are

dT
ds
= κN,

dN
ds
= −κT + τB,

dB
ds
= −τN,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.2)

where κ is the curvature and τ is the torsion of C.
Based on coordinates (s, ρ, θ ), we specify

ω(s, ρ, θ) = ωs(s, ρ)es + ωρ(s, ρ, θ)eρ + ωθ(s, ρ, θ)eθ , (3.3)

of a vortex tube, where the local frame is spanned by unit vectors

es = T ,

eρ = cos θN + sin θB,

eθ = − sin θN + cos θB.

⎫⎪⎬⎪⎭ (3.4)

By setting the variable initial core size σ(s) and local twist rate η(s, φv), vorticity
components ωs(s, ρ) and ωθ(s, ρ, θ) are determined by introducing σ(s) and η(s, φv)

into the construction method in Xiong & Yang (2020) and Shen et al. (2022) and then
ωρ(s, ρ, θ) is solved from the divergence-free constraint. Thus the vorticity of closed
vortex tubes with differential twist and variable thickness is specified as

ω(s, ρ, θ) = Γ f (s, ρ)

⎡⎢⎢⎣ es︸︷︷︸
flux

+ dσ(s)
ds

ρeρ

σ (s)(1− κ(s)ρ cos θ)︸ ︷︷ ︸
tube thickness

+ ρη(s, φv)eθ

1− κ(s)ρ cos θ︸ ︷︷ ︸
twist

⎤⎥⎥⎦ ,

(3.5)
with the Gaussian kernel function

f (s, ρ) =
⎧⎨⎩

1
2πσ(s)2 exp

[ −ρ2

2σ(s)2

]
, s ∈ [0, LC), ρ ∈ [0, Rv),

0, s ∈ [0, LC), ρ ∈ [Rv,+∞),

(3.6)

and the initial normalized VSF

φv(s, ρ) = 2πσ(s)2f (s, ρ) ∈ [0, 1], (3.7)

where the three terms on the right-hand side of (3.5) represent the vorticity flux, tube
thickness and twist terms of ω, respectively.
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Role of vortex internal structures

If κ(s) = 0 and η(s, φv) = 0, (3.5) degenerates into the vorticity for a straight vortex
tube with a variable core size (Ji & van Rees 2022). If σ(s) and η(s, φv) are constants,
(3.5) degenerates into a constant-thickness vortex tube with uniform twist (Xiong & Yang
2020; Shen et al. 2022).

As proved below, the vector field constructed by (3.5) is solenoidal, which can be used
as a vorticity or magnetic field.

THEOREM 1. The vector field ω constructed by (3.5) is divergence free.

Proof . In the curved cylindrical coordinate system, by applying the inverse function
theorem to the Jacobian matrix (Xiong & Yang 2020) between (s, ρ, θ) and (x, y, z), we
derive

∇s = T
1− κρ cos θ

,

∇ρ = cos θN + sin θB,

∇θ = −τ

1− κρ cos θ
T + 1

ρ
(− sin θN + cos θB) .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.8)

Taking the divergence of (3.3) yields

∇ · ω = ∇ · (ωses)+∇ · (ωρeρ)+∇ · (ωθeθ ) , (3.9)

and using (3.4) yields

∇ · (ωses) =
(

∂ωs

∂s
∇s+ ∂ωs

∂ρ
∇ρ

)
T + ωs

dT
ds

· ∇s, (3.10)

∇ · (ωρeρ) =
(

∂ωρ

∂s
∇s+ ∂ωρ

∂ρ
∇ρ + ∂ωρ

∂θ
∇θ

)
(cos θN + sin θB)

+ ωρ

(
− sin θ∇θ · N + cos θ

dN
ds

· ∇s+ cos θ∇θ · B+ sin θ
dB
ds

· ∇s
)

,

(3.11)

∇ · (ωθeθ ) =
(

∂ωθ

∂s
∇s+ ∂ωθ

∂ρ
∇ρ + ∂ωθ

∂θ
∇θ

)
(− sin θN + cos θB)

+ ωθ

(
− cos θ∇θ · N − sin θ

dN
ds

· ∇s− sin θ∇θ · B+ cos θ
dB
ds

· ∇s
)

.

