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Abstract

We construct the generalized Witt modular Lie superalgebra W of Cartan type. We give a set of generators
for W and show that W is an extension of a subalgebra of W by an ideal J. Finally, we describe the
homogeneous derivations of Z-degree of W and we determine the derivation superalgebra of W.
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1. Introduction

The theory of Lie superalgebras over a field of characteristic zero is very well
developed (see, for example, [4, 5, 10]). But the same is not true for modular Lie
superalgebras. For instance, the classification of finite-dimensional simple modular
Lie superalgebras is not yet complete. As far as we know, the (p, 2p)-structure for
modular Lie superalgebras (analogous to p-mappings for modular Lie algebras) was
introduced by Kochetkov and Leites [6]. Later, Petrogradski [9] studied restricted
enveloping algebras for modular Lie superalgebras, and Farnsteiner [2] worked on
Frobenius extensions and restricted modular Lie superalgebras. In 1997, Zhang [13]
constructed four classes of finite-dimensional Cartan type modular Lie superalgebras
X(m,n, t) and studied their simplicity and restrictiveness, where X is one of the
algebras W, S, H or K.

Derivation algebras of Lie algebras play an important role in the study of properties
of Lie algebras such as filtrations and automorphism groups. Celousov [1] and
Petrogradski [9] investigated derivation algebras of Cartan type modular Lie algebras.
Derivation superalgebras of Cartan type modular Lie superalgebras are becoming a
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subject of interest in the structure theory of Lie superalgebras. Due to the prime
characteristic and superstructure of Lie superalgebras, their derivation superalgebras
are harder to determine. Despite this, the derivation superalgebras of W, S, H, K, HO
and KO have been determined (see [3, 7, 8, 12, 15]).

Our work is motivated by the results and methods for Lie algebras and Lie super-
algebras and is based on certain results on modular Lie algebras and Lie superalgebras
of Cartan type (see [11, 14, 15]). The paper is organized as follows. In Section 2,
we construct the finite-dimensional generalized Witt modular Lie superalgebra. In
Section 3, we give a set of generators for W and show that W is not simple; moreover,
we show that W is an extension of a subalgebra of W by the ideal J. In Section 4, we
establish some technical lemmas and determine the derivation superalgebra of W.

2. Basics and construction

Throughout this paper, F denotes a field of characteristic p, greater than 2, and
Z, ={0, 1} denotes the field of two elements. We use the notation N and N, to stand
for the sets of positive integers and nonnegative integers, respectively. For n € N and

a=(ay,a,...,a,) €Nj, wedefine o] = 3, a;.
Let O(n) denote the divided power algebra with an F-basis {x |« € N7}. Put
t=(t,t,...,t,) ENjandm; = p" — 1, wherei=1,2,...,n. Let
Alt) :={a=(a1, @, ..., @) €Ny |0<; <7}
Then

O(n, t) := span{x'¥ | @ € A(t)}

is a finite-dimensional subalgebra of O(n).
Let A(q) denote the Grassmann superalgebra over F in ¢ variables x,41, X;42, - - - ,
X, where r = n + g. In order to shorten the notation for the Grassmann superalgebra,

we put

By ={(,in, ..., i) | n+1<ij<ir<---<ip<r}
and B(g) = Z:o By, where By =0. When u =iy, iy, ..., i) € By, we define |u| =k,
)y =1i1, io, . . ., ix} and ¥ = x;, x;, - - - x;,, where we adopt the conventions that 0] := 0

and x? = 1. Then the set {x* | u € B(g)} is an F-basis of A(q).
We now fix two positive integers m; and my. We write m :=mj + myp, s :=r + m;
and s := s + my. Let

Q(m) = F[)’r+1, e Yoo Ystls oo ’yS]]

be the truncated polynomial algebra such that yf =1fori=r+1,...,5;. We let
I={0,1,..., p—1} denote the prime subfield of F and write H :=1II". For every
element A= (4,41, ..., A,) € H, we define y* = Hfﬂrl yf". Then Q(m) has an F-basis
{y' | A € H}. The tensor product

G :=0(n,t)®A(g) ® Q(m)
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is an associative superalgebra with a Z,-gradation induced by the standard Z,-gradation
of A(q). For f € O(n, t), g € A(g) and h € Q(m), we write fgh for f ® g ® h. Then

