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A universal algebra A is said to have the basis property (BP) if any two minimal
generating sets (bases) for a subalgebra of A have the same cardinality. This property was
studied by the author for inverse semigroups in [5, 6]. For instance free inverse
semigroups have BP. When treated as universal algebras, a classical theorem of linear
algebra states that vector spaces have BP. In this paper we study BP for semigroups.

It turns out that a more amenable property is the strong basis property (SBP): for any
pair U c V of subalgebras of A, any two ‘“U-bases” for V have the same cardinality. (A
U-basis for V is a set minimal with respect to the property that, together with U, it
generates V). Then SBP implies BP; in [5, 6] necessary and sufficient conditions were
found for an inverse semigroup to have SBP.

For all but a very restricted class of semigroups, those having SBP are determined.
The main result is the following (Theorem 3.1).

THEOREM. Let S be a semigroup containing no nontrivial $-class with one-element
D-classes. Then S has SBP if and only if each non-null principal factor is either (a) a left
zero or right zero semigroup or a group with SBP for subgroups, (b) one of the above with
adjoined zero or (c) isomorphic with Bs, the combinatorial Brandt semigroup with five
elements.

The theorem applies to all regular semigroups, periodic semigroups etc. We
conjecture that in fact the main statement is valid for all semigroups. This is equivalent to
the conjecture (§ 2) that no [0-] simple idempotent-free semigroup on which both & and
Z are trivial has BP.

Comparing the theorem with the results of [6] it is notable that there are many
inverse semigroups which have SBP when regarded as inverse semigroups but not when
regarded as semigroups. On the other hand we show that for groups and completely
regular semigroups it does not matter whether they are regarded as type (2) or type
(2,1).

Similarly (§5) a monoid has SBP (or BP) as a monoid if and only if it does as a
semigroup. From the main theorem we may then deduce the result of J. Doyen [3] that
any periodic &-trivial monoid has BP. It was that result which rekindled the author’s
interest in the topic of basis properties.

1. Global results. We consider first some generalities from universal algebra which
will enable us to correlate basis properties for semigroups, monoids, groups, inverse
semigroups etc. The reader is referred to [1] for more details.

The lattice of subalgebras of an algebra A always has a least element: if A has no
nullary operations (for instance in the cases of semigroups and inverse semigroups) this is
the empty subalgebra; otherwise (for instance for monoids and groups) it is the subalgebra
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generated by the nullary operations. (By this convention it is clear that SBP implies BP
on A). The subalgebra generated by a subset X is denoted (X). If U is a subalgebra of A
and X is a subset we will often abbreviate (UU X) to (U, X), and to (U, x,y,...) if
X={xy, ...}

The key to the utility of the strong basis property is the following lemma, implicit in
the proof of [5, Theorem 2.3] for inverse semigroups. The reader is referred to [8] for its
proof and for an axiomatic version of SBP—the “weak exchange property”.

LEmMa 1.1. An algebra A has SBP if and only if for each subalgebra U of A and
x,y,ain A, (U, x,y)=(U, a) implies either aec (U, x) orae (U, y).

From now on we specialize to semigroups. Thus BP and SBP will always refer to
subsemigroups, unless otherwise specified. For a semigroup A we may further assume
(c.f. the proof of [5, Theorem 2.2]) that x, y and a belong to the same #-class of A.

In [6, Proposition 2.2] it was shown that, for inverse semigroups, BP and SBP are
preserved by Rees ideal quotients. It is easily verified that the proof is valid for
semigroups. Since BP and SBP are inherited by subsemigroups the following important
“global” result is clear. Recall that the principal factor associated with a $-class J of a
semigroup S is the Rees quotient S'JS'/I, where I=S'JS'\J. For this and other
elementary semigroup-theoretic notions and definitions the reader is referred to [2].

ProrositioN 1.2. The BP and SBP are inherited by principal factors.

The principal factors of a semigroup are either null, 0-simple or simple (when J is the
minimum $-class). In the next section we specialize to these cases. For inverse
semigroups it was shown [6, Theorem 2.3] that for SBP the converse of the proposition
holds: if each principal factor has SBP (as an inverse semigroup) then so does the
semigroup itself. (For BP the converse fails.) Whether the same holds for semigroups we
do not know, though the answer is “yes” if the conjecture of § 2 is true.

