
Bull. Aust. Math. Soc. (First published online 2024), page 1 of 12∗

doi:10.1017/S0004972724000832
∗Provisional—final page numbers to be inserted when paper edition is published

CONGRUENCES FOR SUMS OF MACMAHON’S q-CATALAN
POLYNOMIALS

TEWODROS AMDEBERHAN and ROBERTO TAURASO �

(Received 19 June 2024; accepted 5 July 2024)

Abstract

One variant of the q-Catalan polynomials is defined in terms of Gaussian polynomials by

Ck(q) =
[2k

k

]
q
− q

[ 2k
k + 1

]
q
.

Liu [‘On a congruence involving q-Catalan numbers’, C. R. Math. Acad. Sci. Paris 358 (2020), 211–215]
studied congruences of the form

∑n−1
k=0 qkCk modulo the cyclotomic polynomial Φn(q)2, provided that n ≡

±1 (mod 3). Apparently, the case n ≡ 0 (mod 3) has been missing from the literature. Our primary purpose
is to fill this gap. In addition, we discuss a certain fascinating link to Dirichlet character sum identities.

2020 Mathematics subject classification: primary 11B65; secondary 05A10, 05A19, 11A07.

Keywords and phrases: q-Catalan number, q-analogue congruence, q-binomial coefficient, cyclotomic
polynomial, roots of unity.

1. Introduction

There are several possible q-analogues of the Catalan numbers (k + 1)−1
(

2k
k

)
. Here, we

consider MacMahon’s q-Catalan polynomials which are defined by

Ck(q) :=
1 − q

1 − qk+1

[2k
k

]
q
=

[2k
k

]
q
− q

[ 2k
k + 1

]
q
,

where [ n
k ]q denotes the q-binomial coefficient recalled in Section 2. The first few

q-Catalan polynomials are

C0(q) = C1(q) = 1, C2(q) = 1 + q2 and C3(q) = 1 + q2 + q3 + q4 + q6.

Notice that Ck(q) is a polynomial in q and it reduces to the ordinary Catalan number
as q→ 1. Moreover, Ck(q) has a natural enumerative meaning. Indeed, MacMahon
[4, Volume 2, page 214] established that

Ck(q) =
∑

w

qmaj(w),
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where w ranges over all ballot sequences a1a2 . . . a2k (that is, any permutation of the
multiset {0k, 1k} such that in any subword a1a2 . . . ai, there are at least as many 0s as
there are 1s) and

maj(w) :=
∑

{i:ai>ai+1}
i

is the major index of w (see also the survey [1, Section 3] and [7, Problem A43]).
In the present work, however, we focus on a problem of number-theoretic interest.

The second author in [8, Theorem 6.1] proved that, modulo Φn(q),

n−1∑
k=0

qkCk(q) ≡
⎧⎪⎪⎨⎪⎪⎩

q�n/3� if n ≡ 0, 1 (mod 3),
−1 − q(2n−1)/3 if n ≡ 2 (mod 3),

where

Φn(q) =
∏

1≤k≤n
(n,k)=1

(q − e2kπi/n)

denotes the cyclotomic polynomial of order n. Afterwards, a stronger version was
proved by Liu in [2, Theorem 1]: modulo Φn(q)2,

n−1∑
k=0

qkCk(q) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q(n2−1)/3 − n − 1

3
(qn − 1) if n ≡ 1 (mod 3),

−q(n2−1)/3 − qn(2n−1)/3 if n ≡ 2 (mod 3),

where the case n ≡ 0 (mod 3) is not covered. Our main aim is to fill this gap as stated
next.

THEOREM 1.1. If n is a positive integer divisible by 3, then

n−1∑
k=0

qkCk(q) ≡ qn(2n+1)/3 +
1
3

(qn − 1)(2 + (n + 1)q2n/3) (mod Φn(q)2).

As we will explain in more detail below, this theorem holds as soon as we prove the
following more manageable identity, which is of interest in its own right.