(! | @ € A(D), u € B(g), A € H)

is an F-basis for G.
Let E=(n+1,...,ryand 7= (my,...,nm,). Clearly, E € B(q) and m € A(¢). For

convenience, wewrite Yo ={1,...,n},Y1={n+1,...,rjand Y, ={r+1,...,s}. Let

Y=YyuUY,andS =Y UY,. Whenie Yyande; = (61, 52, . . . , 0in), We abbreviate x&)

to x;. Wheni=r+1,..., s and & = (Si+1) Sir+2)s - - - » Ois, ), We abbreviate y* to y;.
Let Dy, D,, ..., D, be the linear transformations of G such that

xeg@ iyt if i e Yy,
Di(xPxyt = L x@,(x)yt ifie Y,
AxDxyt ifie Y.

Here 0; is the derivation of A(g) such that 0;(x;)=06;; for i, je€Y,. Then Dy,
D,, ..., D are derivations of the superalgebra G. Let

WMJJLmﬁ%EEﬁDJﬁEG}
i=1

For a superalgebra (or a superspace) L = Ly & L7, we write h(L) = Ly U Lj for the
set of all Z,-homogeneous elements of L and write |x| for the Z,-degree of a given
homogeneous element x. It is clear that |D;| = 7, where

_ |0 ifieYyuY,,
i=3_
1 ifie Y.
Set o
V~V7 = spanF{x(")x”y/lDi [ul +7="7}
for y € Z,. Then W= @'yEZz Wy. The following formula holds in Wn, t, q, m):

[fDi, gD;1 = fDi(g)D; — (=1)"PIsPileD (£)D; (2.1)

for f,ge€h(G) and i, jeS. It follows that W(n, t, g, m) is a finite-dimensional Lie
superalgebra contained in der G. We abbreviate Wn, t, q, m) to W and call W a
generalized Witt modular Lie superalgebra of Cartan type.
Let
G; = spang{x'“x"y" | la| + |ul = i}.

Then G = @io G, is a Z-graded associative superalgebra, where ¢ = }}" | m; + ¢. Set

1 iijYz,

(), Ya) =
G, 12) {0 if j¢ Y.
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Let

Wi = spang (xVx*y'D;| j€ S, ol + |ul + 6(j, Y2) — 1 = i}.
Then W = @f:_l W; is a Z-graded Lie superalgebra.
Lemma 2.1. Let f € G. If Di(f) =0 foralli€Y, then f € Gy.

Proor. Without loss of generality, we may assume that f has the form f = x(@x#y*.
For any i € Yy U Y}, our assumption forces & = 0 and u = 0. Thus, f = y* € Go. O

3. Structure of W

Lemma 3.1. Let
M, ={(xD;lieY,, jeY,0<k <m),

let
My ={x;D;|l€Y,t€Y>}

and let
M =M, UM2UV~V,] UWO.

Then W is generated by the set M.

Proor. Let X be the subalgebra of W generated by M. We proceed in several steps to
show that W = X.

Step 1. We show that x*y*D; € X. In order to prove the result, we first show that
x(n1£1+~~+ﬂ,a,)D] ex

by induction on ¢, where ¢ € Y.

If t = 1, then xX™#V D, € M; C X. Suppose that xM#&++7-1-) D, € X. We can easily
verify that
x(ﬂxSr)xlDl — [x(ﬂfgl)Dl’ x(281)D1] eX.

Moreover, we get
xmetme) p 2 | [ meat g0 p xmE) . p e X.
The induction is completed and x"D; € X. Since
x1y'Dy = [y'Dy, x2VDy] € [Woy, Mi] C X,

we see that
Xy'D; = 1/2[¥"Dy, x;y'D;] € X.

Step 2. We now show that x*xEy'D; € X for i € S. We consider three cases below.
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Case 1. Suppose that i € Y. We first show that x,.; - - - x;D; € X by induction on k,
where k€ Y. If k=n+ 1, then x,,,D; € Wy C X. Suppose that X, - - - x,-1 D) € X.
One can easily verify that

xix Dy = [)Cle, x(ZEI)Dl] eX.
Moreover,
Xnt1 * - XD1 = [Xg41 - - 1 Dy, xpx D] € X,

The induction is completed and xD; € X.
Since
A y'Dy = "Dy, x1y'Dil € X,

we see that
xleyAD,- = [xEy/lDl, x(ZE‘)D,-] eX

for any i € Y. Moreover,
X xEyDy = 1/2[xX° Dy, x;xEy'D 1 e X

and

X xEV'D; = XDy, xixFy'Di) e X
when i # 1.
Case 2. Suppose that i € Y;. By Case 1, we deduce that

X' xEy'D; = (X xEy'Dy, x;Di] € X.