One final preliminary observation will be useful. If a semigroup S has BP or SBP then
so does the semigroup S°. Conversely, let S be a semigroup with 0 which has no zero
divisors. If § has BP or SBP then so does the subsemigroup S\{0}.

2. Simple and 0-simple semigroups. The techniques of this section follow a
common theme: to prove that a certain class of semigroups does not have SBP we show
that each of its members contains (an isomorphic copy of) a particular semigroup without
SBP. Thus we study counterexamples. First we consider groups (regarded as semigroups).

LemmMa 2.1. The infinite cyclic group Z does not have BP.

Proof. As a semigroup (actually as a monoid) Z may be presented as (a, b | ab =
ba=1). Two bases are {a, b} and {a', a", b%}; for a =a'%">(b®)* and the relative
primality of 10, 15 and 6 ensures that no two of a'’, a'* and b® generate Z. (The choice of
{a, b%} rather than {a, b} will be useful later). W

Thus a group G with BP is periodic. In fact this is also true if G has BP for
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subgroups. Since every subsemigroup is then a subgroup it is therefore immaterial
whether we regard G as a group or a semigroup as far as basis properties are concerned.
For a study of these properties in groups see [6].

LemMa 2.2. The bicyclic semigroup B = (a, b | ab = 1) does not have BP.

Proof. The equation a**b**=a is valid so the two sets {a, b} and {a', a'®, b5}
generate the same subsemigroup. Each is a basis because their namesakes in Z are, by the
proof of Lemma 2.1. W

A similar argument will be applied to two further semigroups A and C later in the
section. For now we make use of the theorem of Andersen [2, Theorem 2.54] that any
[0-] simple semigroup which is not completely [0-] simple and which contains a nonzero
idempotent contains an isomorphic copy of B. This proves

ProposITION 2.3. A [0-] simple semigroup with BP is either completely [0-] simple or
idempotent-free (has no nonzero idempotents).

By the concluding remarks of § 1, in the case with idempotents we only need consider
completely simple semigroups and proper completely 0-simple semigroups: those with no
zero divisors.

THEOREM 2.4. (i) A completely simple semigroup has SBP if and only if it is either a
left zero or right zero semigroup or is a group with SBP.

(ii) A proper completely 0-simple semigroup has SBP if and only if it is isomorphic to
the five-element combinatorial Brandt semigroup Bs.

Proof. Sufficiency. Let L be a left zero semigroup. If U and V are subsemigroups
with U contained in V then V\U is the unique U-basis for V. So L has SBP. Dually,
every right zero semigroup has SBP. The group case follows from the earlier remarks.

The elements of Bs are {x, y, e, f, 0}, where e?=¢ and f>=f. It is readily verified
that for any subsemigroup U, the unique U-basis for Bs is {x, y} \U. A similar argument

is valid for each subsemigroup V which contains x or y (only Bs contains both). The
remaining nonempty subsemigroups V are semilattices, for which SBP is satisfied by [6].

Thus Bs has SBP.

Necessity. Let S be a completely 0-simple semigroup (not necessarily proper) with
SBP. We proceed by systematically barring the undesirable configurations of nonzero
#-classes until only those corresponding to (i) and (ii) of the theorem remain.

Step 1. If S has distinct R-related idempotents then it is a right group with adjoined
zero.

Suppose e and g are such idempotents. If S is not as asserted then there is a non-zero
idempotent f with Ry # R,. Essentially the only two configurations which may arise are
those shown in the “egg-box’ pictures ([2, §2.1]) of Fig. 1; there the shaded boxes
necessarily contain idempotents whilst the others may or may not.

A technically useful observation is that L°%(=LU{0}) and R° (=RU{0}) are
subsemigroups for each nonzero £-class L and R-class R.
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Now in the former configuration (e, f, g) = (e, fg), since f =fe =(fg)e and g = eg =
e(fg). But e, fe L and e, g e R, so {f, g} and {fg} are each (e)-bases for (e, f, g},
contradicting SBP. (Note that if H, contains an idempotent, BP will not be sufficient, for
then e e (f, g)).

In the latter configuration let x' and x” denote the inverses of x in the -classes
shown. Then (e, x,x")=(e,x,g, x'), since x"=x'g and g=uxx", x'=x"e. Again,
(e,x,g) cR%and (e, x, x') c LYU LY, so {x"} and {g, x'} are (e, x )-bases for (e, x, x"),
contradicting SBP.

