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Summary

A method is proposed for obtaining a uniformly valid perturbation ex-
pansion of the solution of a non-linear partial differential equation, involving
either a large or small parameter, when the solution exhibits boundary layer
type dependence on the parameter. The method differs from those previously
in use in that it is not based on drawing a distinction between points in the
boundary layer and points in the remainder of the field. Each point is treated
as belonging to both regimes and this enables a stricter control to be main-
tained on the error terms in the expansions. The method is devised so as to
ensure that all forms of error terms are reduced in order at each step in the
expansion and not merely those error terms which are mathematically
most significant for limiting values of the parameter. The perturbation series
can then be used for a wider range of the parameter and provides a solution
even when the boundary layer is not particularly thin.

The method is presented through its application to a problem which arises
in the theory of the large deflexion of thin elastic plates but the principles
underlying the method are more widely applicable.

1. Introduction

The concept of a boundary layer finds many applications in a wide field
of applied mathematics problems but its usefulness has been restricted
mainly to providing a first approximation to the solution. Recently several
authors, Kaplun and Lagerstrom [1, 2, 3], Proudman and Pearson [4],
have given a systematic method for obtaining higher order approximations
to the solution of non-linear partial differential equations when the solution
exhibits a boundary layer type dependence on a large or small parameter.
In this method the solution is obtained in terms of two perturbation series,
one valid in the boundary layer and the other valid in the remainder of the
field. The terms in each series are rendered determinate by matching certain
significant terms in each series, as decided by limiting processes. In this way
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the authors cited above were able to obtain the first few terms of the series
for the particular problem they considered. It is a feature of the method that
the two series have a common region of applicability and that in this region
they are not identical when curtailed. In the case considered the difference
is found to be small and reducible at each step of the expansion, as far as it
has been carried, but it is a matter of speculation whether in general this
will be true.

The method represents a marked advance as it permits the extension of
the range of values of the parameter over which the perturbation method of
solution can be used. In certain cases however the amount of extension is
small due to the manner in which the two series are matched. As the result
of the limiting processes, here typified by the small parameter e tending to
zero, a term of the form exp (—kje), where k is any positive number, is judged
to be insignificant in comparison with any term of the forme". Numeri-
cally this may not be so, especially if k is somewhat small, for values of e
for which it is desired to apply the perturbation expansion. The aim of this
paper is to seek a method whereby such exponentially small, or other terms
insignificant if the limit process is carried out, could be obtained. Such a
method cannot rely on the limit process, e tending to zero, to decide the
relative significance of different functional forms. But such limiting processes
are essential for distinguishing the regions of validity of the two perturbation
series. Thus in order to obtain the terms which are insignificant if the limit
process is carried out, it is necessary to seek a single expansion valid over
the entire field. An alternative criterion to the limit processes is needed to
judge the progress of such a single expansion. The criterion which is used is
that at the end of each step in the expansion the largest term, of each func-
tional form of error term remaining in the differential equations and bound-
ary conditions, shall be of smaller order than the term of corresponding form
before the step.

The question of obtaining such a single expansion is examined for a
particular problem, that of the solution of the Von Karman equations for
the large deflexion of a thin cantilevered plate. This problem is chosen in
preference to the particular problem considered by the authors cited above
because their problem is special in that one of the series expansions is uni-
formly valid. For the problem chosen here a suitable procedure is developed
for obtaining the required expansion and the solution process could be carried
through although the arithmetic difficulties are considerable. As a practical
method of solving the Von Karman equations the perturbation series, with
exponentially small terms included, is not particularly promising though
possibly no worse than the other methods available.

It is not suggested that the present procedure will apply without any
adaptation to all singular perturbation problems. However the author
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believes that the ideas underlying the development of the procedure are
applicable to a wide range of such problems. Thus the presentation follows
the manner in which the procedure was obtained, namely as a series of
modifications of the solution obtained using the method of the cited authors.
In any further applications of the present method, much of the present work
might be short-circuited but the insight gained from the present method of
development may be valuable in any adaptations of the procedure. Perhaps
of greatest interest are certain features of the solution for the particular
problem, discussed in section 6, which suggest that the method may be
useful in dealing with other matters than extending the useful range of the
perturbation series which was the original aim.

2. Background to the problem

As interest here is centered on the method of obtaining solutions, rather
than on the details of any particular physical problem, a semi-inverse method
is adopted to reduce the amount of algebra. Thus from a physical problem,
treated by Mahony [5,6], the following reduced mathematical problem is
formulated. Given an arbitrary integfable function p(x, y), find an asymp-
totic expansion of the solution of the differential equations

(la)

(lb) V*o> = Lf{x, y) + Fxxa>yy + Fyya>xx - 2Fxycoxy

which satisfies the boundary conditions,

(2a) coyy{x, 0) + ficoxx{x, 0) = 0

(2b) coyyy(x, 0) + (2 - v)a>xxy(x, 0) = 0

(2c) F(x, 0) = Fy(x, 0) = 0

and

(3a) coy(x, 1) = coyyy(x, 1) = 0

(3b) Fy(x, 1) = Fvyy(x, 1) = 0

where L is a large parameter and fi is a constant neither large nor small.
Mahony [5, 6] has obtained an asymptotic expansion of the solution for the
case when exponentially small terms may be neglected. The method used
was essentially that of Kaplun, Lagerstrom, Proudman and Pearson
[1, 2, 3, 4] modified to yield a single expansion and the results wanted for
the present work will be reviewed briefly.