Case 3. Suppose that i € Y,. Noting that x;D; € M, for any [ € Y|, we deduce from
Case 2 that
X xEy'D; = (X xEy'D,, x;D;] € X.

Step 3. We shall show that
XD e X

for any i € § by induction on (|| + |E|) — (|| + |u|), which we call z.

Lett=0. By Step 2, we see that xX"xy*D; € X forany i € S. Let t > 1. Suppose that
the result is true for # — 1. We consider the two cases |@| < |7| and |@| = |7| separately.

If |a| < |n], then there exists k € Y such that x@**)x#yt € G. By our inductive
hypothesis, x(“*) x*yD; € X. Moreover,

XDy D; = [Dy, XMy D] € X.

If || = |n|, then |u| < |E| since t > 1. Consequently, there exists k € Y| such that
x;x* # 0. By our inductive hypothesis, x“ x;x*y'D; € X. Moreover,

x(”)x"yﬂDi = [Dy, x(")xkx”y/lD,-] eX.

Hence, W = X and the proof is completed. O
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Lemmva 3.2. Let l=|H| = p™ and let

l

A:{Zaiy/l"|/l,»€H,aieF,Zl:a,»=0}.

i=1 i=1
Then A is an ideal of Q(m) and Q(m) = A& F1.

Proor. Suppose that f=3'_ ayyi €A and g= Zé:] b;yY € Q(m), where a;,b; € F
and A;, ;€ H. Then Y!_ a;=0. Write h:= fg=Y!_, cxy", where ¢, € F, 4 € H.

Then l Z
DI
i j=1 k=1
and we conclude that 1 l
Z aibjy/li+/1j — Z Cky/lk-
ij=1 k=1
Since y4*4 # 0, we see that
i I i I
Z k= aibj= ( ai)(z bj) =0.
k=1 ij=1 i=1 =1

Hence, h € A and A is an ideal of Q(m).
Let f= Zle a;y" be any element of Q(m). Then f— Zﬁzl a;-1€A and we
conclude that Q(m) = A + F1. Clearly, AN F1 ={0}. Hence, Q(m)=A® F1. O

Lemma 3.3. Let
I = spang{gh| g € O(n, 1) ® A(g), h € A}

and let

:{ZﬁDi‘fieF,Dik"-D,»ZD,»](ﬁ)eFVikeS,lsksS}.
i=1

Then T is an ideal of G and J is an ideal of W.

Proor. Let f € G. Without loss of generality, we may suppose that f = g’h’, where
g €0, t)® A(g) and ' € Q(m). Suppose that gh € I', where g € O(n, ) ® A(g) and
heA. Then
f(gh) = (g'l')(gh) = (g'g)(Wh)eT
by Lemma 3.2. Similarly, (gh)f € I'. Thus, I is an ideal of G.
Now suppose that A=Y} gD;€W and B= X fiDj€ J, where g;€G, f;eT
and D;, --- D;,D; (f;) €. By (2.1), we see that

[A,Bl= ) &iDi(fD; = Y (=DEPVPIED (gD

ij=1 ij=1
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By our assumption, D, --- D;,D; (f;) €I'. Putting k=1, we deduce that D;(f;) €T.
Consequently, g;D;(fj) € " and f;D;(g;) € I'. Moreover, we can easily deduce that

D --- D;,D; (g:iDi(f) €T, D ---D;,D;(fiDj(g) €T

by induction on k. Hence, J is an ideal of W. O

Suppose that

X = {Z &iD;| g€ G. Ihell,....s) such that iy € S and D - DD () ¢ r}.
i=1

It may be verified that X is a subalgebra of W. In particular,
{Z giD; | gi€0m t)® A(q)}
i=1

is a subalgebra of X.
Tueorem 3.4. The algebra W is an extension of a subalgebra X by the ideal J.

Proor. Let 3.7, fiD; be any element of W, where f; € G. Without loss of generality,
we may suppose that f; = g;h;, where g; € O(n, t) ® A(q) and h; € Q(m). It follows by
Lemma 3.2 that

fi = gi(h; + a;1) = gih; + a;g;,
where i} € A, a; € F. Thus,

ZY fiDi i(gih;)Di + i(aigi)Di
i=1 i=1 i=1

> @i+ )] (g,-h;)Di+2<a,-g,~)D,-
i=1

" Diy Diy (gih})el D Dj, Di (gih))¢l’

D; i
eJ+X.

