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1. Introduction

Let f,(z), f5(x), - - - be a sequence of functions belonging to the real or
complex Banach space L, (see S. Banach: [1] (The results can be generalised
to functions on any space that is the union of countably many sets of finite
measure). We are concerned with various properties that such a sequence
may have, and in particular with the more important kinds of convergence
(strong, weak and pointwise). This article shows what relations connect the
various properties considered; for instance that for strong convergence
(i.e. ||f, — fll = 0) it is necessary and sufficient firstly that the sequence
should converge weakly (i.e. if g is bounded and measurable then
J(f.(®) — f(z))g(x)dx — 0) and secondly that any sub-sequence should
contain a sub-sub-sequence converging p.p. to f(z).

2. Notation

Each of the four following properties is represented by the capital letter
shown.
S Strong convergence to zero, i.e. ||f,]| -0
P Pointwise convergence to zero, i.e. f,(x) > 0 p.p.

W Weak convergence to zero, i.e. if g(z) is any bounded measurable function
then:

1. (@)g(@)dz — 0

D The property of being dominated, i.e. the existence of g(z) such that
/()| < g(x) p.p. and that [g(x)dz is finite.

Now let 4 be one of the four properties above. We define a sequence to
have the property *4 or “star A” if every infinite sub-sequence contains
an infinite sub-sub-sequence with the property A. The idea of star-conver-
gence goes back to P. Urysohn [2].
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3. The problem

From the eight properties defined above we can form 247 others such as
“W and *P”’ by conjunction. We want to find when any one of these com-
pound properties implies any other. This task is not as formidable as it
sounds, for there are several trivial relations connecting the eight primitive
properties. It turns out that only 11 of the compound properties are distinct
and that we can find all the relations connecting them. The properties with
the relation of implication form a semi-lattice, and may be represented by
the diagram below, where each property implies those below it.

4, The relations

Firstly some general remarks can be made. The first four properties
mentioned above are all of the kind that is shared by all sub-sequences.
Therefore if A4 is one of them then 4 = *4. Also it follows that *(4 and B)
= (*4 and *B) so that if 4 and B together imply C then *4 and *B together
will imply *C.

There are three trivial relations:

(1) *S=S=>W=*W
Lebesgue’s theorem on dominated convergence shows

that P and D = W.
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Consequently it follows that:

2 *P and *D=> W

Also it has been shown (reference [3]) that:
(3) P and W= S=*D
and from this it follows similarly that:
4) *Pand W=3S

Also it is a by-product of the Riesz-Fischer theorem that:
(6) S=*P

From (1) (4) and (5) there follows:

*Pand W=S

Also from (2) and (4):
*P and *D = S

and the converse implication follows from (3) and (5), so that.
*P and *D =S

These considerations show that there are no more than eleven elements in
the semi-lattice and that they are related as shown in the diagram. The task
remains of showing that these results are the best possible, and the only
difficult part is the proof that W and *D together are not the same as W.
This is done in the following section.

5. A counter-example

We construct a sequence weakly convergent to zero but not star-dominat-
ed, in the space L(— =z, zx), but with all functions defined also on the rest
of the real axis by having period 2.

Let fa(2) = |sin nx|¥/sin nz

To prove weak convergence let g(x) be any bounded measurable function.
Suppose that {g(x)| < K for all . Take any & > 0. There is a bounded odd
function A(z) such that |[# — f|| < ¢/K. Now let h,(x) = h(nz) so that
[1h, — fall < ¢/K. Let M be an upper bound of |4(z)|. There is a step-func-
tion G(z) such that [|G — g|| < ¢/M.

The integral of 4,(z) over any interval of length 2a/% is zero, so that over
any interval the integral tends to zero, and therefore:

Jh.(x)G(x) > 0
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Therefore for all sufficiently large #%:

[fa(@)g(@)dz| <
If fa(®) — ha(®))g(@)dz| + [|h,llg — Gldz + |[h, ()G (x)dz|
SKeK+Ms/M+ =3¢

It remains now to show that the sequence is not star-dominated. It is
sufficient to show that no sub-sequence is dominated.