THEOREM 1.2. If n is a positive integer divisible by 3 and q is a primitive nth root of
unity, then

n/3∑
k=1

(−1)kqk(3k−1)/2

1 − q3k−1 +

n/3−1∑
k=1

(−1)kqk(3k+5)/2

1 − q3k =
1
6

(2 + (n + 1)q2n/3). (1.1)

Notice that, according to [2, Lemma 3], our Theorem 1.2 mirrors

�n/3�∑
k=1

(−1)kqk(3k−1)/2

1 − q3k−1 +

�(n−1)/3�∑
k=1

(−1)kqk(3k+5)/2

1 − q3k ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−n − 1

6
if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3).
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The remainder of the paper is organised as follows. In Section 2, we present
a reduction of our main result Theorem 1.1 to Theorem 1.2. Section 3 contains
preliminary results which we need towards the proof of Theorem 1.2. Sections 4 and 5
split up Theorem 1.2 according to the parity of n and contain the corresponding proofs.
Finally, in Section 6, we consider a conversion of one particular identity coming from
(1.1) into a trigonometric format and a remarkable implication in the language of
character sums.

2. Reducing Theorem 1.1 to Theorem 1.2

We recall that the Gaussian q-binomial coefficients are defined by

[n
k

]
q
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q; q)n

(q; q)k(q; q)n−k
if 0 ≤ k ≤ n,

0 otherwise,

where the q-shifted factorial is given by (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1) for
n ≥ 1 and (a; q)0 = 1.

By [3, Theorem 1.2],

n−1∑
k=0

qk
[2k

k

]
q
≡

(
n
3

)
q(n2−1)/3 (mod Φn(q)2), (2.1)

where
(
·
·

)
denotes the Legendre symbol. In the same vein, we also recall the identity

[9, Theorem 4.2],
n−1∑
k=0

qk+1
[ 2k
k + 1

]
q
=

n∑
k=1

(
k − 1

3

)
q(2k2−k(k−1)/3)/3

[ 2n
n + k

]
q
.

Let 1 ≤ k ≤ n − 1. Then, the q-analogue [6, Theorem 2.2]
[an + b
cn + d

]
q
≡

(
a
c

)[b
d

]
q

(mod Φn(q))

of Lucas’ classical binomial congruence combined with (1 − qn) ≡ 0 (modΦn(q)), and
the fact that

[n − 1
k − 1

]
q
=

k−1∏
j=1

1 − qn−j

1 − qj = q−k(k−1)/2
k−1∏
j=1

qj − qn

1 − qj ≡ (−1)k−1q−k(k−1)/2 (mod Φn(q)),

immediately imply that
[ 2n
n + k

]
q
=

1 − q2n

1 − qn+k

[ 2n − 1
n + k − 1

]
q
≡ (1 − qn) · 2

1 − qk

(
1
1

)[n − 1
k − 1

]
q

≡ (qn − 1) · 2(−1)kq−k(k−1)/2

1 − qk (mod Φn(q)2).

https://doi.org/10.1017/S0004972724000832 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000832


4 T. Amdeberhan and R. Tauraso [4]

Therefore, modulo Φn(q)2,

n−1∑
k=0

qk+1
[ 2k
k + 1

]
q
≡

n−1∑
k=0

(
k − 1

3

)
q(2k2−k(k−1)/3)/3

[ 2n
n + k

]
q

≡ 2(qn − 1)
n−1∑
k=1

(
k − 1

3

)
q(2k2−k(k−1)/3)/3 (−1)kq−k(k−1)/2

1 − qk

≡ −2(qn − 1)
( �n/3�∑

k=1

(−1)kqk(3k−1)/2

1 − q3k−1 +

�(n−1)/3�∑
k=1

(−1)kqk(3k+5)/2

1 − q3k

)
.

By substituting this congruence together with (2.1) into the definition of Ck(q),
we easily see that, when n is divisible by 3, Theorem 1.1 is indeed equivalent to
Theorem 1.2.

3. Preparing our proof of Theorem 1.2

Henceforth, we replace n with 3n so that our target in (1.1) amounts to proving

n∑
k=1

(−1)kqk(3k−1)/2

1 − q3k−1 +

n−1∑
k=1

(−1)kqk(3k+5)/2

1 − q3k =
1
3
+

3n + 1
6

q2n. (3.1)

To establish this identity, we need the next two results.