Thus a completely simple semigroup with SBP is either a right group or, by duality, a
left group; a proper completely 0-simple semigroup with SBP is inverse.

Figure 1

Step 2. A right group R with SBP is either a group or a right zero semigroup.

Suppose R contains distinct idempotents e and f and a nonidempotent x in H,. Then
xf € Hy, {e,xf)=(e, x,f) since x = (xf)e and f € (xf) (for H; is periodic, by Lemma
2.1); and (e, x)c H., {e,f)={e, f}, so {xf} and {x, f} are (e)-bases for (e, xf),
contradicting SBP.

Step 3. A proper Brandt semigroup (completely 0-simple inverse semigroup) S with
SBP has exactly two nonzero idempotents.

Suppose S contains three nonzero idempotents e, f, g, and let x, y and inverses x’, y’
be as shown in Fig. 2(a). Then

(X, 3, ',y ) =(x, y,¥'x"),

since x' =fx'=y(y'x') and y' =y'f =(y'x")x. But {x,y,x') cRJUR} and {x,y,y') <
L}ULY, so {x',y'} and {y'x'} are (x, y)-bases for (x, y, x', y'), contradicting SBP.

Step 4. A proper Brandt semigroup with SBP has trivial subgroups.

Suppose the nonzero #-classes of S are as shown in Fig. 2(b), where a' is the inverse
ofaand b#e (soa'b+#a’'). Then (a,a’,b) =(a, a'b) since b =eb =a(a’'b) and

a'=a'e=a'b"=(a'b)b""" = (a'b)(a(a’b))""!,
for some n =2, (again using the periodicity of H,). Again,
(a,a’)={a,a’, e f, 0}
and (a, b) c R, so {a’, b} and {a'b} are (a)-bases for {a, a’, b), contradicting SBP.

Combining these steps with the comments after Step 1 completes the proof of the
theorem.

https://doi.org/10.1017/50017089500007072 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007072

BASIS PROPERTIES FOR SEMIGROUPS 105

Figure 2

The theorem covers many, if not most, familiar cases. For example, any [0-]simple
semigroup which is regular or “group-bound” (some power of each element lies in a
subgroup) or, in particular, periodic contains a nonzero idempotent. In fact this is true of
“eventually regular” semigroups: those in which some power of each element is regular.
(The proof follows that of [2, Theorem 2.55]). Further, if the following conjecture is true,
it then covers all cases.

CoONIECTURE. No idempotent-free [0-]simple semigroup has BP.
Strong evidence for this conjecture is provided by the following.

THEOREM 2.5. No idempotent-free (0-]simple semigroup in which either R or ¥ is
nontrivial has BP.

Proof. 1t is sufficient, by duality, to suppose S is an idempotent-free 0-simple
semigroup in which R is nontrivial. By [7, Theorem 4.2], S contains an isomorphic copy
of one of the two semigroups

A={(a,b|a’h=a)
and
C=(a,b|a’b=a,ab’>=b).

From the equation a?b = a it easily follows that a**b**

in the proof of Lemma 2.2,

= a in either semigroup. So, as

(a, b%) = (a", a5, b°)
and each of {a, b®} and {a'°, a'*, bS} is a basis for this subsemigroup (since Z satisfies
these relations). W

So the conjecture remains to be verified in the [0-]simple Z-trivial case (when both &
and £ are trivial). Note that such a semigroup is necessarily idempotent-free if it has
more than one element (more than two, if it has a zero). The author studied such
semigroups in [7, § 6]. It seems that analogues, like those quoted above, of Andersen’s
theorem are needed to complete this case. An important semigroup in this context is

U=(a, b, c|b=ab’c).

Clearly any O-simple semigroup contains a quotient of U.
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LemMA 2.6. The semigroup U does not have BP.

Proof. Clearly U= (a, b, c) = (a, ab, bc, c). Consider the elements = (1, 0), b =
(=1, —1) and ¢=(0, 1) of the free abelian group Z® Z. These satisfy b =ab?*, so th
map a— a, b— b, c— ¢ extends to a homomorphism. Now it is clear that

{a, ab, be, ¢} = {(1, 0), (0, —-1), (-1, 0), (0, 1)}

is another basis for Z® Z, so {a, ab, bc, c} must be another basis for U, contradicting
BP. H

o

3. The main theorem. Let S be an arbitrary semigroup and let J be a $-class of §,
with associated principal factor P. The only situation in which SBP for P has not been
determined is when P is [0-]simple and P-trivial (but with more than one [or two]
elements). This is the case precisely when J is nontrivial with one-element 9-classes, so
unfortunately we must exclude such $-classes from the hypothesis of our main theorem
below. If the Conjecture of the previous section is true, this clause may be omitted.
However, as noted earlier, many important classes of semigroups are in any case covered.