It is clear that X N J = {0}. By Lemma 3.3, W is an extension of X by 7. O

4. Derivation superalgebra of W

Let L= @iez L; be a Z-graded superalgebra. Let xe L. If there exists i€ Z
such that x € L;, then we call x a Z-homogeneous element and i the Z-degree of x.
As usual, the derivation superalgebra of W is a Z-graded Lie superalgebra, that is,

der W = @p,_, der; W, where

der, W:={peder W|o(W) c Wi}, J={-¢-1,-&...,&E+1).
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Set

. T ifiEY(),
(i) = .
1 lflEYl.

Define a linear mapping p; : G — G such that
xere) iyt if e Yy and a + & € A(2),
pi(x Dy =X @Dyt ifieyy,
/l;'x(“)x"y” ifieY,and A; # 0.
We use the convention that p;(x?x*y*) = 0 for a + &; ¢ A(¢t) or A; = 0.

DeriniTion 4. 1. An element f of G is said to be of D;-type if D[”(f) =0 fori € ¥ and
D\(f)=fforieY,.

Lemma 4.2. Suppose that f € G.

(i) Ifi€Y,, then f is of D;-type if and only if/lffl =1

(i) D;(f) is of Di-type for any i€ S.

Proor. Part (i) is obvious.
We now consider part (ii). For i € Y, it is clear that

(@) _ T+l _
DI (Di(f) =D;"" (f)=0.
For i € Y», we may assume that f = x®x*y'. Since A” = A;, we see that
DI (Di(f) = DI (f) = AL XV xyt = 4x Y = Di( ).
Hence, D;(f) is of D;-type. O

Lemma 4.3. Suppose that i, j€ S and i # j. Then:

() if f € Gis of Di-type, then Dipi(f) = f;
(i) we have the equality B
Dip; = (-1)"p;D:.

Proor. To prove (i), suppose that i € ¥, and f = x@x*y'. Since f is of D;-type, we
deduce from Lemma 4.2(i) that A; # 0. Thus,

Dipi(f) = Di(A; ' XV xt'yt) = xX@xtyt = f.

The remaining cases where i € Yy U Y| are similar.
Part (ii) is obvious. ]

Lemmva 4.4. Let fi,, frro ..., i, €G, where t\,ta, ..., 5k €S. If fi,, f, ..., fir, are of

Di-type and Di(f;) = (=1)VD;(f;) for any i, j € {t, ta, . . ., 1}, there exists f € G such
that Dl(f) = f,‘fOl’ alli=t,t, ..., I
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Proor. We use inductionon k. Let k=1 and f = p,, (f,). It follows from Lemma 4.3(i)

that Dt] (f) = Dt]ptl (ﬁ[) = ﬁ] N

Suppose that there exists g € G such that D;(g) = f; wheneveri =1, 1, ..., ;. Let
f=g+p.(fi, — Dy, (g)). By our inductive hypothesis and Lemma 4.3(ii), we deduce
that

Di(f) = Di(g) + Dipy,(fs, = Dy.(8))
= ﬁ + (_l)ljjptk(Di(ft/:) - DlDtk(g)) .
= fi + (=D¥p, (-D¥ Dy, () = (-D¥' D, Di(g))

We have to show that D, (f)=f,. By Lemma 4.2(ii), D,(g) is of D,-type.
Consequently, f;, — D, (g) is also of D, -type. By Lemma 4.3(i),

Dy (f) = Dy (8) + Dy o1, (fi, — Dy (8)) = Dy (8) + (fi, — D1 (8)) = fi,

and our result follows. m|

LeEmMA 4.5. We have C(W) = 0, where C(W) denotes the center of W.
Proor. Let D € C(W) and write D = Y-y fiDk, where fi € G. Forany i€ S,

(D, Dj] = [; fiDy, Dy = ~(= P ; Di(fo)Dy = 0.

This implies that D;(f;) =0forallie S.
Moreover, by Lemma 2.1, we see that f; € Gy forallke S. For jeYandre Y,,me
Yy, one calculates

[D, x;D; + y,Dy] = [Z fiDis x;D; + ¥:Dy| = f;D; + fiyiDy = 0.
k=1

It follows that fj = f, =0and D = 0. m|

LemmA 4.6. Let L be a centerless Lie superalgebra. Let ¢ € h(der L), x € Ly and
x1 € L. If there exists k > 1 such that (ad x)”k = ad xy, then ¢(x;) = (ad x)”k_lgo(x).

