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1. Introduction. In recent years versions of the Lebesgue and the Hewitt—Yosida
decomposition theorems have been proved for group-valued measures. For example,
Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive group-
valued measures on a ring using (1) algebraic and (2) topological notions of continuity and
singularity, and generalizations of the Hewitt—-Yosida theorem have been given by
Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued
submeasures and in particular we have established a decomposition theorem from which
analogues of the Lebesgue and Hewitt—Yosida decomposition theorems for submeasures
may be derived. Our methods are based on those used by Drewnowski in [2] and the main
theorem established generalizes Theorem 4.1 of [2].

2. Notation and terminology. Let G be a commutative lattice group (abbreviated to
l-group). A quasi-norm (resp. norm) q on G is said to be an l-quasi-norm (I-norm) if
q(x)=q(y) for all x, y in G with |x|<|y|. A G-valued function w defined on a ring R of
subsets of a set X is said to be a submeasure if u(J)=0, pW(EUF) =< u(E)+ u(F) for all
E, F in R with ENF=J, and u(E)<(F) for all E, F in R with EcF. A G-valued
submeasure u on R is said to be exhaustive if and only if, for any disjoint sequence {E,}
in R, P_I]l w(E,) =0 1in (G, q). An l-group G is said to be order complete if every bounded

increasing net in G has a supremum. An [-quasi-norm q on G is said to be order
continuous if G < A 1 xin G*={xe G:x=0}implies q(x) =sup{q(y):ye Aland B | x in
G™ implies q(x) =inf{q(y):y e B}.

Let & denote a collection of pairwise disjoint sets in & and let A be the set of all such
collections. If 9,, 9, €A, then we write 9, <9, if and only if 9, is a refinement of %,.
With each E€ R we associate members of @ ; the collection of all such pairs (E, @) is
denoted by ¢ and we let

YE)={ZeA:(E,2)e%} and Aq= |J 9(E).

In the sequel we use | @ to mean the set theoretic union of the members of 9. Following
Drewnowski’s terminology ([2], Definition 2.1), the collection ¥ is said to be an additivity
on R if it satisfies the following conditions:

(a) A;< Ay, where A consists of those collections 9 which have only a finite number
of members;

(b) if E€R and @ € 4(E), then % =E;

(¢c) if E€R, D, D, € 4E), then D, ND, e 4(E), where &,ND,={D,ND,:D,eD,
i=1,2}
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d) if E,, E,e®R, E\NE, = and 9,€¢4(E,) (i=1,2), then 9, UD,c%(E,UE,),
where 9,U%,={D,UD,:D,e9®, i=1,2};

(e) if E, FER, ECF and @ € %(F), then 9 NE e %(E).

Examples of additivities are

1. 4 ={E 9):EcR, DA, UD=E}

2. 4. ={(E92):EcR DA, \UD=E}, where A_ is the collection of all & which
contain a countable number of disjoint sets in R.

A topology T on @ is said to be a ring topology if the mappings (A, B) > A A B and
(A,B)=> ANB of #XR— R are continuous, continuity being with respect to the
product topology on R X R. A ring topology 7 is said to be an FN-topology (Fréchet-
Nikodym) if and only if, for each 7-neighbourhood U of & in R, there exists a
r-neighbourhood V of J in R such that B e U for all B< A € V, B e®. The notion of an
FN-topology was introduced and studied by Drewnowski in ([1]}, pp. 271-5). In particular,
a family F={n,:iel} of R¥-valued submeasures on a ring defines an FN-topology
T'(n;:iel); a base of I'(m; :ieI)-neighbourhoods of & in R being given by finite
intersections of sets of the form U,;={A e R :n,(A)<eHe >0, n; € F). Conversely, for
each FN-topology I' on &, there is a family {£ :je J} of R¥-submeasures on & such that
I'=T(:Jel).

Let f(9) denote finite collections of members of &. If I is an FN-topology on ® and
E e R, we say that E =T"-lim (@) if and only if, for each I'-neighbourhood U of & in R,
there exists a D, € f(P) such that EAY @' e U for all Dy, € D' € f(D). We shall also use
the following example of an additivity.

3. .M ={(E 2):EcR,DecA, UD=E, E=T-limf(D)}. The above additivity is
called the additivity generated by I. In particular, if n is an R*-valued submeasure on R
we abbreviate 4. (I'(n)) to %(m); in this case we note that, if EeR and 9=
{D,:n=1,2,...}eA, then E =n-lim (D) if and only if

n(E\U Dk)—>0 as n— o,

k=1

In proving our decomposition theorem we require the notions of §-continuity and
%-singularity as given by Drewnowski in [2], Definitions 2.4 and 2.17 respectively. For
the sake of completeness we include these definitions as follows.