Two series representations of function co(x, y, L) can be obtained using
limit processes attributed to Kaplun [9] by Lagerstrom and Cole [7] who
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give a more complete exposition. If (a;, y) are held fixed with y ^ 0, the set of
functions Wn(x, y) may be defined by the limit processes

limit L-1co(a;) y,L) = W0{x, y)
Z.-»oo

and

limit T ~1+in(m(r n T\ V Tl~irW (T IA\ — W lr iA
uinii A, r" \a>{x, y, u) —2i ** ryr\x>lf)i — vrn\*>y)
L-*OQ r=*0

while if (x, rj) are held fixed, where

(4) r, = Hy,

another set of functions ifn(x, rj) is defined by

limit w(x, y, L) = ifo{x, rj)

and

Umit £*•{»(*, y, L) - 2 L-irifr(x, rj)} = HTn{x, tj)

It follows that the asymptotic series

W(x, y, L) = LW0(x) + I*WM + f L^*Wn(x, y) *
n-2

and

if(x, n, L) =

provide approximations, in restricted regions, to the solution u)(x,y,L).
The function if is interpreted as the approximation to the solution in a
boundary layer of thickness O(L~l) along the edge y — 0 while W is inter-
preted as the approximation to the solution in the remainder of the field.

Certain types of terms are selected in both types of Umit processes.
Thus if the function Wn(x, y) is expanded in a power series in y and this series
is rearranged in terms of r/ it can be seen that the resultant terms,

= Wn(x,y)

must occur in the expansion of if{x, rj, L). It is just such terms which are
matched when the technique of Kaplun, Lagerstrom, Proudman and Pearson
is appUed to the present problem. If all terms common to both W a n d ^ are
removed from if leaving if* it is a consequence of the matching procedure
that if* is negUgible in comparison with any power of L~* in the Umit L

* The functions Wo and W1 are found to be independent of y.
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tending to infinity for y fixed and non-zero. Thus the combination (W,
provides a single asymptotic expansion of a> everywhere for, inside the
boundary layer, it is equal to iT while, outside the boundary layer, it differs
from W inessentially. In cases more general than the present problem it may
be necessary to consider such cases as, for example, Wn expansible as a
Laurent rather than as a power series. In such a case, a reduced function W*
is obtained from W by extracting all negative powers of y which can be seen
to occur also as negative powers of r\. In such a case the single approximation
to the solution co is obtained as (W* + iT*). It can be seen that the arrange-
ment of the common terms as either functions of y in W* or functions of r\
in "W* is made so that each common term appears in that form which indi-
cates the biggest order anywhere in the field. For example, a term L-im+n)/2r)m,
which can be rearranged in any of the equivalent forms L~ir+n)/2t]rym~r,
is to appear as L~^nym for the largest order of this term is that of L~%n

occurring when y is 0 (1) and consequently r) is 0 (Z.*). The motivation behind
this arrangement is to ensure that no subsequent term in the series will be
of as large an order in L as any previous term. Such would not be the case for
example if cox behaved like ar\ for large rj for then L~^cox would be equal to
ay and hence of unit order over most of the field. When successive terms of
the series are of descending order the series will be usefully asymptotic.

As a consequence of the above methods of construction it follows that the
solution is expansible in the form

(5) co = LW0(x) + LiWx(x) + 2 L~l»{Wn+2(x, y) + con(x, r,)}
«-o

where the star notation has been dropped. Further

(6a) limit con(x, rj) = 0
9-»oo

(6b) limit Wn(x, y) is finite

since all singular terms have been removed from the functions undergoing
the limit process.* Similarly the function F is expansible in the form

(5) ^
n=0

where the Fn and /„ have similar properties to Wn and eoB. The error terms
in these expansions remain to be assessed. The functions Wn and con can be
determined successively by inserting the expansions (5) in the differential
equations (1), the boundary conditions (2), equating the coefficients of the

• Here it will be assumed that w cannot be exponentially large as r) -»• oo for physical
reasons. This point will be examined further in section 4.
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various powers of L~^ and using equations (6) and their counterparts for
Fn and /„. These are found to be sufficient to determine the various terms
uniquely. One feature of the solution procedure is that having assumed
the form of expansion (5) and the properties (6) there is no difficulty en-
countered if, as can happen in properly set physical problems, F(x, y) is not
expansible in series form about y = 0. Thus it appears that, although the
present method has been derived from the work of Kaplun, Lagerstrom,
Proudman and Pearson, it is applicable in cases where the other method
must fail.

Mahony [6] gives solutions for W0(x) and Wt(x) in terms of the function
p{x, y) and henceforth these will be treated as known functions although
their specific form is of little importance here. He also gives solutions for a>0

and o)x and in the slightly changed notation of the present paper they are

co0 = — n sign W ô'(a;){cos krj — sin kt]}exp(— krj)

where k is the real positive root of

and

(ox = fiW'i (x)exp(— krj){krj(cos kr\ — sin krj) + (1 + ^ - 1 ) cos kr\

— (1 — 2k-1) sin krj}.