Proor. The proof is similar to that of [11, Lemma 8.1, p. 191]. O

Lemma 4.7. Let ¢ € h(der; W), where t € J and t > 0. Then there exists A € W, such
that (D;) = ad A(D;) forallie S.

Proor. Let ¢(D;) = Y;_, fiiDr, where fi; € G. This implies that |g| +7=|fq| + k.
Since [D;, D;] =0 for any j € S, we see that

[ZS: fxiDrs Dj] + (—1)I¢Ii[D,-, Zs: fijk] —0.
i=1 —
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It follows that
DD Di(fiy) = (=D ADID (iD= 0.

k=1

Since |¢| + 7= |ful + k, we see that
D= £ ) = (=DTD (=) £;,). (4.1)

For our purposes, it is enough to suppose that f;; is of D;-type. We treat the three
possible cases separately.

Case 1. Suppose that i € Yy. Since (ad D)"*!' =0, we deduce from Lemma 4.6
that (ad D;)"(¢(D;)) = 0. This implies that (ad D;)"(};_, fiiD«) = 0. It follows that
D (fi) = 0.

Case 2. Suppose that i € Y. Putting j =i in (4.1) enables us to deduce that D;(f};) = 0.

Case 3. Suppose that i € Y;. Since /lf’ = A;, we see that
(ad D)’ (xXVx*y'D;) = AP XD x'y'D; = XV x"y'D; = ad Di(x'Vx"y'D)).

It follows that
(ad D))" (p(Dy)) = (D)

by Lemma 4.6. Consequently,
@d D) fuli) = . DI fidDe = Y, D
k=1 k=1 k=1

This implies that D,['] _1( fii) = fii- Hence, f; is of D;-type for all k, i€ S.

Equation (4.1) shows that {(~1)¥f;; | i € S} satisfies the conditions of Lemma 4.4.
Thus, there exists gx € G such that D;(gy) = (=1)¥7 f;;. This implies that 7 + |g¢| = | ful.
Note that |¢| = |gi| + k. Write

s
BZZ—ngDkEW.
k=1

One deduces that
(B, Dl = > (D Di(g)Dy = Y (~D¥'Di(gu)Di = )| fuDi = ¢(Dy).
k=1 k=1 k=1

Since W is Z-graded, we may suppose that B= Y\ B;, where B; € W,. It follows
that ¢(D;) = [B;, D;]. Thereby, we find A = B, € W, such that ¢(D;) = ad A(D;) for
iesS. |
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Write
0 := Q(m)™ = Q(m) X Q(m) X - - - X Q(m).
For
0= (hs1(0), hss2(y), - .., hy () €O,
define

51
B:H— Qm), Ar— > b0,
j=st
For A, n € H, we are able to verify that
6+ 1) = 6() + 6(ny).
For 6 € O, define a linear mapping Dy : W — W such that
Dy(xDx¥y'D;) = B )XV ¥y D; VieS.
Lemma 4.8. For any 6 € O, we have Dy € der(-)(W).
Proor. Forie€ Y, and k € Y», a direct computation shows that
X% D;, xBx'y1 D] = X D% XYy D;, P Dyl.
Consequently,
Dyl @y Dy, P2y Dy
= Dy(x ¥ Xy Di(xP) D = XV 2y AP D (D)
= Dy(xX X"y ID (D)D) = Do(Aex P x P 'y D)
= 62+ @y (7 Di(xP) Dy = 2P Dy D))
= (6D + 8)x 2y [y Dy, xP Dy
= (B) + 6 [ ¥y Dy, XPx"y"Dy ]
= [Dy(x 'y Dy), xXPxy'Dy] + [y Dy, Do(xPx*y"Dy)].
Hence, we conclude that Dy € der()(W). The argument for the remaining cases is
similar. O
Lemma 4.9. Let ¢ € h(der W). If ¢(D;) =0 for all j€ S, then there exists 0 € © such
that o(y'D;) = Dg(y'D;) for any A€ H and i€ Y.
Proor. We proceed in several steps.