LEMMA 3.1. For any complex number z,

n∑
k=1

(−1)kzk(3k−1)/2

1 − z3k−1 +

n−1∑
k=1

(−1)kzk(3k+5)/2

1 − z3k

=
(−1)n−1

2

n−1∑
k=1

zk(3n+2)/2

1 + z3k/2 +
1
2

n−1∑
k=1

(−1)kzk(3n+2)/2

1 − z3k/2

+

n∑
k=1

1
1 − z3k−1 −

�(n+1)/2�∑
k=1

1
1 − z3k−2 −

2n − 1 + (−1)n

4
. (3.2)

PROOF. Employing partial fractions and after further rearrangement, we obtain

n∑
k=1

(−1)kzk(3k−1)/2

1 − z3k−1 =
1
2

n∑
k=1

(−1)kzk(3k−1)/2

1 − z(3k−1)/2 +
1
2

n∑
k=1

(−1)kzk(3k−1)/2

1 + z(3k−1)/2

=
1
2

n∑
k=1

(−1)k((z(3k−1)/2)k − 1 + 1)
1 − z(3k−1)/2 − 1

2

n∑
k=1

−(−z(3k−1)/2)k + 1 − 1
1 − (−z(3k−1)/2)
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= −1
2

n∑
k=1

k−1∑
j=0

((−1)k + (−1)j)zj(3k−1)/2 +
1
2

n∑
k=1

( 1
1 + z(3k−1)/2 +

(−1)k

1 − z(3k−1)/2

)

= −1
2

n∑
k=1

k−1∑
j=0

((−1)k + (−1)j)zj(3k−1)/2 +

n∑
k=1

1
1 − z3k−1 −

�(n+1)/2�∑
k=1

1
1 − z3k−2 .

Continuing with additional algebraic manipulation leads to
n∑

k=1

k−1∑
j=0

((−1)k + (−1)j)zj(3k−1)/2 =

n−1∑
j=0

n∑
k=j+1

((−1)k + (−1)j)zj(3k−1)/2

=
2n − 1 + (−1)n

2
+ 2

n−1∑
j=1

(−1)jzj(3j+5)/2

1 − z3j +

n−1∑
j=1

( (−1)nzj(3n+2)/2

1 + z3j/2 − (−1)jzj(3n+2)/2

1 − z3j/2

)
.

Combining the last two calculations, we find (3.2). �

LEMMA 3.2. If α is a primitive mth root of unity, then
m∑

k=1

1
1 − z−1αk =

m
1 − z−m . (3.3)

PROOF. We introduce the function f (z) := zm − 1 =
∏m

k=1(z − αk). Then, taking the
logarithmic derivative, we obtain

f ′(z)
f (z)

=

m∑
k=1

1
z − αk ,

which means

m
1 − z−m =

m∑
k=1

1
1 − z−1αk .

�

We set q = exp(2πij/3n) with gcd(j, 3n) = 1. Applying (3.3) with α = q3, and z = q
and m = n,

n∑
k=1

1
1 − q3k−1 =

n
1 − q−n =

n
3

(1 − qn). (3.4)

By substituting (3.4) in the right-hand side of (3.2) with z = q, we can put the target
(3.1) in a form that is more convenient for our method of proof:

(−1)n−1

2

n−1∑
k=1

qk(3n+2)/2

1 + q3k/2 +
1
2

n−1∑
k=1

(−1)kqk(3n+2)/2

1 − q3k/2 +
n
3

(1 − qn)

−
�(n+1)/2�∑

k=1

1
1 − q3k−2 −

2n − 1 + (−1)n

4
=

1
3
+

3n + 1
6

q2n. (3.5)
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Next, we proceed to study (3.5) by distinguishing two cases: n = 2N and n = 2N − 1.
This allows us to circumvent fractional powers of q.

(a) If n = 2N, then q3N = (−1) j = −1 because j is odd. With some algebraic
simplifications, (3.5) yields

q2N
N−1∑
k=1

qk

1 − q6k +

N∑
k=1

q2k−1

1 − q6k−3 +
2N
3

(1 − q2N) −
N∑

k=1

1
1 − q3k−2 − N

=
1
3
−

(
N +

1
6

)
qN .

(b) If n = 2N − 1, then we determine that (3.5) is equivalent to

q2N−1
N−1∑
k=1

qk

1 − q6k +

N−1∑
k=1

q2k

1 − q6k +
2N − 1

3
(1 − q2N−1)

−
N∑

k=1

1
1 − q3k−2 − (N − 1) =

1
3
+

(
N − 1

3

)
q2(2N−1).

In the next two sections, we furnish the proofs for these two cases.