DEerFINITION 1. Let 9§ be an additivity on . An FN-topology T" on R is said to be

G-continuous if and only if, for each E€ R and % € 9(E), I'-lim E\ U( P'=.
BD'ef(D)

DeriNITION 2. An FN-topology I is said to be %-singular if and only if the only
%-continuous FN-topology weaker than I is the trivial one.

If (G, q) is an l-quasi-normed group and 7 is a G-valued submeasure on &, then
clearly I'(qem) is %(m)-continuous. We also see that, if 4 is an additivity on R,
then T'(qem) is %-continuous if and only if, for each Ec®R and 9D e%(E),

lim q(n(EN\U 2'))=0; in this case we simply say that n is $-continuous. It is also
2'ef (@)
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straightforward to show that an FN-topology I' is ¥_-continuous if and only if it is order
continuous; thatis, if {E,,:n=1,2,...}isasequencein R, E, | &, thenT-lim E, = .Ina

similar way we say that i is 9-singular if and only if I'(qon) is §-singular. It is not difficult
to prove that 1 is 9-singular if and only if any %-continuous G-valued submeasure A on
AR such that A € 1 is identically zero.

3. The decomposition theorem. In this section we assume that G is an order
complete [-group and that q is an order continuous [-quasi-norm on G. Let w be an
exhaustive G-valued submeasure on & and suppose that 4 is an additivity on R. For each
E e R, define

S.E)=_A V wlU29

DeY(E) D'ef(@D)
and

SuE)=_V A w(E\UD).

DeG(E) D'ef(@)
Then we have the following

LemMa 1. S, and S, are G-valued exhaustive submeasures on R.

Proof. Let Ec R and @ ¢ %(E). By property (b) of an additivity | J2 = E and so
O0<spu(UD)<su(E)forall @' ef(D); the net {u (U D) : D' € f(D)}is T and bounded and so
by the order completeness of GV w(UD') exists. Similarly, by property (c) of an

D’ef (@)
additivity the net { V w(UJ @’):@e‘g(E)} is | and bounded and so by the order
D'ef (@)

completeness of G A V w(lU D) exists in G* for each E€?R. By a similar
DeG(E) D'ef(D)

argument we can prove that S/ (E) exists in G* for each E€ &.
The subadditivity of S, (resp. S,) follows from the subadditivity of p and property

(d) (property (e)) of an additivity. Similarly the monotonicity of S, (resp. S, follows from
the monotonicity of w and property (¢) (resp. (d)) of an additivity.

For any E€ R, S,(E)<u(E) and S, (E)<u(E), and so, since q is an I-quasi-norm,
q(S.(E)) < q(n(E)) and q(S,(E))=<q(u(E)); this implies that both S, and S| are exhaus-
tive and w-continuous.

Lemma 2. (i) S, is G-continuous.
(i) S, is G-singular.

Proof. (i) Suppose that S, is not ¢-continuous. Then there exist a positive number &,
Ee®R and D e9Y(E) such that q(S,(EN\U 2')>¢ for all @'ef(D). Since S, is a
submeasure and g has the [-property we have

a(S,.(E))=q(S.(EN\U 2))>¢ (1)
for all @'ef(@); also, S, (E)< V wu(U9P) and since q is order continuous
D'ef (D)
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sup q(pn(U 2")=q(S,(E))>e¢. Thus there exists a 9, € f(D) such that q(p(U 9D,))>e.
B'ef(D)

By property (e) of an additivity 2\ 9, € $(EN\U 2,), where 9\ D, ={DeD:D¢ D},
and from (1) q(S.(EN\U 9,))>e. It follows from the order continuity of q that

sup  q(pn(U 27)=q(S.(EX\U 9,))> € and so there exists a D, € f(D\D,) such that
D'ef(@D\D))

a(u(U 2,)>e.

In this way we construct by induction a disjoint sequence {&, :n=1,2, ...} such that
q((U 92,))> e. This contradicts the exhaustive property of w, and so w is ¢-continuous,
as required.

(ii) Suppose that S’, is not 9-singular. Then there exists a §-continuous G-valued
submeasure A such that A € S and A is not identically zero. This implies that there is a set
E e R and a positive number n such that q(A(E))>n>0. Since A € S, there is a positive
number & such that

qS.(F)) <8 > qA(F))<n/2  (FeR). (2)

Thus q(S,(E))=8; since q is order continuous there exists a @€ %(E) such that
q(u(ENXU 9))=68 for all @' ef(D). Now A is §-continuous and so there exists a
Dief(D@) such that qM(ENU D) <n/2% Let E;=J) @, and A,=EN\E,. Then
a(n(A,)) =8, q(A(A})<n/2? and q(A(E,))>n/2+n/2%. Thus from (2) q(S.(E,))=8 and
so there exists a @ € 4(E;) such that q(u(E,\U @) =6 for all @' f(D). Again since A
is G-continuous there exists a @} € f(D) such that gA(E,\U D)) <n/2°. Let E;= U 9}
and A,=E,\E,. Then q(1(A,)=38, q(A(A2))<n/2° and q(A(E,))>n/2+1/2°. In this
way we construct by induction a disjoint sequence {A,:n=1,2,...} in R such that
q(u(A)=8 for n=1,2,.... This contradicts the property that u is exhaustive.