(3.12)

Substituting (3.2) and (3.4) into (3.10), (3.11) and (3.12), and considering the orthogonality
of the Frenet–Serret frame yields

∇ · (ωses) = 1
1− κρ cos θ

∂ωs

∂s
,

∇ · (ωρeρ) = ∂ωρ

∂ρ
+ 1− 2κρ cos θ

ρ(1− κρ cos θ)
ωρ,

∇ · (ωθeθ ) = 1
ρ

∂ωθ

∂θ
+ κ sin θ

1− κρ cos θ
ωθ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.13)
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(b)(a) (c)

Figure 3. Closed vortex tubes with various internal structures. These closed vortex tubes with arbitrary
topology, differential twist and variable thickness are constructed by (3.5): (a) trivial ring, (b) trefoil knot
and (c) figure-eight knot. They are visualized by VSF isosurfaces with embedded vortex lines. The inner and
outer tubes in (a) are two VSF isosurfaces with different colours; the surfaces in (b,c) are colour coded by h.

For ρ � Rv , we have ω = 0 from (3.6). For ρ < Rv , substituting (3.5) and (3.6) into
(3.13) yields

∇ · (ωses) = Γ (ρ2 − 2σ 2)

2πσ 5(1− κρ cos θ)

dσ

ds
exp

(−ρ2

2σ 2

)
,

∇ · (ωρeρ) = Γ (2σ 2 − ρ2)

2πσ 5(1− κρ cos θ)

dσ

ds
exp

(−ρ2

2σ 2

)
,

∇ · (ωθeθ ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.14)

after some algebra. Finally we obtain ∇ · ω = 0. �

The numerical implementation is detailed in Appendix A. Typical examples constructed
by (3.5) in figure 3 show coiled vortex lines with differential twist lying on various closed
vortex tubes. Furthermore, we develop a numerical method to measure the local twisting
rate on a vortex surface for given ω and φ. The algorithm is based on multiple vortex lines
in terms of the discrete arclength on the VSF isosurface, which is detailed in Appendix B.
Thus, we can quantify the evolution of coiling vortex lines on different vortex surfaces in
a viscous evolution.

4. Results

4.1. Evolution of vortex ring with differential twist
We highlight the role of differential twist in helicity and vortex dynamics via direct
numerical simulation (DNS) of bursting of vortex rings. Initial twisted vortex rings
with a radius R0 = 1 are constructed by (3.5), with initial Γ = Γ0 = 1 and σ = σ0 =
1/(8
√

2π). The initial local twist rate η(s, φv) = η0 = A sin(s/R0) varies along C. We
use the constructed vorticity fields in (3.5) as initial conditions, and calculate their
evolutions using DNS. The 3-D incompressible Navier–Stokes equations are solved in
the vorticity–velocity form (Wu, Ma & Zhou 2015) using the pseudo-spectral method
in a periodic box of size L = 2π on N3 uniform grid points. The numerical solver
removes aliasing errors using the two-third truncation method with the maximum
wavenumber kmax ≈ N/3. The time integration is treated by the explicit second-order
Runge–Kutta scheme in physical space, with the adaptive time step ensuring the
small enough Courant–Friedrichs–Lewy number for numerical stability and accuracy.
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Role of vortex internal structures

z

x y

y

x

t = 0.5t = 0.25 t = 0.75

t = 1 t = 1.5t = 1.25

t = 1.75 t = 2

t = 0

SP1

SP2

h
10

–10

0

Figure 4. Lagrangian-like evolution of vortex surfaces and lines. The visualization shows the evolution of the
VSF isosurface (colour coded by h) of φv = 0.5 for A = 20 and Re = 2000. Some attached vortex lines are
integrated from points on the isosurface. Note that t = t/(R2

0/Γ0) is non-dimensionalized here. The close-up
view shows vortex lines (colour coded by h) on the VSF isosurface (translucent) of φv = 0.7 at t = 0.75 in
vortex bursting.

The vortex Reynolds number is set to Re ≡ Γ/ν = 2000. To ensure that the grid resolution
can fully resolve the flow evolution, N is carefully chosen to be 512, 768 and 1024 for the
initial twist amplitudes A = 10, 20 and 30, respectively. For each case, we carried out the
grid convergence test and confirmed that the DNS results converge for N to ensure that the
grid resolution fully resolves the flow evolution.