An examination of these two terms reveals that this solution is unsatisfactory
if exponentially small terms are not negligible. This is because, for large
values of r\, it can be shown that

w0 — Z.-*^! = eyo{l — kW'i sign W'Q'L~irj}

a* o>0{l — kW'i sign W0'y}

when the positive power of r\ is arranged as a term in y. It follows that L~
is as large as eo0 over most of the field where they are both O[exp(—
Thus <w0 does not provide a valid approximation to the portion of the solu-
tion which is of this order. Moreover neither does OJ0 -+- L"^oyx since, as
typically happens in singular perturbation problems of non-linear differen-
tial equations, portions of the subsequent terms L~^ncon will be of the same
order. This is easy to see in the present problem for the functions con are
determined from differential equations of the pattern

h 4&4OK, = aJx)con_, + @nn

* For convenience this notation will be used, where there is no ambiguity, to denote any
term K such that

limit K exp (ktj) I {cos kt]— sin krj)
L-.00

is bounded, non-zero for fixed values of x and y ^£ 0.
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Because of the "resonance" between con and <wn_1 there will be a cumulative
growth of the functions con for large rj of the form

«>« «* bn{x)rjnco0.

Hence terms O[exp(— L$)] will not be obtained correctly if the series (5)
are curtailed after any finite number of terms.

Since only a finite number of terms can be obtained in practice it is neces-
sary to find some means of summing the contributing portion of all the con.
A formal summation may be achieved by rearranging the positive powers of r\
in terms of y and the result obtained

B o J l + ^ ^ W , f bn(x)tT
n—0 n=0

indicates that the term O[exp(— I,*)] is of the form <o0{x,rj)g0(x,y) or
more briefly (o0(x, y, rj). If this summation has been achieved successfully
there can be no resonant forcing term in the differential equation for co1.
Thus the next term in the expansion will be 0[L~$ exp(— L*)] and this will
be of uniformly smaller order than co0. This summation process is seen to
imply that positive powers of rj should be re-arranged even when, multi-
plying functions such as exponentials, the composite term satisfies equation
(6a). Since the function co1 will now be of the same form as the original
co0 (x, rj) a repetition of the previous argument implies that co1 must be written
in the form o>1(a;, y, rj) and further repetition shows that all the con are of this
same form. All these con are to be such that they have no positive powers of rj
involved in their expansions for large r\ nor negative powers of y involved in
its expansion for small y.

3. Trial expansion

The above arguments suggest trying the formal expansions

(7a) co = LW0(x) + L* Wx(x) + f L-l»{Wn+2(x, y) + con(x, y, r,)}
n=0

(7b) F = 2 L-»i{Fn(x, y) + fn(x, y, v)}
n=0

and if these are substituted into equations (1) and the coefficients of the
three highest powers of L are equated to zero the equations obtained are

(8a) ' /„„„ + W'o(x)co0vv = 0

(8b) co0mv - < ( * ) / „ „ = 0

(9a) ^ ' ^'
(9b)
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(10a) — co0xxco0vv — W'o' {co0yy + 2colvv)

- < K , , + 2o,0,,)
«.„„ - « * ) / » „ = P(*. V) ~ W?(x) + W'o'(x)(fOvy + FOvv)

. — 4

+
— 2a>0xxvv —

„) + < (/l7, + 2/0,v)

If equations (8a, b) are integrated twice with respect to r\ and allowance is
made for the fact that co0 and /0 can contain no positive powers of r\ then the
equations reduce to

"„„-<(*)/„ = 0.
The solution for co0 which is not exponentially large for large values of r\ is

^oO*. V' V) = exP(—krj){A (x, y) cos ^ + B(x, y) sin ^ }
where A and 5 are arbitrary functions. The boundary conditions on y = rj = 0,
satisfied by u>0, derive from the terms O(L) and 0{L§) when the expansions
(7) are substituted into equations (2). These boundary conditions will be
satisfied provided

A {x, 0) = — fi sign W'0'(x)

B(x,0)=psignW'(;(x)

and the solution for A and B cannot be completed from the leading order
terms alone. However if a similar procedure is applied to equations (9)
and use is made of the known properties of coQ(x, y,r\) it can be shown that

A,, + < » i = - K'oo + 2W'O' ~ f modV

and

«i , , - K'fi = -W'oWi'coo - 2 < « , 0 , , .

The right hand sides of these equations contain resonant forcing terms for
general functions A and B, but it has been seen already that such terms
would lead to an expression for tolt which contains terms such that L~^<a,
is as large as eoo for large values of r\. In order to prevent this, and so obtain
a suitably asymptotic series, it is necessary to dispose A and B such that the
resonant forcing terms are absent. It can be shown that this is possible if
A and B satisfy the differential equations
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By + Ay + 2oA = 0

By — Av + 2aB = 0
where

and then the equations for Wj and f1 reduce to

A,, + K'"! = o
«i,T - K'fx = o.

The values of A(x, 0), B(a;, 0) have been obtained previously so that the
required solutions for A and B may be shown to be

A (x, y) = — /i sign W'^(x) exp(—ay) {cos ay — sin ay}
and

B{x, y) = /j, sign W^{x) exp (ay) {cos ay + sin ay)

and so the solution for the leading order exponential term has been obtained.
The solution for co1# which is not exponentially larg'e for large r\, can be
shown to be

o>i(x> V. V) = exp(—kt)){C{x, y) cos krj + D(x, y) sin krj}

where C and D are arbitrary functions whose values on y = 0 can be found
from the boundary conditions (2).

It is possible to achieve an equivalent approximation to the term (o0

by an entirely separate method which derives from Poincar^'s method for
obtaining the perturbed frequency of a non-linear oscillatory system. In
this method, instead of introducing the functions A (x, y), B(x, y) as above,
the variable k in the exponential terms is also expanded in powers of L~* and
the higher terms in the expansion for k are chosen so that the resonant
forcing terms do not appear in the equation for 0*!. Actually the two methods
yield only a rearrangement of the same series in the present case. In the
treatment of non-linear oscillatory problems interest centres on the perturbed
frequency, essentially k, so that Poincart's treatment is more suitable.
In the present context where interest centres on co, it is convenient if
resonance in the equation for o>2 or any higher term does not influence co0,
once it has been obtained, so that the present method has a slight advantage.
Because of the close relationship between Poincare"'s method and the work
of Lighthill [8] it would appear that the method outlined here may provide
an alternative method to the use of Lighthill's method in many problems.