Step 1. Let (y'D;) = Y.} _; gkiaDx, where giiy € G. Since [D}, y'D;]1=0 for j€ Y, we
see that

[e(D)), ' Di] + (=D¥[D}, (' Di)] = 0.
Consequently, it follows by our assumption that ¢(D,) = 0 that

(D}, ¢(y'D)] = [Dj, Z gki/le] = Z D;(grin)Dy = 0.
) =1

We now deduce from Lemma 2.1 that g;;, € G forall ke S.
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Step 2. Let ¢(x;D;) = 3, axDx, where ax € G. Since [D;, x;D;] = D;, we see that

s N

[Di, ; aka] = 2 Di(a)Dy = 0.

This means that a; € Gy by Lemma 2.1.
Since [y'D;, x;D;] = y*D;, we deduce that

N s N
[Z 8kiaDr, xiDi] + (—1)|wli[yADi, Z aka] = ) &kiaDk.
=1 ) =)

This implies that

N
8iinD; — Z(—l)lwliaka(yﬂ)Di = Z 8kiaDy.
feTs =l

It follows that g;;y = 0 forall k € S \ {i} and p(y'D;) = g;;1D;. We abbreviate g, to giy.
Set hia(y) = giay~*. Then

¢(O'D;) = giaD; = hyy(y)y*D;.

Step 3. We claim that
hia(y) + hjp(y) = hjep ()
forany ,ne Hand i, jeY.

Suppose that ¢(x;y"D;) = 3.;_, fiDk, where fi € G. Since [D;, x;y"'D;] =y'D;, we
deduce that

(D] Di, Y i = DY DD = By D
k=1 k=1

This implies that D;(f;) = 0 for all k € S \ {;j} and D;(f;) = (=1)¥"h;,(y)y". Therefore,
we may assume that f; = (-1)¥h;,(y)y"x; + g;, where g; € G and D;(g;) =0. Since
[y'D;, x;y"D;] = y*"D;, we deduce that

a0y Dis 5D + (=D Dy, Y fiDi|
k=1
= [hia)y' Dy, 5" Dj] + (<D 5Dy (<1 (107D, + gD+ Y. iy
[

= RO D; + hiy )y D} = 3 (= D#HAP 6 Dy (D,
keY,

= hjen MY D;.
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In the following, we consider the two cases where i # j and i = j separately. If i # j,
then the assertion is obvious. Moreover, we deduce that

Z(_ 1)(\&pl+\kak|)7kak(y/l) =0.

keY,

Hence, if i=j, then the equality A (y) + hjy(y) = hjasy(y) also holds. We have
established our claim.

Step 4. Since A, n, i, j have been chosen randomly,

hia(y) + hjp(y) = hjey() = hja(y) + hj ().
We deduce that A;;(y) = hj(y). We write h;;(y) for hy(y) for any i € Y. Then o('D;) =
ha(y)y'D;. By Step 3, ha(y) + hy(y) = hasy(). In particular,

he, () + he (y) = hag, (y) = 2h5,(¥), hoz, (¥) + hs, (¥) = b3z, (¥) = 3hz, ().

Moreover, we see that h.z (y) =ch (y) for any cell and k=r+1,...,5,. We
abbreviate /g () by i (y).

Step 5. We now complete the proof. Set
H, ={/1€H|/lk=OVk=S+ 1,S+2,...,S]}

and
Hy, ={1e H| A4 =0VYkeY,}.

For any 1 € H, we can find A eH andA" e H,suchthat A=1 + A".
Suppose that A, is the first number of A” which is not equal to 0, where ¢ is one of
s+1,...,s;. Then

Q) =hy () =hy )+ hy ()
= hy () + hagrera, 5, )
=hy )+ A4h(y) + - -+ Ag g ()
= Asthen1 () + -+ + 4 hy 0) + B() + - + A g, (9).

Set
0= (her1 ), - 4y O) + h), bt O, - s, ()
Then 6 € ® and
@' D) = a()y'Di = ()" D; = Da(y' Dy).
This completes the proof. O

Levma 4.10. Let Ae W. If[D;,Al=[y;D,,Al=0foralliceY, te Y, and j€Y,, then
AGW,l.
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Proor. Suppose that A = Y,;_, fiDy, where f; € G. Then
(D A1= D1 Y fiDi| = Y. DifoDi =0
k=1 k=1

and we conclude that D;(f;) =0. By Lemma 2.1, this shows that f; € Gy forall k€ S.
Since [y;D;, Al = [y;Dy, 23—, fiDi] =0, it follows that f;y;D, =0. This shows that
fi=0forall j€ Y, whence A=Y/_, fiDr€ W_;. m

Levva 4.11. Let ¢ € h(der, W), where t€ J. Suppose that k> -1 and go(Wj) =0,
where j=—-1,0,...,k Ifk+1t> -1, then ¢ =0.