THEOREM 3.1. Let S be a semigroup containing no nontrivial $-class with one-element
D-classes. Then S has SBP if and only if each non-null principal factor is either (a) a left
zero or right zero semigroup or a group with SBP, (b) one of the above with adjoined zero
or (c) isomorphic to Bs.

Proof. Under the hypothesis, necessity follows from Proposition 2.3, Theorem 2.5
and Theorem 2.4.

To prove sufficiency we use Lemma 1.1 and the remarks succeeding it. So suppose S
satisfies the hypotheses of the theorem, U is a subsemigroup and (U, x,y)=(U, a),
where x, y and a belong to the same $-class J, say, with principal factor P. Note that
either ae (U, x) or ae (U, y), as required, or, without loss of generality, a can be
expressed as a product sxtyu for some s, t, u in (U, x, y)'. Moreover, since a, x and y
belong to J so does the product of each substring of sxtyu which involves x or y.

There are four cases to consider.

(1) P is null, that is all products of elements in J fall into a lower $-class. Thus no
such equation a = sxtyu can occur, so a€ (U, x) orae (U, y).

(2) P is right zero, with or without adjoined zero. In either case J itself is a right zero
subsemigroup of S. Therefore in a product of the above form (sxt)(yu)=yu. If ue U
then ae (U, y). Otherwise u=u,zu,, where u,€ (U, x,y)', ze{x,y} and u,e U',
whence

a=(yu)(zus) = zu € (U, x) U(U, y),

as required. A dual argument applies if P is left zero.

(3) P is a group with SBP, with or without adjoined zero. Again, J is itself a group,
with identity e, say. Now U, =eUeNJ is a subsemigroup of J and {(U,, x, y) = (U., a),
since x, y, aceSe. From SBP for J it follows that ae (U,, x)U(U,,y). But from
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periodicity of the group G (Lemma 2.1), e e (x) N (y), so eUec (U, x) N (U, y). Thus
ae{Ux)U(U,y).

(4) P is isomorphic to Bs. Then J consists of exactly two idempotents and two
mutually inverse nonidempotents. Here a combinatorial argument is needed, based on
the following observation: if b € J and bsb € J for some s € S’ then bsb = b; for ¥ is trivial
on J and by complete O-simplicity of Bs, bsb &b Lbsb.

Since a e (U, x, y) it can therefore be expressed, without loss of generality, in the
form sxtyu where now s, t and u are in U'. Similarly, y = vaw for some v, w in U'. Now
either a=sxte (U, x) or a=yue (U, y) or (from the structure of J) sxt and yu are
mutually inverse and a is idempotent. But a = sxt(vaw)u, which is possible in the last case
only if a =sxtv € (U, x), as required.

This completes the proof of the theorem.

The following corollaries are almost immediate. From the remarks of the previous
section, the hypotheses apply in each case. We have rephrased the theorem where
convenient.

CoroLLARY 3.2. (i) A regular semigroup S has SBP if and only if each principal factor
has one of the specified forms; § is therefore orthodox.

(ii) An inverse semigroup has SBP if and only if each P-class is either a group with
SBP or contains exactly two idempotents and two nonidempotents.

(ili) A completely regular semigroup has SBP if and only if it is a semilattice of left
zero semigroups, right zero semigroups and groups.

(iv) A band has SBP if and only if it is “singular”, that is, each B-class is left or right
zero.

That a regular semigroup with SBP is orthodox follows from the fact [4] that if each
principal factor of a regular semigroup is orthodox then so is the semigroup itself. For
SBP for inverse semigroups, with respect to inverse subsemigroups, see [6].

Notice also that for completely regular semigroups (unions of groups) SBP is the

same whether regarded as semigroups or algebras of type (2, 1) since, by periodicity of
the subgroups, every subsemigroup is a completely regular subsemigroup.

In the general periodic case the theorem also applies. In particular if either & or £ is
trivial on § then each non-null principal factor is left or right zero, respectively, (possibly
with adjoined zero).