4. Proof of the case n = 2N

The condition gcd(j, 6N) = 1 forces j = ±1 (mod 6). We set ω := qN so that we have
1 − ω + ω2 = 0 and ω3 = −1. Therefore, it suffices to show the following result.

LEMMA 4.1. We have

ω2
N−1∑
k=1

qk

1 − q6k +

N∑
k=1

q2k−1

1 − q6k−3 −
N∑

k=1

1
1 − q3k−2 = −

N
3

(1 + ω) +
1
3
− ω

6
. (4.1)

PROOF. We find it convenient to express our claim in terms of the quantities

A1 =

N−1∑
k=1

1
1 − qk , A2 =

N−1∑
k=1

1
1 − ωqk , A3 =

N−1∑
k=1

1
1 − ω2qk ,

A4 =

N−1∑
k=1

1
1 + qk , A5 =

N−1∑
k=1

1
1 + ωqk , A6 =

N−1∑
k=1

1
1 + ω2qk .

(i) By partial fraction decomposition,

6x
1 − x6 =

1
1 − x

− ω

1 − ω2x
+
ω2

1 + ωx
− 1

1 + x
+

ω

1 + ω2x
− ω2

1 − ωx
. (4.2)

Hence, taking x = qk results in

6
N−1∑
k=1

qk

1 − q6k = A1 − ω2A2 − ωA3 − A4 + ω
2A5 + ωA6.
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(ii) Again by partial fraction decomposition,

3x
1 − x3 =

1
1 − x

− ω

1 − ω2x
+
ω2

1 + ωx
. (4.3)

Thus, the choice x = q2k−1 gives

3
N∑

k=1

q2k−1

1 − q6k−3 = B1 − ωB2 + ω
2B3,

where

B1 =

N∑
k=1

1
1 − q2k−1 , B2 =

N∑
k=1

1
1 − ω2q2k−1 , B3 =

N∑
k=1

1
1 + ωq2k−1 .

It is easy to check that B2 = N/2 and B1 + B3 = N directly from

2 Re(B2) = B2 + B2 =

N∑
k=1

1
1 + ω−1q2k−1 +

N∑
k=1

1
1 + ωq1−2k ,

B1 + B3 =

N∑
k=1

1
1 − q2k−1 +

N∑
k=1

1
1 + qNq2N+2−2k−1 .

Consequently,

3
N∑

k=1

q2k−1

1 − q6k−3 = B1 −
ωN
2
+ ω2(N − B1) = (2 − ω)

(
B1 −

N
2

)
.

Moreover, we recognise that

B1 =

2N−1∑
k=1

1
1 − qk −

N−1∑
k=1

1
1 − q2k = A1 +

1
1 − qN + A2 −

A1 + A4

2
=

A1

2
+ A2 −

A4

2
+ ω.

(iii) Introducing the values

C1 :=
N∑

k=1

1
1 − q3k−1 , C2 :=

N∑
k=1

1
1 − q3k−2

and using a partial fraction decomposition of 1/(1 − x3),

C1 + C2 =

3N−1∑
k=1

1
1 − qk −

N−1∑
k=1

1
1 − q3k

= A1 +
1

1 − qN + A2 +
1

1 − q2N + A3 −
A1 + A3 + A5

3

=
2A1

3
+ A2 +

2A3

3
− A5

3
+

4ω + 1
3

.
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Taking advantage of (3.4) yields

2N
3

(1 − q2N) =
2N∑
k=1

1
1 − q3k−1 =

N∑
k=1

1
1 − q3k−1 +

N∑
k=1

1
1 − q3(2N+1−k)−1

= C1 +

N∑
k=1

1
1 − q−3k+2 = C1 −

N∑
k=1

q3k−2

1 − q3k−2 = C1 + N − C2.

The last two evaluations lead to

C2 =
A1

3
+

A2

2
+

A3

3
− A5

6
+

1 + 4ω
6
+

N(2ω − 1)
6

.

Finally, by using items (i), (ii) and (iii), we reduce (4.1) to
1
6 (−(A1 + A6) + (A2 + A5) − (A3 + A4) + N − 1 − ω(A2 + A5 − (N − 1))) = 0,

which holds because of the symmetry A� + A7−� = N − 1 for � = 1, 2 and 3. �

5. Proof of the case n = 2N − 1

Let ω := −q2(2N−1) = eπi/3 so that ω2 = q2N−1, 1 − ω + ω2 = 0 and ω3 = −1.