However when a similar procedure is used in an attempt to determine the
functions C (x, y) and D (x, y) in the term cu^ a serious difficulty is encountered.
Before equations (10) can be used for the determination of <w2 it is
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necessary to apply the limit process with L tending to infinity with x and y
fixed so that all the terms involving derivatives with respect to rj vanish
and there remains

0 = p(x,y) - W?{x) + W'o'(x)FOvv

which Mahony [6] has used to determine Wo and Fo. With these terms can-
celled from equation (10b) only terms involving the functions con and /„
remain in equations (10). If these equations are now considered, the func-
tional dependence on r\ of the terms on the right hand sides of these equations
is of one of the three forms

exp(— kr]){cos kr), sin krj}

rf exp(— 2krj){cos2kr], s in 2 ^ , sin 2krj}

rf exp(— AJ )̂{COS kr), sin krj}.

Terms of the first type can be treated as before. The only point of interest
in such terms is that the differential equations for C and D involve A so
there will be a resonance in this determination as well. This is of no signifi-
cance in the present work where y is restricted to a range of unit order. If
the range of y were infinite this point would need further investigation.
The second form is not resonant so that for large r\ it would contribute a
term like

rf exp(— 2krj){coszkr), s in 2 ^ , sin 2krj}
or

Ly2 exp(— 2krj) {cos2 kr), sin2 kr), sin 2krj}

to eo2 so that the rearranged form implies Lrxw% is formally of the same order
as co0. This type of term might not be significant because the exponential
term is smaller because of the factor 2. However, if it is significant, no
adjustment of C and D or application of Poincare"'s or Lighthill's techniques
will remove this difficulty. Neither will any of these methods cope with the
even more serious third term which indicates the complete failure of the term
(°o{x> y>y) t o approximate the exponentially small term. For, since the
third form of term is resonant it leads to a term in <y2, for large r\, of the form

rf exp(— &»7){cos kr], sin krj}
or

L^y* exp (— krj){cos kr), sin krj}

so that L~1coi is of greater order than <w0 over the majority of the field. It
rriight be thought that this indicates that a> should include a term O\L$ exp
(— Z.*)] which would appear in the expansion of co as L^(o_l. If such a term
is included it replaces <w0 as the leading order term and the difficulty moves
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forward to indicate the need for a term La>_2 etc. This interpretation cannot
supply the solution to the difficulty. The only alternative appears to be to
arrange the troublesome term in the differential equation in the form
Ly% exp(—krj){cos krj, sin krj} and include this term back in the equation
for determining w0. It is not to be taken literally that this expression should
be substituted in the equation for co0 for this term derives from terms like
co0xxvv and the substitution invalidates the original solution. What is meant
is that certain terms like co0xxvv which have been estimated formally as O(L)
should be rearranged so that they are re-estimated as O(L2) and hence
included in the equation for <y0.

Before this can be done it is necessary to discover what it is about the
difficult terms like oo0xxvv which makes the rearrangement necessary. It is
useful to examine the discredited solution a>0(x, y, rj) for this purpose. The
presence of the positive powers of r\ can be traced to the process of differen-
tiation with respect to x. Thus

d
—- {A (x, y) exp (— krj)cos krj} = Ax exp(— kr))cos krj
ox

— Ak'(x)rj exp(— krj){cos krj -\- sin krj}

and it is only the second term which is to be rearranged as formally 0{Lt).
Thus certain derivatives taken with respect to x result in an increase of the
formal order of the term just as derivatives taken with respect to y increase
the order when they act through rj. In the above function it is those deriva-
tives which act through the combination k{x)rj which raise the order by a
factor L$. This suggests looking for a new variable

(11) C = L*u(x,y)

where u is at present arbitrary, which is to play the same role for a valid
solution as the combination k{x)rj does for <»0(x, y, rj). The aim will be to
dispose the function u(x, y) so that when differentiating co(x, y, £, L) with
respect to x or y only those derivatives involving cot are of order greater than
co. The previous considerations suggest the need for at least one such variable
and this is found to be all that is necessary for the present problem. In other
problems more than one may be necessary but probably this will be indi-
cated just as the need for at least one has been indicated in this case.

It is of interest to obtain an interpretation of the variable f. In conven-
tional boundary layer theory the layer is assumed so thin that all exponential
terms are negligible other than for y small. Thus in this case the variable rj
which gives the direction of the greatest gradients can be introduced as the
scaled normal distance from the boundary as in equation (4). The work of
Kaplun [9] suggests that any co-ordinate system locally similar to (x, rj)
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at y = 0, may be used to describe the boundary layer in the limit as L
tends to infinity, which corresponds to the case when the boundary layer can
be regarded as of infinitesimal thickness. However when exponentially
small terms are being sought, the boundary layer cannot be considered as
confined to a vanishingly small neighbourhood of y = 0 and thus a choice
has to be made between the infinitely many co-ordinate systems possible
in that case. Unlike in the work of Kaplun [9], this choice is not to be made
so that the boundary layer solution gives a uniform approximation to the
solution throughout the entire field in the limit as L tends to infinity.
Such an approximation has been obtained here already by using an expan-
sion of the form (5). Here the variable £, the boundary layer co-ordinate, is
to be chosen to indicate at any point in the field, and not merely at the
boundary, the direction of the greatest rate of change in the "boundary
layer portion" of the solution.