In addition, the VSF evolution is calculated using the two-time method (Yang & Pullin
2011) and its implementation is reported in Appendix C. The Lagrangian-like evolution of
the twisted vortex ring with A = 20 and Re = 2000 is visualized by the isosurface of φv =
0.5 in figure 4. At t = 0, two twist waves of vortex lines with opposite chiralities travel
in opposite directions. Each wave packet is similar to a Kelvin wave with zero azimuthal
wavenumber (Arendt et al. 1997; Fabre, Sipp & Jacquin 2006). Then, they collide and burst
at the upper symmetric plane SP1, forming a disk-like vortex dipole structure. Meanwhile,
the axial gradient of the core size near the bursting site regenerates secondary twist waves,
which propagate backward and cause secondary bursting at the lower symmetric plane
SP2 after t = 2. Note that, as shown in Ji & van Rees (2022) for a vortex column, such
successive bursting can also be triggered by a vortex ring with initial core-size perturbation
(see Appendix D).

In figure 5(a), the enstrophy Ω(t) = ∫V |ω|2/2 dV in the viscous evolution decays and
shows a bump during bursting. For comparison, viscous diffusion of a vortex column
shows exponential decay of Ω . Due to the initial symmetry, H remains zero, and the
positive and negative parts H± = ∫V h± dV of H characterize the amplitudes of the
counter-rotating waves. Before bursting, the core dynamics induced meridional flow
(Melander & Hussain 1994) uncoils vortex lines and thickens the local vortex tube to form
an axial core-size gradient. The vortex tube with the axial core-size variation then re-coils
the vortex lines. Thus, |H±| first decays and then rebounds in figure 5(b). The viscous
decay of H± (solid line) is faster than that of the uniform helicity model (dash-dotted
line), because η, which is proportional to the viscous decay rate of twist (Yao et al. 2021;
Shen et al. 2022), is more locally concentrated and larger than in the latter.
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Figure 5. Flow statistics. (a,b) Evolution of (a) Ω and (b) H (black), H+ (red) and H− (blue) for
various A. The dash-dotted lines denote modelling results Ω(t) = Ω0 exp[− ∫ t

0 2ν(σ 2
0 + 2νt)−1 dt] and H(t) =

H0 exp[− ∫ t
0 2ν(σ 2

0 + 2νt)−1 dt] for a uniformly twisted vortex column with A = 20. The peak heights of Ω

and |H±| grow with A, while the height of the secondary peak of |H±| is the highest for A = 20. (c–e) Local
twist rates on different VSF isosurfaces along the vortex centreline at (c) t = 0.25, (d) 0.5 and (e) 1.5 for
A = 20. Arrows in (c,e) denote the propagating direction of twist-wave packets. The inset in (d) shows entire
profiles of η.

4.2. Vortex bursting
During the evolution, the twist propagates along C and varies with φv . Figure 5(c) plots the
distribution of η along s on different vortex surfaces at t = 0.25 for A = 20 and Re = 2000.
At early times, two peaks of η approach each other and evolve towards a discontinuity,
similar to shock formation. The propagation speed of twist waves grows with φv; i.e. the
waves travel faster on an inner vortex surface than on an outer surface.

We develop an inviscid model for the propagation of twist vortex waves, which can
predict when the vortex bursting occurs. The twist waves are modelled as travelling waves
along the vortex centreline, so that their propagation speed equals the axial velocity of the
local fluid. Thus, we have

η(s, φv, t) = F(s− ust, φv), (4.1)

with a function F. The axial velocity (Yao et al. 2021) of a uniformly twisted vortex tube
with constant η is obtained by the Biot–Savart law as

us(ρ) = Γ η

2π
exp

(−ρ2

2σ 2

)
. (4.2)
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Substituting the initial VSF profile φv(ρ) into (4.2) and replacing the constant η by a
varying one yield the axial velocity

us(s, φv) = Γ φvη(s, φv, t)
2π

, (4.3)

of a vortex surface with differential twist. Based on (4.1) and (4.3), we obtain a
Burgers-like equation

∂η

∂t
+ Γ φvη

2π

∂η

∂s
= 0, s ∈ [0, LC), t > 0,

η (s, φv, 0) = η0 (s, φv) ,

⎫⎬⎭ (4.4)

where LC denotes the length of C and η0(s, φv) the given initial η. Note that this model is
an inviscid approximation, and the twist wave can have dispersion in viscous flows.