LEMMA 5.1. We have

ω2
N−1∑
k=1

qk

1 − q6k +

N−1∑
k=1

q2k

1 − q6k −
N∑

k=1

1
1 − q3k−2 = −

N
3

(1 + ω). (5.1)

PROOF. We adopt the notation Ai from the previous section.
(i) By the partial fraction decomposition (4.2),

6q2N−1
N−1∑
k=1

qk

1 − q6k = ω
2(A1 − A4 − ω(A3 − A6) + ω2(A5 − A2)).

(ii) By the partial fraction decomposition (4.3),

6
N−1∑
k=1

q2k

1 − q6k = A1 + A4 − ω(A2 + A5) + ω2(A3 + A6).

(iii) We have
N−1∑
k=1

1
1 − q3k−1 +

N∑
k=1

1
1 − q3k−2 =

3N−2∑
k=1

1
1 − qk −

N−1∑
k=1

1
1 − q3k

= A1 +

N−1∑
k=0

1
1 − qN+k + A3 −

N−1∑
k=1

1
1 − q3k

= A1 +

N−1∑
k=0

1
1 − q2N−1−k + A3 −

N−1∑
k=1

1
1 − q3k
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= A1 +

(
N − 1

1 + ω
− A5

)
+ A3 −

A1 + A3 + A5

3

=
2A1

3
+

2A3

3
− 4A5

3
+ N − 2 − ω

3
and invoking (3.4) yields

2N − 1
3

(1 − q2N−1) =
2N−1∑
k=1

1
1 − q3k−1 =

N−1∑
k=1

1
1 − q3k−1 +

N∑
k=1

1
1 − q3(2N−1+1−k)−1

=

N−1∑
k=1

1
1 − q3k−1 +

N∑
k=1

1
1 − q−3k+2

=

N−1∑
k=1

1
1 − q3k−1 −

N∑
k=1

q3k−2

1 − q3k−2

=

N−1∑
k=1

1
1 − q3k−1 + N −

N∑
k=1

1
1 − q3k−2 .

The last two results imply that

6
N∑

k=1

1
1 − q3k−2 = 2A1 + 2A3 − 4A5 + 6N + ω − 2 + (2N − 1)(w2 − 1).

Now, by items (i), (ii) and (iii), we are able to restate (5.1) in terms of Ai. So, the
problem reduces to exhibiting a proof for the relation

A1 + A3 − A4 − 2A5 + A6 = 0. (5.2)

Since
x(1 − x)
1 + x3 = −

2
1 + x

+
1

1 − ωx
+

1
1 + ω2x

,

we have
N−1∑
k=1

qk(1 − qk)
1 + (qk)3 = A6 + A2 − 2A4,

N−1∑
k=1

ωqk(1 − ωqk)
1 + (ωqk)3 = A1 + A3 − 2A5,

N−1∑
k=1

ω2qk(1 − ω2qk)
1 + (ω2qk)3 = A2 + A4 − 2A6.

Therefore, we arrive at the following equivalent form of (5.2):
N−1∑
k=1

(qk(1 − qk)
1 + (qk)3 + 3

ωqk(1 − ωqk)
1 + (ωqk)3 − ω

2qk(1 − ω2qk)
1 + (ω2qk)3

)
= 0. (5.3)
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Since 1 + (ωqk)3 = 1 − q3k and 1 + (ω2qk)3 = 1 + q3k, further algebraic manipulation
converts (5.3) into

N−1∑
k=1

qk(1 + ωq3k)(1 − ωqk)
1 − q6k = 0. (5.4)

However, we note that

z(1 + ωz3)(1 − ωz)
1 − z6 =

1 − ω2

3

( 1
1 − z−2 +

1
1 + ωz2 −

1
1 − z−1 −

1
1 + ωz

)
.

Letting z = qk and ω = −ω−2 = −q−(2N−1), our summand can be written as

1 − ω3

3

( 1
1 − q−2k +

1
1 − q−(2N−1−2k) −

1
1 − q−k −

1
1 − q−(2N−1−k)

)
.