The role, which the variable £ is required to play, places severe restric-
tions on the form in which £ can occur. A term of the form exp {x(x, y)C},
for example, is possible only if a is a constant. For if a varied with x, the
result of differentiation with respect to x would be

exp{<x(a;, i/)£}[a(z, y)Ltux + L*waJ

but the last term involves an increase in order without a differentiation
with respect to £, thus infringing the requirement by which it is hoped to
define £. Similarly a does not vary with y so that a must be constant. The
same result applies to trigonometric functions and this covers all the cases
encountered in the present problem. In other cases it would appear that for
any function of the form <£(/9??), which led to difficulties of the type which
here indicated the need for a variable f, the argument could be applied to
indicate that </>(<*£) requires a constant. Further the requirement of succes-
sive diminution in the order of the terms of the expansion requires that no
positive power of £ should appear apart from as an argument in a suitable
functional form. For example exp £ is suitable, while £ exp £ and £ are not
as their order is more correctly indicated by L^u exp £ and L^u.

It has been noted previously that the expansion of the form given by
equations (5) provides a satisfactory solution if exponentially small terms
are neglected. It follows therefore that, under the strict mathematical
limit process x, lS u fixed, L tending to infinity, the solution expressed in
terms of (x, y, £) must approach the earlier form of solution. Thus it follows
that

u(x, y) = const. {k(x)y + o{y)}

for sufficiently small values of y. The value of this constant has no signifi-
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cant effect on the solution and the definition of £ will be completed by
requiring that it is unity.

4. Solution

The considerations of the previous section suggest that an asymptotic
solution with the required properties may be obtained from series of the
form

(12a) co = LW0(x) + L* W^x) + £ L-l"{Wn+2(x, y) + o>n(x, y, 0}
n=0

and

(12b) F = 1 L-i»{Fn(x, y) + fn(x, y, 0}
n=0

Thus it follows from equation (11) that

co, = LW\ + L*Wi+ 2L~^{Wn+ix + a>nx + Li<on(ux}

and

coxx = LW'O' + LlW'i+ J L~in{Wn+2xi + o>n%i + Z.*(2«n u
n=0

etc., where the derivatives of a> on the left hand sides are taken with y
constant while those of <an on the right hand side are taken with both y
and C constant. It is apparent that the largest order term in a>xx is
{LW'o + -̂ -Wx̂ occ} an<^ th*s would suggest that the equation for co0{x, y, £)
will become non-linear and thus be greatry different to the one for co0(x, y,r\).
However when this point is examined more closely it is found that all the
non-linear terms cancel from the equation for a>0(x, y, £) and it is found to be
similar to the equation for co0{x, y.rj). This cancellation of terms, the author
feels, is not due to lucky chance but is due to the fact that the original bound-
ary layer solution was correct in essence with errors only in the exponen-
tially small terms. Thus it is not to be expected that the present solution
form, which should be closely equivalent to solution form (5) if u is replaced
by k(x)y, will be of significantly different conformation.

If the expansions (12) are substituted in equations (1) then the terms
which are formally O(L2) yield

and
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If the same procedure is followed as for the previous determination of
<o0(x, y, rj) it can be shown that these equations have particular solutions
of the form

e x p { ( ± l ± *•)«(*, y)£}

where a involves ux, uy and W'^. Such a solution is permissible only with oc
constant, if f is to have the required properties, and hence it can be shown
that

K + ul)2 = const. W'0'(z)ul

This constant can be evaluated by noting that for small y

(13) u = k{x)y + o(y)

and that k is related to Wo through

so that the above equation reduces to

(14) u\ + ul =k(x)\uy\.

The question of solving this equation for u is examined in the next section
and, for the remainder of this section, it will be assumed that a solution has
been found in which u is non-negative throughout the field.

With this choice of u, it is possible to reduce the above equations for <o0

and /„ to the ordinary differential equation

which has the general solution

<o0 = {A(x, y) cos C + B{x, y) sin £} exp(— £)

+ {C(x, y) cos C + D(x, y) sin £} exp f.

If the previous treatment were followed C and D would be omitted as
making co0 exponentially large but then the boundary conditions (3) could
not be satisfied. Throughout the previous analysis an inverse approach has
been adopted with regard to these particular boundary conditions and
exponentially small terms accepted. Here it may be shown that this is not
necessary. The boundary conditions (3) can be satisfied exactly by including
C and D. It should be noted that these included terms will be exponentially
small everywhere (including y — 0) in the field. The solution obtained will
not now satisfy

limit eo0(a;, y, C) is finite
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but it will satisfy the physically necessary condition

limit co0(x, y, £) is finite for all x, y in the field.
L-.00

The above procedure adds considerable complication to the algebra and
now that the feasibility of satisfying equations (3) has been demonstrated
the inverse procedure will be adopted and only the negative exponentials
retained.