From the solution to (4.4)

η(s, φv, t) = η0

(
s− Γ φvη

2π
t, φv

)
, t < tb, (4.5)

we obtain that ∂η0/∂s becomes infinite at the blow-up time

tb(φv) = min

[(
−Γ φv

2π

∂η0

∂s

)−1
]∣∣∣∣∣

∂η0/∂s<0

. (4.6)

With η0(s, φv) = A sin(s/R0), (4.6) gives an estimation of the vortex bursting time
tb(φv) = 2πR0/(Γ0Aφv) for an isosurface of φv . It decreases with φv , so the bursting
develops gradually from the vortex centreline to its outer surfaces, and the earliest
blow-up time is tb(φv = 1) = π/10 ≈ 0.314 for A = 20. The comparison of the DNS
and modelling results for the evolution of η (see figure 6) shows that (4.5) provides a
satisfactory estimate of the local twist rate.

In figure 5(d), the coiling of vortex lines gradually accumulates on both sides of SP1
at s/LC = 0.5 after t = π/10. The surge of η characterizes incipient vortex bursting.
Consistent with the model of tb, bursting first occurs near the vortex centreline (with
large φv). In particular, the spikes of η(s, φv = 0.9) have a maximum value around 160
at t = 0.5 (see the inset) and are more than 10 times the averaged initial amplitude 2A/π.
As illustrated in the close-up view in figure 4, vortex surfaces are flattened on SP1 and
rolled up at their edge, forming a disk-like structure with highly spiral vortex lines. The
local flow topology at the bursting site is similar to the statistically preferential state of the
bi-axial strain in turbulence (Meneveau 2011).

The formation and decay of the disk structure significantly alter the radial tube size near
SP1, triggering the generation of secondary counter-twist waves (Ji & van Rees 2022).
In figure 5(e), new twist waves are first generated at large φv near C. Subsequently, the
chirality of twist waves on outer vortex surfaces is reversed from inner to outer layers. The
secondary twist waves gradually intensify and cause the secondary bursting on SP2.

4.3. Effect of initial twist amplitude
During bursting, larger A (or higher Re) can cause a more complex vortex dynamics.
Increasing A from 20 to 30 in figure 7(a), the VSF visualization reveals that vortex
reconnection occurs within larger disk structures. As sketched in figure 7(b), the spiral
vortex lines are pressed onto the disk, and the reconnection of each line at two locations
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30

φv

20

10

0

–10

η

–20

–30
0 0.2 0.4 0.6

s/LC

0.8 1.0

Figure 6. Comparison of DNS (symbols) and modelling (solid lines) results of η on VSF isosurfaces of φv =
0.1 (red), 0.5 (green) and 0.9 (blue) at t = 0.25. The model predictions calculated from (4.5) capture different
propagation speeds on different vortex surfaces, in close agreement with the DNS results.

z

x y

h
10

–10

0

Dipole

Reconnection

Reconnection

(b)

(a)

Figure 7. Vortex reconnection for the bursting vortex ring. (a) Evolution of the VSF isosurface φv = 0.3 for
A = 30 with some attached vortex lines (colour coded by h) before and after reconnection (from t = 0.9 to
t = 1.4). (b) Schematic of the vortex reconnection that occurs in the bursting disk. Red and blue lines represent
right- and left-handed coiled vortex lines, respectively. Dashed circles mark reconnection locations of a vortex
line. Translucent green sections illustrate the sudden loss of the vortex tube thickness after the reconnection,
where the dipole tube formed after the reconnection consists of vortex dipoles.

(marked by dashed circles) pinches off a vortex loop from the rolling-up edge of the disk.
Strongly coiled vortex lines are uncoiled immediately after reconnection, causing a drop
in local core size and twist rate of the main tube. The major secondary ring structure
with vanishing flux consists of the pinched-off vortex loops. It is also called the vortex
dipole tube (Hussain & Stout 2013) whose cross-section is a pair of concentrated vorticity
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Figure 8. Effect of the vortex reconnection on the strength of twist waves. Evolution of T+φ on different VSF
isosurfaces for A = 20 ((a), without reconnection) and A = 30 ((b), with reconnection) at Re = 2000, along
with guide lines (dotted) after the vortex bursting with slopes of 4/3 and 2/3, respectively.

regions with opposite signs. The successive reconnection of vortex lines is asymmetric in
the θ -direction due to the curved vortex centreline, which is distinctly different from the
symmetric reconnection in bursting of a rectilinear vortex tube (Ji & van Rees 2022).

In figure 5(b), the second peak of |H±| of A = 20 around t = 3 after bursting is
the highest, even slightly higher than A = 30, implying that secondary twist waves are
weakened by vortex reconnection. The amplitude of the secondary twist wave is positively
correlated with the axial gradient of the vortex core size (Ji & van Rees 2022). Although
stronger twist-wave collision can produce a larger disk, the reconnection significantly
reduces the core size (and its axial gradient) of the disk (see figure 7b). After reconnection,
the reduction of the core-size gradient inhibits the regeneration of strong twist waves and
pre-empts subsequent bursting.