Proor. We let [ > k and show that ¢(W;) = 0 by induction on /. By our assumption that
<p(Wj) = 0, it will then follow that p(W;) = 0.
Suppose that [ > k and ¢(W,_;) = 0. Lemma 4.10 allows us to deduce that

e(A) e W1 N Wy, =0,

since [D;, Al € W,_, for any Ae W, and i €Y and [y,D,, Al € W,_; for any heY,
and v € Y1, while ¢(D;) = ¢(y,D,) = 0. Hence, ¢(W;) =0 and we may conclude that
¢=0. O

ProposiTioN 4.12. Let ¢ € h(der, W), where t € J and t > 0. Then there exist A € W,
and 6 € O such that ¢ = ad A + D,.

Proor. By Lemma 4.7, there exists A € W, such that ¢(D;) = ad A(D;) for all i€ S.
Thus, we may find 6 € ® such that (¢ —ad A — Dg)(y/le) =0 for any 1€ H and
j€Y by Lemma 4.9. This allows us to deduce that (¢ —ad A — Dy)(W_;) =0 and
¢=adA + Dy by Lemma 4.11. O

Remark 4.13. It is possible to add the following conclusions to Proposition 4.12. If
¢ € (deryg W);, then there exist A € W, and 6 € ® such that ¢ = ad A + Dy. Otherwise
there exists A € W, such that ¢ = ad A.

ProposiTiON 4.14. Let Q ={Dy | 8 € ®}. Then the following statements hold.

(i)  The space Q is a subspace of der W.
(ii) The intersection ad W N Q = {0}.

Proor. We first prove (i). Since Q(m) is a linear space over F, we see that @ = Q(m)™
is also a linear space over F. Suppose that

0=, b (), 1=(8sr1 (), -, 85, (V)

for any 6, n € ®. Then

0+n= 1Y) + 810, - . ., hg (V) + &5, (V).
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For1e H,
51 51
B+ = > o)+ D g0
Jj=s+1 j=s+1
K
= D 40) + g0 = 0+ m) (.
j=s+1
We deduce that

(Dy + Dp)(xxy'Dy) = B Xy D; + )X ¥y D;
= (6 + 1) () xy'D;
= Dysy (X 2y' D))
and we conclude that Dy + D, = Dy, € Q. Similarly, kDg = Dy € Q for any k € F.
Thus, Q is a subspace of der W.

To prove (ii), let X be an arbitrary element of ad W N Q. Then there exist
B=3,_, fiDr € W and 6 € @ such that X = ad B = D,. Consequently,

ad B =| D" fiDi Dj| = Y 1D (fi)Ds = DD =0
k=1 k=1

for all j € Y. Lemma 2.1 shows that f; € G, for all k € S. Since B € W by Lemma 4.8,

we may assume that
n N
B= Z ﬂDk + Z fk’Dk’-
k=1

k'=r+1
Thus,
ad B(x;D; + y:D;) = fiD; + fiy:D; = Do(x;D; + y.D;) =0

for any i € Yy, j€ Y1, t € Y,. This implies that f; = f; =0, whence X =ad B=0. The
proof is now complete. O
ProposITION 4.15. We have the equality of sets der_; W = ad W_,.
Proor. Let ¢ € h(der_; W). We see that

Wo = spang{x;D;, x;D;, x;y'Dj, x;y"D;, y'D; | A€ H, i, j€ Y, i # j, | € V>}.
Clearly, ad W_; C der_; W. It remains to show that ad W_; 2 der_; W. We proceed in
several steps.

Step 1. Let @o(x;Dj) = Y, _y axDy and @(x,Dp) = Y;_, biDy for any h,l€ Y\ {i, j},
where ay, by € Gy. Since [x;D}, x;,D;] = 0, we see that

r

[Z arDy, th,] + (= 1)kl@*D [x,-D Y kak] =0.
k=1

k=1
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It follows that a;D; — (=1)WDp,D; = 0. This means that a;, =0 for every he
Y \ {l, ]} Hence, (p(xiDj) =a;D; + aij.