A similar procedure to that in the previous section is applied to determine
the functions A and B. The following equation

We . 0*2
-W'o'(x) {2mOv^uv + <ooiuvy} - Wi

is typical of the equations from which to1 and fx may be determined. The
last term on the right hand side is quadratic in the exponentials and so does
not lead to any growth in the order of co1. All the other terms on the right
hand side are resonant and so must vanish. This can be shown to happen
provided A and B satisfy the differential equations

r(Bx - A.) + (m + n)(Bv - Ay) + P(B - A) + qB = 0
and

r(Bx + Ax) + (m + n)(Bv + Av) + p{B - A) - qA = 0
where

r = 8ua(ul + u\)
m = 8uy{ul + u\)
n = 2W'^{x)uyy

f = 4(w* + «;)(«.. +•«,,) + 8(«X* + uluw + 2uxUyuxv)
q=-2W'1'(x)uyy.

The characteristic lines of these pair of linear differential equations are the
lines

dy
/ = - r/(m + n)
ax

which are two-fold characteristic lines. The parabolic nature of the equations
for A and B implies that these functions can be determined from the same
boundary conditions as were used for determining the corresponding func-
tions in the previous section. A numerical solution, based on a characteristic
co-ordinate system, is possible but the arithmetic difficulties associated with
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such a solution are great because in general u will only be known numerically.
Thus it is apparent that the present expansion method is scarcely a practical
proposition for the original physical problem from which the present simpli-
fied form was taken.

However in principle the functions A and B can be determined so that the
terms co0 and /0 can be obtained once a suitable solution for u(x, y) is avail-
able. The solutions for a>n and /„ will follow exactly the same pattern as
that for cy0 and f0. Because of the introduction of the variable £ there can
never be resonant terms in the equations other than of the form

exp(— C){cos C, sin £}

and the other difficult forms, considered in the previous section, do not
occur. Thus, once the function u (x, y) has been determined the asymptotic
expansion can be carried out to any desired order, at least'in principle.
There is the possibility that for a suitably chosen j> (x, y) the complex
analysis involved may be reduced substantially and a solution useful for
comparison purposes obtained. For general p (x, y) however the arithmetic
involved appears excessive.

5. The function u(x, y)

To complete the schematic solution process it is necessary to find a func-
tion u(x, y) satisfying the differential equation (14) and the boundary
condition (13). An examination of the formal solution

uv = ${K(x) ± [K*{x) - 4M*]*},

where
K{x) = k(x) sign uv,

of equation (14) reveals the fact that there may be as many as four branches
of the solution surface at any point in the field. There are no real branches if
K2 < 4M* , two branches if K2 = 4M* and four branches if K2 > 4M2. . To
obtain a general solution for any of the branches it is convenient to introduce
the notation

(15) a = ux, x = MV

The characteristic form (Bernstein [10]) of the differential equation is

(16a) x = la

(16b) y = 2T - K{x)
(16c) u = K{x)x
(16d) a = K'{x)x
(16e) T = 0
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where the dot denotes differentiation with respect to a parameter. From
equations (16a, d, e) it follows that

which integrates to
a = [r{K(x) - T(r)}]i

where T is an arbitrary function of integration. Hence equations (16b), (16c)
may be written in the form

(if) ={r- iK(x)}[r{K(x) - T(r)}]~i
\ox) T

and

©© =

whence y and u may be evaluated by quadrature. The four possible branches
are associated with the various combinations of sign of r and a.

Only one of these branches is compatible with the. boundary condition (13)
on y — 0. Thus there is a unique determination of the function u sufficiently
close to y = 0 but the question of other possible continuations in the large is
still open. A compact form of solution for the initial branch is obtained by
noting that on y = 0, u = 0, & = 0,.T = 0, r — K(x) = k(x) so that, if s
is the value of x at which a given line r constant cuts y = 0, the solution is
given by

y = l\* [2k(s) - k(x)][k(s){k(x) -

u = if"k(s)k[x)[k(s){k(x) - k{s)}]~idx

for the case of greatest practical interest when k'(x) is positive. Similar
expressions are obtainable for the other cases. The above solution indicates
the existence of certain difficulties associated with this initial branch of the
solution. Thus for s such that [2k(s) — k(x)~\ is negative the integrand in the
equation for y is negative so that for any given value of x there is a finite
maximum value of y for any given k with positive k'(x). For certain func-
tions k(x) the initial branch of the solution will not define a solution through-
out the range 0 :gi y <S 1.

In order to investigate this matter further it is convenient to consider
sample solutions corresponding to particular functions k rather than to
discuss the general case. Suitable solutions are provided by the cases when the
differential equation (14) possesses similarity solutions. Such solutions
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exist in all cases which, by suitable changes of scale, are reducible to either
of the forms

(17a) k(x) = expx when u = h(y)expx

or

(18a) k (x) — xm when u = «m+1g(|)

where

(19) £ = y\x.

The functions g and h can be shown to satisfy the ordinary differential
equations

(17b) h'* + h2 = \h'\

and

(18b) {(m + l)g

The solution of equation (17b) with h' positive which satisfies the appro-
priate boundary condition is given implicitly by

arcsin 2h - £{1 - ( 1 - 4A2)*}/A = y

and this defines a suitable solution only for 0 sS h ^ \ and 0 ^ y ^ {jn\2 — 1).
No solution with h' positive exists for y just greater than (?r/2 — 1) but it is
possible to obtain a continuous function h by continuing the above solution
beyond the upper limit with either branch

h' - i { - 1 ± (1 - 4A*)*}

on which h' is negative. Either solution is acceptable on the grounds pre-
viously discussed so that the function u is not determined uniquely. More-
over, corresponding to each solution u, there will be a distinct pair of func-
tions .4 andB so that more than one expansion of the form (12) exists with
the functions <wB and /„ having the required properties. It is to be emphasized
that the method of construction guarantees that the error terms can be
made small only in comparison with any power of L~^ in the limit as L
tends to infinity. It does not preclude the existence of error terms, not
previously considered, which are mathematically small in comparison with
any term L~nl2Wn(x, y) but not necessarily mathematically small in com-
parison with L~nl2con(x, y, f). Thus the alternative expansions, involving
different exponential terms corresponding to different forms of u, can arise
from rearrangements of an infinite number of terms as alternative functional
forms of x, y, f, L~l. One might hope that one of these arrangements
would be such that ~2,L-n/2(Wn + <on) is convergent for sufficiently large L
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and not merely asymptotic but there appears no practical manner of decid-
ing this.