The cancellation and regeneration of right- or left-handed twist waves on different vortex
surfaces can be quantified based on T+φ or T−φ , defined as T±φ (φv) =

∮
C η± ds with

η+ =
{

η, if η � 0,

0, otherwise,
(4.7)

and η− = η − η+. The evolution of T+φ is shown in figure 8. After the first bursting,
secondary twist waves regenerate successively from inner to outer vortex surfaces. The
regeneration of T+φ for A = 30 with slope 2/3 is weaker than for A = 20 with slope 4/3,
confirming weakened secondary twist waves.

5. Discussion

We develop a helicity decomposition that allows computation of the differential twist
within vortex tubes. The decomposition is used to study the propagation of twist waves
within a vortex ring and the bursting due to their collision. In particular, we establish
a theoretical relation (2.15) between H and η of vortex lines on different coaxial vortex
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surfaces, along with the numerical measurement of η based on VSF; DNS cases of bursting
vortex rings are set up with differential twists. Two twist waves with opposite helical
chiralities collide on the ring cross-section, where the local twist rate surges by over 10
times the average initial amplitude. The propagation speed is faster on inner vortex surfaces
than on outer ones. The dynamics of vortex bursting and the bursting time are modelled by
a Burgers-like equation. During the bursting, local vortex surfaces are squeezed to form a
disk-like dipole structure with strongly coiled vortex lines. With larger initial twisting rates,
vortex reconnection pinches dipole vortex rings off from the rolling-up edge of the bursting
disk and significantly reduces the core-size gradient to inhibit subsequent bursting.

The rapid coiling and stretching of vortex lines can destabilize their vortical structures
and trigger transition. As a heuristic model problem, the propagation of twist waves and
bursting of a vortex ring can be further used to study extreme events of the vorticity/helicity
dynamics in transition and turbulence and to explore the possible formation of finite-time
singularities in the Euler dynamics. Moreover, the construction and diagnostic methods of
the differential twist provide a complete framework for understanding the topological fluid
dynamics of various closed vortex/magnetic tubes with delicate internal structures.
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Appendix A. Numerical construction of differential twist

It is straightforward to extend the numerical algorithm in Xiong & Yang (2020) to compute
the vorticity field (3.5) on a Cartesian grid. For a given closed parametric curve C : c(ζ )

with ζ ∈ [0, Lζ ), we divide C into NC segments by NC dividing points

ci = c (ζi) , i = 1, 2, . . . , NC, (A1)

with ζi = (i− 1)�ζ and �ζ = Lζ /NC. Note that ζ is not necessary to be an arclength
parameter s because of the one-to-one mapping between ζ and s. Then the space in the
proximity of curve C can be divided into NC subdomains

Ωi = {x | (x− ci) · T i � 0 and (x− ci+1) · T i+1 < 0} , (A2)

with

T i = ci+1 − ci

|ci+1 − ci| , i = 1, 2, . . . , NC, (A3)

where subscripts NC + 1 and 1 are equivalent. For a given x, we first use (A2) to determine
the subdomains Ωi containing x. The subscripts of all the Ωi containing x are denoted by
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a set
Ĩζ (x) = {j | x ∈ Ωj}. (A4)

For each j ∈ Ĩζ (x), the parameter of C is approximated by

ζ̃j = ζj+1(x− cj) · T j + ζj(cj+1 − x) · T j

|cj+1 − cj| . (A5)

At c̃j = c(ζ̃j), we use the second-order finite difference scheme to calculate the
Frenet–Serret frame

T̃ j = T (ζ̃j),

Ñ j = N(ζ̃j),

B̃j = B(ζ̃j),

⎫⎪⎪⎬⎪⎪⎭ (A6)

as well as
κ̃j = κ(ζ̃j),

d̃σ

ds j
= dσ

ds
(ζ̃j),

⎫⎪⎬⎪⎭ (A7)

in (3.5). In addition, the distance from c(ζ̃j) is calculated by

ρ̃j = |x− c̃j|, (A8)

and azimuth-related functions are calculated by

cos θ̃j = (x− c̃j) · Ñ j

ρ̃j
,

sin θ̃j = (x− c̃j) · B̃j

ρ̃j
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A9)

Finally, we approximate (3.5) as

ω(x) =
∑

j∈Ĩζ (x)