CoroLLarY 3.3. Every periodic semigroup on which either R or X is trivial has SBP.
This is closely related to the result of Doyen mentioned in the introduction. (See

§5).

Finally, if every principal factor is null (or trivial), S clearly has SBP. This is the case
when ¢ is trivial. However, this case is inmediate from Lemma 1.1 and the succeeding
comments. In fact U-bases are unique in such semigroups.

4. The basis property. It is certainly not true that if the principal factors of a
semigroup S have BP then so does S. Example 6.3 of [6] is a semilattice of two groups,
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each with BP, which does not have BP. Thus the completely [0-]simple case is of less
interest. We present the following description of such semigroups having BP, omitting the
proof, which pursues more deeply the techniques of the proof of Theorem 2.4.

THeOREM 4.1. (1) A completely simple semigroup S has BP if and only if S has one of
the following forms or their duals:

(a) S is a group with BP;

(b) S is a right group whose maximal subgroups are cyclic of order p", n=0, for
some prime p;

(c) S has exactly two R-classes, its maximal subgroups are as in (b) and the union of
any two E-classes is idempotent-generated.

(ii) A proper completely O-simple semigroup S has BP if and only if S, or its dual, has
exactly two R-classes and each nonzero £-class contains exactly one idempotent and one
nonidempotent.

In [6, Theorem 6.1] it was shown that a Brandt semigroup, considered as an inverse
semigroup, has BP if and only if each of its maximal subgroups has. For semigroups the
situation is obviously more chaotic. Note that, in (c), if S is not just a rectangular band
then

S=M(G;{1,2},{1,2, ..., k);P),

0 0...0\7
where G=2Z,, n=1, k<p and P=( ) , where no two r;’s are congruent
modulo p. ERRERRRRL

5. Basis properties for monoids. In [3] J. Doyen proved the following theorem.

REesuLT 5.1. [3, Theorem 1]. Any two bases for a periodic R-trivial monoid have the
same cardinality.

Since a submonoid of such a monoid is of the same type, this is equivalent to the
assertion that any such monoid has BP, as a monoid. We now show that in fact it does not
matter whether submonoids or subsemigroups are used for BP and SBP. As a
consequence Theorem 5.1 (and SBP as well) is immediate from Corollary 3.3.

For clarity we denote by (X)s and (X), the subsemigroup and submonoid,
respectively, generated by a subset X of a monoid M. Clearly (X), = (X)sU{1}.
Similarly, for UcV ¢S, if U and V are subsemigroups then an §-U-basis for V is a
U-basis as previously defined, whilst if U and V are submonoids an M-U-basis is a subset
which generates V, as a monoid, minimally over U. The M-BP, M-SBP, S-BP and S-SBP
are then defined in the obvious way.

THEOREM 5.2. Let M be a monoid. Then M has M-SBP [M-BP] if and only if it has
S-SBP [$-BP].

Proof. Suppose M has M-SBP. Let U and V be subsemigroups of M and let A, B be
S-U-bases for V.
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If 1¢ V then A and B are M-U U {1}-bases for V U {1}, so |A| =|B|.

If 1eV, first suppose 1€ A. Then A\{1} is an M-UU {1}-basis for V. Now
V =(UUA)yg, so any b in B is expressible as a product of members of U U A. Further, if
b#1 then b¢ UU {1}, so the product must involve some a#1, in which case all
occurrences of 1 may be deleted, that is, b € (UU A\{1} ). Thus if 1¢ B, then

V=(UUB)sc (UUA\{1}),

a contradiction. Hence if 1 € A then 1€ B and B\ {1} is also an M-U U {1}-basis for V, so
|A| = |B|.

If 1e V but 1¢ A then, similarly, 1¢ B, and both A and B are M-U U {1}-bases for
V. Thus |A| = |B| once more and M has §-SBP.

A similar argument shows that M-BP implies $-BP.

Conversely, suppose M has §-SBP. Let U and V be submonoids of M, U c V. Now
since U and V are already subsemigroups and 1€ U, any M-U-basis for V is already an
S-U-basis for V. Thus M has M-SBP. (A more general theorem is proved in [8]).

Finally suppose M has §-BP, let V be a submonoid and suppose A and B are M-bases
for V. Then 1¢ A, 1¢B and both AU {1} and BU {1} are §-bases for V, whence
|A| =|B|. Thus § has M-BP. B
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