Let m(s) (for ¢ =1, 2, - - -) be a strictly increasing sequence of positive
integers. We shall show that:

lim sup|fpm (x)| = o0 p.p.

Take any C > 1. The set E(n) of all z in (— =, &) at which [f,(z)| > C
consists of 2n 4+ 1 equally spaced open intervals; their total length & = ¢
arc sin C—2 depends on C but not on #; they are of length %/2n except for the
two end ones which are half the length of the others.

Now take any interval (4, b) where — z < @ < b < z. The mean density
of E(n) in this interval will tend to k/2n as # — c0. Now if E is the union
all E(m(k)) (kR =1, 2,---) the mean density of E in (a, b) will be = &/2x.
Therefore the lower density of E at any point of (— =, ) must be = %/2x.
However E is measurable, so that it has density 0 or 1 p.p., therefore the
density of E must be 1 p.p. so that almost all z in (— z, ) are in E.

Thus Lu.b. [f,u (®)| = C p.p. and since C was arbitrary it follows that:

Lu.b. [fma (®)| = o0 p.p.

so that the sub-sequence cannot be dominated.

The proof that the sequence is not star-dominated may also be regarded
as a proof of the following result on rational approximations to real numbers.
For any infinite set N of positive integers, for almost all «, for all ¢ > 0, for
arbitrarily large # in N, for some integer m:

| — mn| < ¢e/n

The fact that “almost all 2’ cannot be strengthened to ““all 2’ is shown by
the example of N = {1!,2!,3!,---} and = = 1/(2e).

6. A theorem on weak convergence

THEOREM. Suppose that g,(z) (» = 1, 2, - - ) is a sequence of continuous
functions and ¢ is such that g, (c) is unbounded as # — co. Then there is f(z)
absolutely integrable such that [f(z)g,(x)dz is unbounded, the integral
being taken over any closed interval including c.

The proof depends on the following:
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LeEMMA. Suppose that g,(z), gs(z), - - + is a sequence of continuous real or
complex functions on the closed interval [0, 1], and g,(0) = 3"; then there
is f(x); absolutely integrable, such that [3f(x)g, (x)dz does not tend to zero.

Proor Choose o; > oy > + -+ > 0 such that:
lgn(®) — £.(0)] <376 if 0<z<a,

For each #n let f,(x) be the function that is 3-8, /«, in the interval [0, «,]
and is 0 elsewhere, where §, is a complex number of modulus 1 to be fixed
later.

[6fs(@)ga(@)dz = B, + 3By, [ (&) — g.(0)d

The second term on the right is of modulus < 1/5, so that the left hand
side is of modulus > 4/5.

Now the coefficients g, can be chosen by induction. Suppose that g, - - -,
B.—1 have all been chosen, then g, is taken such that [/, (z)g, (z)dz differs
by at least 4/5 from:

—[(h@) + + fr@)eul@)de e [ S @hga el > 45
Also
[ 3 1@leuelis < 0/56,0) SIS (@846 + 32 - = s
Now let (@) = @) + /@) + - -

|[}@)g(@)dz| = 4/6 — 3]5 = 1/5
This proves the lemma, and the theorem follows without difficulty.

7. An application

The theorem above may be used to show that a Fourier series need not
converge weakly. Let g(z) be a continuous function such that the partial
sums g, (z) of its Fourier series diverge at the origin. The existence of such a
function was shown by Du Bois Reymond (reference [4]). Let f(z) be the
absolutely integrable function on (0, 27) given by the theorem above, and
let £, (x) be the partial sums of its Fourier series. Then by the symmetry of
the Dirichlet kernel:

Jh@)g@)dz = [{(x)g,(x)dx

which diverges.
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