ω̃j, (A10)

with

ω̃j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ f (ζ̃j, ρ̃j)

[
T̃ j + ρ̃j

σ(ζ̃j)(1− κ̃jρ̃j cos θ̃j)

d̃σ

ds j
(cos θ̃jÑ j + sin θ̃jB̃j)

+ ρ̃jη(ζ̃j, φv(ζ̃j, ρ̃j))

1− κ̃jρ̃j cos θ̃j
(− sin θ̃jÑ j + cos θ̃jB̃j)

]
, 1 > κ̃jρ̃j cos θ̃j,

0, 1 � κ̃jρ̃j cos θ̃j.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A11)

The procedure for the numerical construction of ω(x) is summarized in Algorithm 1.

Next, we give two examples, a vortex ring and a trefoil vortex knot with varied thickness
and local twist rate, to verify (2.15). The geometry of these two cases is characterized in
table 1. We set Γ = 1 and NC = 106. The maximum radius of the vortex tube is estimated
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Algorithm 1: Calculation of ω(x)

1 Input: x, c(ζ ), σ(ζ ), f (ζ, ρ), φv(ζ, ρ), η(ζ, φv), Γ , and NC;
2 Output: ω(x);

(i) Divide the space in the proximity of curve c(ζ ) into NC subdomains by (A2).
(ii) Obtain Ĩζ by (A4) at x.

(iii) Calculate ζ̃j by (A5).
(iv) Calculate T̃ j, Ñ j and B̃j by (A6).

(v) Calculate κ̃j and
d̃σ

ds j
by (A7);

(vi) Calculate ρ̃j by (A8).
(vii) Calculate cos θ̃j and sin θ̃j by (A9).

(viii) Calculate ω(x) by (A10) with computed and given variables.

Case c(ζ ) σ (ζ ) η(ζ, φv)

1
cx(ζ ) = cos(ζ )

cy(ζ ) = sin(ζ )

cz(ζ ) = 0

⎫⎬⎭ 2+ sin(5ζ )

8
√

2π
20φv sin(ζ/2)

2
cx(ζ ) = (1+ 0.5 cos(3ζ )) cos(2ζ )

cy(ζ ) = (1+ 0.5 cos(3ζ )) sin(2ζ )

cz(ζ ) = −0.5 sin(3ζ )

⎫⎬⎭ 3+ sin(6ζ )

16
√

2π
10 sin(πφv)(1+ 2 sin(3ζ ))

Table 1. Geometric parameters.

as Rv = 5 max[σ(s)]. Over 99.999 % of the vorticity magnitude in (3.5) is contained in
the tube with Rv , so we consider this vorticity field as compactly supported.

We construct the vortex tubes in a periodic box of side L = 2π and use 5123 grid points.
The velocity field is calculated from the vorticity via the Biot–Savart law in Fourier
space (Xiong & Yang 2019). Note that the cutoff of the Gaussian tail at Rv in (3.6) has
a negligible influence on the smoothness of the initial vorticity. The total helicity H is
obtained by numerically integrating the helicity density over the periodic box on the 3-D
Cartesian grid. The writhing number is calculated by

Wr = 1
4π

∮
C

∮
C

(x− x∗) · dx× dx∗

|x− x∗|3 = 1
4π

∮
C

∮
C

[c(ζ )− c(ξ)] · [c′(ζ )× c′(ξ)]
|c(ζ )− c(ξ)|3 dζ dξ,

(A12)

where x and x∗ denote two points on C. The two cases are visualized in figure 9 using VSF
isosurfaces colour coded by h with attached vortex lines. Their total helicity and writhe
number numerical calculated by (2.1) and (A12) are listed in table 2.

For the two closed vortex tubes, we verify (2.14) by comparing results of (2.14) and
H/Γ 2 −Wr listed in table 2. The former is directly calculated by (2.14), and the latter is
calculated by the Călugăreanu–White theorem (Moffatt & Ricca 1992) using the vorticity
fields on the numerical Cartesian grid. For the vortex tube constructed by (3.5), the
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(b)(a) (d )(c)

Figure 9. The VSF isosurfaces (colour coded by h) of (a,c) φv = 0.1 and (b,d) 0.5 with some attached vortex
lines for the ring and trefoil knot listed in table 1.