However the present aim is to obtain an expansion which will provide
useful numerical results in a range of the parameter where the exponential
terms which appear in the solution are not numerically negligible in compari-
son with powers of L~*. As the use of limit processes must be avoided, the
justification of the approximation has to lie in the examination of the residual
terms in the differential equations required to make the curtailed series an
exact solution. For a set of equations derived from a stable physical system
it suffices to reduce the residuals to a suitable numerical order of smallness.
This can be achieved in general by an expansion of the form (12) for reason-
ably small L~^ because all the residuals are reduced by such a factor at each
stage. With an expansion of the form (5) however not all the residuals are
reduced by such a factor so that a further restriction, possibly serious, has
to be placed on L to ensure the smallness of the exponential terms.

With this method of justification in view it is sensible when deciding
between different possible functions u to choose one which enables the
residuals to be reduced most rapidly. Suppose the exact function o(x, y, L)
were known and an attempt were to be made to arrange it in the form of the
early terms of equation (12) in such a way as to make the residuals as
small as possible. Any portion v may be included as a function of x and y
or deferred to a later term by rearranging it in the form L~nl2(Lnl2v).*
Thus any portion of <o which is arranged in terms of f is deferred to a later
term in the series and hence in order to reduce the residuals to as small a
value as possible the average contribution of functions of £ over the field
should be made small. In order to seduce the residuals in the boundary
conditions, it is necessary for the functions of f to take specified values on
the boundary. Hence in order to achieve as efficient an expansion as possible
it would appear proper to choose the branch of the solution u which gives
the largest value of u, thus making exp(— £) as small as possible on the
average.

If these ideas are applied to the determination of the function h for y
greater than {nj2 — 1) it can be seen that the branch yielding the greatest
value of u satisfies the equation

h' = £ { - 1 + (1

for this has the lesser rate of decrease. This equation has the solution

y = — 2 + arcsin 2A + £{1 + (1 — 4A2)-*}//*

and this defines a value of h, positive, for all y greater than (TT/2 — 1).

• If included in this form it would be summed together with other such terms to give expo-
nential functions.
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Because of the discontinuity of uy at the transition point between the two
branches, (o0 possesses discontinuities of first derivatives at the point and
this is not permissible for the function co(x, y, L) for physical reasons. The
source of this error can be traced by noting that

h" = ± 2M'(1 — 4A2)-*

and hence uyy is infinite at the transition point. An examination of the
expression

<uOvy = L(oouul + l3wHuyy + 2L^(n0Huy + wOvv

reveals that, in the neighbourhood of the transition point, L^a>0^uyy 3>
LWDJJMJ although, in the previous section, the later term has been used to
dominate ojyy. Thus a boundary layer in the solution for u is to be expect-
ed in which the discontinuities in the significant derivatives of u are smooth-
ed out. As this will affect a>0 near the point where a>0 is of the smallest order
anywhere in the field the error in neglecting this additional term in u is
probably negligible in comparison with the other error terms.

The solutions of equations (18b) exhibit different properties from that of
equation (17b). For some values of m, the solution of the initial branch can
be continued to infinity without difficulty. Thus for m = — 1 the solution
is u = arctan yjx while for m = 0 it is

u = y.

For such solutions there is no difficulty associated with the solution method
of section 4. For other values of m however difficulties arise with the deter-
mination of a unique function u. For the case m = 1 there are reasons asso-
ciated with the original physical problem for expecting trouble and so a
numerical solution of equation (18b) was obtained in this case.* It was
found that the solution of the initial branch, which yields the largest value
of u, is found to be real only for £ less than 0.393 and the value of g there is
such that none of the branches can be continued beyond this point if it is
assumed that g is continuous. Since a discontinuity in g would involve ex-
ponentially large relative changes in co0 it would appear necessary to intro-
duce a transition region to permit a switch to be made to another branch at
some | less than the critical value 0.393. By the use of such transitions it is
desired to find a solution for the range 0 5g f sS oo but it can be shown
that the only real solution bounded at infinity is that solution of the branch
with the lesser rate of decrease

(20) g' = {- 1 + 4lg + [1 ~ Sig - I6g*]i}/{2(1 + !*)}

* The numerical solution was obtained on SILLIAC by Mr. P. D. Jones and Mr. R. Whitfield
to whom the author is indebted.
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whose asymptotic behaviour for large I is given by

g =

The graphs of this solution and the initial branch are displayed in Fig. 1.
It is seen that the two solutions have a common range of definition and that
at one point, namely f = 0.188, they are equal. Thus a continuous solution
in the entire range can be obtained by following the initial branch for
0 ^ | ^ 0.188 and the other branch for f > 0.188. It should be noted that
a solution, with greater values of u in portion of the range, can be obtained
by following the initial branch beyond £ = 0.188 but not as far as £ =0.393
and returning to the above solution of equation (20) via the branch,

g' = {-l+ 4£g - [1 - 8& - I6g»]*}/{2(1 + I2)}.