Hence, the claim now becomes
N−1∑
k=1

1
1 − q−2k +

N−1∑
k=1

1
1 − q−(2(N−k)−1) =

N−1∑
k=1

1
1 − q−k +

N−1∑
k=1

1
1 − q−(2N−1−k) ,

which in turn translates to
N−1∑
k=1

1
1 − q−2k +

N−1∑
k=1

1
1 − q−(2k−1) =

N−1∑
k=1

1
1 − q−k +

2N−2∑
k=N

1
1 − q−k .

Indeed, equality follows here since both sides of the last equation are equal to∑2N−2
k=1 1/(1 − q−k). In fact, this is reminiscent of the set-theoretic identity

{k : 1 ≤ k ≤ N − 1} ∪ {2N − 1 − k : 1 ≤ k ≤ N − 1}
= {2k : 1 ≤ k ≤ N − 1} ∪ {2N − 1 − 2k : 1 ≤ k ≤ N − 1}.

The proof is complete. �

6. Conclusion

For the trigonometric functions enthusiast, the particular equation in (5.4) can be
converted to one that involves only these circular functions. To this end, we use the
identities

eiθ

1 − e2iθ =
i csc(θ)

2
,

1
1 + e2iθ =

1
2
− i tan(θ)

2
,

and we rewrite π/6 = π/2 − (2N − 1)x followed by replacing tan with cot via
tan(π/2 − t) = cot(t). Here, x = π/(6N − 3) and the outcome is

qk(1 + ωq3k)(1 − ωqk)
1 − q6k =

1 − ω2

3

( qk

1 − q2k −
1

1 + ωqk +
1

1 + ωq2k

)

=
i(1 − ω2)

6

(
csc(2kx) + tan

(
π

6
+ kx

)
− tan

(
π

6
+ 2kx

))

=
i(1 − ω2)

6
(csc(2kx) + cot((2N − 1 − k)x) − cot((2N − 1 − 2k)x).
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Hence, (5.4) reduces to verifying the trigonometric identity

N−1∑
k=1

(csc(2kx) + cot((2N − 1 − k)x) − cot((2N − 1 − 2k)x) = 0.

For the more number-theoretic minded reader, we present below a consequence
of the identity in (5.4). We appreciate Terence Tao for allowing us to include his
derivation in this paper. For the remainder of this section, specialise to the case where
2N − 1 is coprime to 3.

Introduce the cube root of unity ε := ω2 = e2πi/3 = q2N−1, where q = e2πi/(6N−3).
Expand the numerator in (5.4):

N−1∑
k=1

qk + ε2q2k − ε2q4k − εq5k

1 − q6k = 0.

From the easily verified ‘discrete sawtooth Fourier series’ identity, for any k not
divisible by 2N − 1,

1
1 − q6k = −

1
2N − 1

2N−2∑
j=0

jq6jk

(proven by multiplying out the denominator, cancelling terms and applying the
geometric series formula), we can write the preceding identity to be proven as

2N−2∑
j=0

j
N−1∑
k=1

(q(6j+1)k + ε2q(6j+2)k − ε2q(6j+4)k − εq(6j+5)k) = 0.

Since gcd(2N − 1, 3) = 1, we can write q = ε2N−1ζ for some primitive (2N − 1)th root
ζ of unity. We then reduce to

2N−2∑
j=0

j
N−1∑
k=1

(ε(2N−1)kζ(6j+1)k + ε2(2N−1)k+2ζ(6j+2)k)

=

2N−2∑
j=0

j
N−1∑
k=1

(ε(2N−1)k+2ζ(6j+4)k + ε2(2N−1)k+1ζ(6j+5)k).

From Galois theory, we can see that the net coefficient of ζa would have to be
independent of a for each primitive residue class a mod 2N − 1. We summarise this
discussion in the next declaration.

COROLLARY 6.1. Let N > 1 be a natural number such that 2N − 1 is not divisible
by 3, let χ : Z→ C be a nonprincipal Dirichlet character of period 2N − 1 and let
ε := e2πi/3. Then, we have the character sum identity
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( 2N−2∑
j=0

j · χ(6j + 1)
)( 2N−2∑

k=1

ε(2N−1)k · χ(k)
)

= −
( 2N−2∑

j=0

j · χ(6j + 2)
)( N−1∑

k=1−N

ε2(2N−1)k+2 · χ(k)
)
. (6.1)

We conclude with a problem proposed by Terence Tao.

QUESTION 6.2. Is there a direct proof of the identity (6.1) that does not rely on (5.4)?
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