Case H Wr Tw = H/Γ 2 −Wr Tw calculated by (A16)

1 4.244 0 4.244 4.244
2 19.678 3.518 16.160 16.160

Table 2. Total helicity and writhe number calculated by (2.1) and (A12).

circulation for the isosurface of φv in (3.7) is

Γφ(φv) =
∫

Sφ

ω · es dS =
∫

Sφ

ωs dS, (A13)

where Sφ denotes the area enclosed by the isosurface of φv on SC. The cross-section of the
tube on SC is circular with radius

ρφ(s, φv) =
√
−2σ(s)2 ln φv. (A14)

Substituting (3.5) and (A14) into (A13) yields

Γφ(φv) =
∫

Sφ

Γ

2πσ(s)2 exp
[ −ρ2

2σ(s)2

]
dS = Γ (1− φv). (A15)

Substituting (A15) and ds = |dc(ζ )/dζ | dζ into (2.15) yields

Tw = 1
π

∫ 1

0
(1− φv)

(∮
C

η(ζ, φv)

∣∣∣∣dc(ζ )

dζ

∣∣∣∣ dζ

)
dφv. (A16)

Using (A16), we obtain

Tw = 40
3π
≈ 4.244, (A17)

for case 1 in table 1, and

Tw = 10
π2

∫ 2π

0

√
cos2(3ζ )+ 4 cos(3ζ )+ 25

4
dζ ≈ 16.160, (A18)

for case 2. The excellent agreement of these theoretical results and the numerical ones in
table 2 demonstrates that the description of the differential twist in (2.14) is complete and
accurate.
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Figure 10. Schematic for determining Ñ s(s̃j) from the discrete vortex centreline (blue) pointing to a discrete
vortex line (red).

Appendix B. Numerical measurement of the local twist rate

We develop a numerical method to measure the local twisting rate on a vortex surface for
given ω and φ. As illustrated in figure 10, the algorithm for measuring η(s̃j, Φ) is based
on the discrete arclength parameter s̃j on the isosurface of φv = Φ.

For a given φv = Φ, we integrate a vortex line Cv on the isosurface of φv(x) = Φ with
a sequence of discrete points cv

i , i = 1, 2, . . . , Nv . Then Cv can be divided into Nv line
segments

Li = {x | x = cv
i + p(cv

i+1 − cv
i ), p ∈ [0, 1)}, i = 1, 2, . . . , Nv, (B1)

where subscripts Nv + 1 and 1 are equivalent. For the present VSF, φv = 1 represents the
vortex centreline. We integrate a limiting vortex line on the isosurface of φv(x)→ 1, as
an approximation of C, with a sequence of discrete points cc

j , j = 1, 2, . . . , Nc. Note that
this centreline identification method is essentially the same as that in Kerr (2018a) for the
vortex tubes with the VSF and axial vorticity maxima on the vortex centreline.

Each cc
j corresponds to a vortex line segment L∗j = Li where the intersection of SC and

Cv is located, and this segment can be determined by searching

(cv
i − cc

j ) · T c
j � 0 and (cv

i+1 − cc
j ) · T c

j � 0, (B2)

with

T c
j =

cc
j+1 − cc

j

|cc
j+1 − cc

j |
, j = 1, 2, . . . , Nc, (B3)

where subscripts Nc + 1 and 1 are equivalent. Thus the intersection x∗j of SC and Cv is
calculated by

(x∗j − cc
j ) · T c

j = 0, x∗j ∈ L∗j . (B4)

Then, we obtain the unit vector Ñ s(s̃j) at cc
j pointing to x∗j on the isosurface of φv = Φ

by

Ñ s(s̃j) =
x∗j − cc

j

|x∗j − cc
j |

, j = 1, 2, . . . , Nc, (B5)

and
Ñ s(s̃Nc+1) = Ñ s(s̃i),

Ñ s(s̃0) = Ñ s(s̃Nc),

}
(B6)
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with a discrete arclength parameter

s̃j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−|cc
Nc
− cc

1|, j = 0,

0, j = 1,
j∑

k=2

|cc
k − cc

k−1|, j = 2, 3, . . . , Nc,

|cc
Nc
− cc

1| +
j∑

k=2

|cc
k − cc

k−1|, j = Nc + 1.