By switching branches more often it appears possible to obtain functions u
yielding even more "economical" expansions.

However this presupposes the possibility of introducing suitable transition
regions in which the consequent discontinuities of derivatives of u are smooth-
ed out. Whether it is possible to switch from any one branch to any other at
will is a matter for investigation of the properties of the solutions in these
transition layers. This appears a formidable task. However there is one
feature of the above solution which suggests that some such transition is.
possible. From the behaviour of the solution for large f it follows that

and the form of solution for w0 implies the existence of a boundary layer of
thickness O(L~*) near the origin where x and y are of the same order and
a boundary layer of thickness (^{L-*) along x = 0. Mahony [6] has predicted
the existence of such boundary layers on physical grounds. The fact that
the present method indicates these boundary layers automatically adds to
the author's confidence that the solution obtained here for u is essentially
correct. However it is apparent that further work is necessary to obtain a
better understanding of the implications of the existence of more than one
function u such that the expansion (12) is satisfactorily asymptotic.

6. Conclusions

The original aim of the present work was to extend the method developed
by Kaplun, Lagerstrom, Proudman and Pearson [1, 2, 3, 4] so that terms
which were mathematically insignificant, but numerically important,
could be obtained. This aim has been achieved, at least in principle for the
given example, by a series of modifications of the solution obtained by the
method of the cited authors. This method of presentation has been adopted
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for the insight it gives into the structure of the new method and its relation-
ship to the previous work. However there is no rea.son why the gradual
development, as described here, should be followed. In any further applica-
tion it should prove possible, using the standard order of magnitude argu-
ments of perturbation theory, to deduce the form of expansion corre-
sponding to equations (12).* Thus it is not necessary to base the present
method on the work of the cited authors and in fact, for reasons to be dis-
cussed below, the single expansion of the present paper may be more funda-
mental even when terms which are mathematically insignificant in the limit
are neglected.

If exponentially small terms are negligible the single form of expansion (5)
involves no extra labour as compared with the method of the cited authors.
In certain cases, and the present problem is one of these, there is no real
advantage to either method. However the present method appears to have a
greater potential because it eliminates the matching technique which in-
volves the expansion of certain functions in series form and then rearranging
the order of terms in the series. It is improbable that these processes in-
volved in the matching can be justified for other than special problems.
However an examination of the properties of an expansion of the form (5)
does provide an indication of the limitations of the matching techniques.

In order to obtain separate expansions of the form required for the mat-
ching technique it is necessary that the functions Wn(x, y) be expansible
in suitable series, not necessarily power series, for small values of y and the
functions con(x, rj) be expansible in suitable series for large r\. The existence
of such expansions is essential for the matching technique but not for the
present method. It is doubtful whether functions will arise in physical
problems which do not permit such expansions other than near isolated
values of x. However it is easy to think of plausible non-pathological
examples, such as x2/(x2 -j- y2), which is not expansible for y small near
x = 0. Problems in which singular functions arise are treated more easily
by the present method as the need to expand such functions is eliminated.
It is also conceivable that the rearrangement of the series involved in the
matching can lead to trouble. However the author is not convinced that
this is a serious difficulty for all specimen examples he has been able to
construct are of an extremely artificial nature.

There may be further disadvantage deriving from the expansions which
are necessary for matching. These may be illustrated by considering the
case when the function W2(x, y) takes the form K0(y)/In y where Ko is the
Bessel function of complex argument. If this is expanded for small y pre-
paratory to matching it becomes

* Modifications of this assumed form may be necessary but should be suggested by the
progress of the perturbation.
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{ - In y + (y + In 2) + Wn/ln y 
or in terms of tj 

CO 
{ - 1 + (y + In 2) 2 (2/ln £ } " ' « ( l n r))m 4 0(L)} 

Such a series has an extremely poor rate of convergence and is virtually 
useless for numerical work. The present method may not encounter such 
difficulties (and does not for a problem in which only the value of Wn 

is involved in the boundary conditions) The above discussion has been 
concerned with difficulties which arise in the application of the matching 
technique but which are avoided by a single expansion of the form (5) 
How important and frequent will be such cases is an open question but the 
general use of an expansion of the form (5) appears advantageous especially 
as it does not introduce essentially different analysis 

There is a further type of problem wherein a simplified form of the present 
method should be useful. If L is sufficiently large that in general exponen­
tially small terms are insignificant there may be small regions where this is 
not so. An example of this occurs in the present paper in the neighbourhood 
of a point where k{x) vanishes. It is plausible that the effect of this will be 
confined to a small range of x in which k(x) may be approximated by a form 
for which the similarity solutions of the previous section may be applied. 
Elsewhere the exponentially small terms will be ignored. The full analysis of 
this paper would need to be applied only to certain suitable approximate 
representations. Thus such cases may be treated even when the analysis 
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is impractical for the whole field. If in <~pttain problems in which " vanishes 
in the field this may provide a mean t ; of tackling problems involving sepa rat 
ed boundary layers. 

The simplified forms of the proposed method appear to have useful 
applications beside the use, originally envisaged, of providing terms which 
aie numerically significant but which are insignificant in the limit 
It is possible that in other problems the amount of analysis involved in 
applying the full method will not be as prohibitive as in the present example 
For such cases the method could be applied to provide a solution of the typ p 

originally sought. 
The author wishes to acknowledge several helpful suggestions he received 

from I>r H C Levey during the preparation of this paper 
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