Moreover, we may suppose that ¢(x;D;,) = ¢;D; + ¢, Dy, and p(x,D;) = d; Dy, + d;D;,
where c¢;, ¢y, dy, d;j € Go. Since [x;Dy, x,D;] = x;D, we see that

[C,'D,' + ChDh, thj] + (—l)l‘pl(ﬂh)[xiDh, thh + dej] = a,'D,‘ + aij.
It follows that a; = 0 and ¢(x;D;) = a;D;.

In particular, suppose that ¢(x;D;y1) = h;D;y1 for i=1,...,r—1 and ¢(x,D;) =
h.D;, where hy € Go fork=1,...,r. Letyy = ¢ — 3, _; ad(iDy). Then

Y(xiDi1) = @(x;Div1) — 2 ad(fyDi)(xiDi+1) = hiDjs1 — hiDjsy =0
k=1
and Y(x,D;) = 0. In the following steps, we shall prove that (W) = 0.
Step 2. We claim that (x;D;) = 0. Indeed, if i < j, then by Step 1 we have
Y(xiDjs2) = Y([xiDir1, Xis1Dis2]) = 0
and it follows that (x;D;) = 0. If i > j, then
Y(xr—1D1) = Y([x,-1 Dy, x,D1]) = 0.

It follows that ¥(x;D;)=0. Consequently, ¥ (x;D,) =y ([x;D1, x;D>]) =0 and it
follows that ¥(x;D;) = 0, establishing our claim.

Step 3. We claim that ¥/(x;D;) = 0. Suppose that y/(x;D;) = 3;_, exDy, where e, € Gy.
Since [x;D;, x;Dj1] =0forany je Y\ {i — 1, i, r}, we see that

[Z eka, XijH] = €ij+1 =0.
k=1

This implies that e; = 0. It follows that
Y(x;D;) =e;1Di_1 +eD; +e.D,.
Letie Y\ {1, r}. By applying ¢ to
[x;Di, xiDjs1] = x;Djs1,  [xiDi, xieyDi]l = =xi-1Dyy - [x:Dy, x,D1] =0,

we deduce that ¢; =¢;_; = e, =0. Hence, y(x;D;) =0 for any i € Y \ {i, r}. We can
similarly verify that (x; D) = ¥(x,D,) = 0 and we have established our claim.
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Step 4. We claim that Y(x;y'D;)=0. Suppose that y(x;y'D;) = X;_, fiDx, where
fi € Go. Now Steps 2 and 3 imply that y(x;,D;) = 0. Since also [x;y*D i xp D] =0
for h,l € Y with h # j and [ # i, we deduce that

[Z JSiD, thl] = fuD; = 0.
=1

It follows that f, = 0 and y(x;y'D;) = f;D;. Since [x;D;, x;y*D;] = x;y*D;, we see that
0 =[x;D;, f;D;] = f;D; by Step 3. It follows that f; = 0 and w(xiy/le) = 0, establishing
our claim.

Step 5. We claim that y(x;y'D;) =0. Suppose that y(x;y*D;) = ¥;_, gDk, where
gk € Go. Since [x;y'D;, x;D;] = 0 for any j € Y \ {i}, we see that

r
[Z ngk, .Xij] =ngj =0.
k=1

It follows that g; = 0 and y(x;y*D;) = g:D;. Since
[xy'D;, x:D;1 = x;y' D,
we deduce that
(giDi, x;D;j] = g;:D; =0.
It follows that g; = 0 and ¥(x;y'D;) = 0, establishing our claim.
Step 6. To complete the proof, we first show that y(y'D;)=0. Let y(y'D)) =

Y1 @Dy, where a; € Go. Since Y(x;y*D;) =0 for any i € Y by Step 5, we may

apply ¢ to
y'Dy, xiy™'D;] = —x:D;

to deduce that [Y}_, @Dy, x;y*D;] = 0. It follows that a; = 0 and ¥/(y'D;) = 0. From
the discussion above, we conclude that (W) = 0. Thus, ¥ = 0 by Lemma 4.11 and
der_; W:ad W_l. O

We can use a similar method to that used to prove [15, Propositions 3 and 4] to
deduce the following proposition.

ProPOSITION 4.16. Let t€J and t> 1. If there is no k€ N such that t = pX, then
der_, W = 0. If there exists k € N such that t = p*, then

der_, W = Span, {ad D} | i € ).
THEOREM 4.17. We have the equality
der W = ad W @ Q @ Spang, {(ad D) |i € Yo, 1 <k <1;).

Proor. This is a direct consequence of Propositions 4.12, 4.14, 4.15 and 4.16. O
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