(B7)

Finally, the local twist rate on the isosurface of φv = Φ is approximated by

η
(
s̃j, Φ

) = (Ñ s(s̃j)× Ñ s(s̃j+1)− Ñ s(s̃j−1)

sj+1 − sj−1

)
· T c

j . (B8)

The procedure for the numerical measurement of η(s̃j, Φ) is summarized in Algorithm 2.
An ideal measurement of η needs to sample all the vortex lines uniformly covering the

Algorithm 2: Calculation of η(s̃j, Φ)

1 Input: cc, cv;
2 Output:η(s̃j, Φ);

(i) for j← 1 to Nc
(ii) Calculate T c

j by (B3);
(iii) for i← 1 to Nv

(iv) if (B2) then
(v) Calculate x∗j by (B4);

(vi) break
(vii) end

(viii) end
(ix) Calculate s̃j by (B7);
(x) Calculate Ñ s by (B5) and (B6);

(xi) end
(xii) Calculate η(s̃j, Φ) by (B8) with computed variables.

entire vortex surface. In the practical measurement, we select a finite number of vortex
lines, e.g. eight in the present study, on a vortex surface. The seeding points for integrating
vortex lines are uniformly distributed on the cross-section SP2.

Appendix C. The VSF calculation

The VSF is defined to satisfy the constraint ω · ∇φv = 0. The two-time method (Yang &
Pullin 2011) is used to calculate the Lagrangian-like evolution of VSFs, which involves
prediction and correction substeps for each physical time step. The local deviation (Yang
& Pullin 2010) of the numerical VSF solution φv from an exact VSF is defined as λω =
ω · ∇φv/(|ω| |∇φv|). The volume-averaged VSF deviation 〈|λω|〉 for all cases are less
than 0.3 % in the entire evolution, which is very accurate for identifying vortex surfaces.
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(b)(a) (d )(c)

Figure 11. Comparison of isosurfaces of the VSF and the vorticity magnitude at t = 0.75 for A = 20 and
Re = 2000: (a) φv = 0.75, (b) |ω| = 50, (c) φv = 0.25 and (d) |ω| = 20. Some vortex lines are integrated
from points on the surfaces colour coded by h.

t = 5 t = 7t = 6 t = 8

t = 1 t = 3t = 2 t = 4

SP1

SP2

y h:

x

t = 0

t = 9

–10 –5 0 5 10

(e)(b)(a) (d )(c)

( j)(g)( f ) (i)(h)

Figure 12. Evolution of the VSF isosurface (colour coded by h) of φv = 0.75 with some attached vortex lines
for the bursting vortex ring with the initial core-size perturbation at Re = 2000.

Note that the visualization of Eulerian vortex criteria, e.g. the visual breakup of isosurfaces
of |ω| in figure 11(b,c), cannot identify the complete vortex tube as visualized by the VSF
in figure 11(a,b) during bursting.

Appendix D. Bursting vortex ring with initial core-size perturbation

We illustrate the bursting vortex ring due to the initial core-size perturbation. This type
of vortex bursting was observed in vortex columns (van Rees 2020; Stout 2021; Ji & van
Rees 2022). Based on (3.5), we set a varying initial core size

σ(s) =

⎧⎪⎪⎨⎪⎪⎩
1

8
√

2π
, s ∈ [0, π),

2− cos (2s)

8
√

2π
, s ∈ [π, 2π),

(D1)

and η0 = 0 and Γ = 1. The initial configuration is shown by the VSF isosurface in
figure 12(a). Note that the ratio of the maximum to minimum core size is three, consistent
with Ji & van Rees (2022).
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Bursting
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Figure 13. Evolution of the enstrophy and helicity for the core-size perturbation case at Re = 2000. The
dashed line in (a) denotes the modelling result Ω(t) = Ω0 exp[− ∫ t

0 2ν(σ 2
0 + 2νt)−1 dt] for a uniformly twisted

vortex column.

The evolution of the VSF isosurface at Re = 2000 is depicted in figure 12. Due to the
axial gradient of the initial core size, two counter-rotating twist waves are generated and
then collide on the symmetric plane SP1 to cause vortex bursting. As the disk-shaped
structure is generated and then dissipated, secondary twist waves are generated to trigger
the secondary bursting at SP2. In the later evolution, successive burstings occur on
alternate planes SP1 and SP2. The enhancement of the local vorticity magnitude in the
vortex bursting causes the bump in the profile of Ω in figure 13(a), which is similar to
that in figure 4(a). Different from the case of initial twist waves in figure 4(b), H+ and H−
first grow with the self-generation and enhancement of twist waves, and then decay and
oscillate with multiple burstings and regenerations of twist waves in figure 13(b).

Note that the direct construction of twist waves is more suitable than setting the initial
core-size perturbation in terms of precisely controlling the amplitude and distribution of
twist waves for quantitative studies.
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