LemMa 3. (i) If A is a 9-continuous G-valued submeasure on R such that A < ., then
AKS,.
(i) If v is a G-singular G-valued submeasure on R such that v< p, then v < S|,.

Proof. (i) Since A < y, given any & >0, there exists a positive § such that
q(n(E)<8 > qA\(E)se  (E€R). (3

We seek to show that q(S, (E))<8 > q(A(E))<e. Suppose that this assertion is not true.
Then there exists an E; in & such that q(S,(E))<8 and q(A(Eg))>e+vy for some
positive number <. Since q is order continuous there exists @ e %(E,) such that
q(u(lJ 2")< 8 for all @'ef(D). Since A is Y-continuous there exists a D€ f(D) such
that q(A(Ex\.U 2¢)) <+v/2. It follows that q(A(|J 9¢))>e+v/2. Thus q(u(lJ D)<
and q(A(lJ 2¢))> €+ v/2. This contradicts (3), and so A< S,,.

(i) Since v« u, given any £ >0, there exists a positive number § such that

qu(E)<8 = q(w(E))se  (E€R). (4)

We seek to prove that q(S,(E))<8 = q(v(E))<e. Suppose that the implication is not
true. Then there exists a set E, in & such that q(S,.(Ey)) <8 = q(v(E,))> ¢+ for some
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v >0. This implies that for all € 4(E,), q( N w(ENU QZ')) < 8. Since v« . and u is
D[ (@)

exhaustive it follows that v is exhaustive and so, by Lemma 2(i), S, is %-continuous.
Moreover, S, < v and so, since v is §-singular, it follows that S, = 0. Thus there exists a
Doc Y9(E,) such that q(v(U D)) <vy/2 for all @'ef(D,). Choose Dyef(D;) so that
q(u(EoN\U 2¢)) <8 and let Fy=1J 9. Then q(v(E;\F,))>¢e+v—vy/2=¢e+v/2. This
contradicts (4) and so v< S/.

DEerNITION 3. Two G-valued submeasures w, v defined on a ring R are said to be
equivalent, written w~ v, if and only if p < v and v« p.

We now prove our decomposition theorem.

THeEOREM 1. Let (G, q) be an l-group and q an order continuous l-norm on G. Let
be an exhaustive G-valued submeasure on R and 4 an additivity on R. Then p~S, + S,
(~S.vS.). If A, v are Y-continuous and §-singular G-valued submeasures on R
respectively such that n ~X +v, then A ~S,, and v~ Sj,.

Proof. Let E€c R, D 4(E) and @' < f(D). Now
E=(E\U 270U 92

and so

mEY<w(ENU 29+ p(U 2)<w(ENU 29+ V w(lU 2%

D'ef (@)
it follows that

wE)<s A wEXU2YM+ V wlU D)

D'ef(D) D'ef (D)
and subsequently we have

wE)s V. A w(ENXUD)+ AV wlU92)

BDeY(E) D'ef(D) DeY(E) D'ef (D)

Thus, for E€ R,
p,(E) = s,,_ (E) + SL(E)

Moreover, S, (E)=<up(E) and S/ (E)<u(E), and so it is clear that u ~S, +S/..
The second part of the theorem deals with the ‘uniqueness’ of the decomposition.
If A\+v~p, then A, v« p. Thus, by Lemma 3, A« S, and v« S§,. Also A +v~
S, +8S,,, so that, in particular, S, « A +v and S/« A +v. The G-valued submeasure A +v
is exhaustive and so by Lemma 3

S, €8+, =8 +S, and S§,«<8,,, =S,+8S,.

Now S, is %-continuous and S, « v so that, since v is 9-singular, S, =0. Also S; is
¢-singular by Lemma 2(ii) and since S,=<A and A is ¥-continuous it follows that S, is
%-continuous; thus S, =0.

Therefore S, €S, <A and S, « S, < v.
Thus S, ~A and S, ~ v, as required.
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CoROLLARY 1. If 4=1,, then we have a Hewitt-Yosida type decomposition theorem
for exhaustive l-group-valued submeasures. In this case S, is order continuous and so is a
o-sub-additive submeasure on R and S|, is ‘purely finitely sub-additive’ in the sense that, if
A is an order-continuous G-valued submeasure on R such that A < S, then A =0.

CoroLLARY 2. Let (E, p) be an I-quasi-normed group and let n be an E-valued
submeasure on R. Suppose that the additivity on R is 4= 94.(I'(pem)). In this case we have
a Lebesgue-type decomposition theorem for an exhaustive G-valued submeasure w; the
submeasure S, is m-continuous and S, is n-singular.
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