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Estimating ice te:Dlperature fro:Dl short records 
in thermally disturbed boreholes 
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ABSTRACT. A technique to estimate undisturbed ice temperature is discussed 
for sensors placed in boreholes that have been heated to the melting point during 
drilling, and for which only a limited time span of temperature record is available. 
A short temperature record after the hole refreezes commonly results when using 
hot-water or steam drills, where measurements are constrained by logistics, ice 
deformation, sensor drift or other problems, or where the refreezing time is long 
because of near-freezing ice temperatures or large hole sizes. Short data records 
are also typical in ongoing drilling programs where temperature information may 
be necessary for the program itself. Building on analyses by Lachenbruch and 
Brewer (,1959) and a numerical model by Jarvis and Clarke (1974), it is shown 
that estimates of undisturbed temperatures can be made from records of temper­
ature that extend only marginally beyond the initial refreezing. Complex effects 
of hole size, heating history, and the thermodynamic and geometrical effects of a 
moving boundary (the freezing borehole walls) are important to temperature decay 
immediately after freeze-up, ~o that the standard technique of comparing temper­
ature decay to an inverse of time model is not applicable, and comparsion has to 
be made to a numerical model of heat flow to a refreezing borehole. Data from 
Ice Stream B, Antarctica, are compared to the numerical model to illustrate the 
technique. Data are also compared to simpler (inverse time) thermal models, and 
a potential for error is pointed out, since a short data record can be spuriously 
matched with the simpler, one or two free-parameter, models. 

INTRODUCTION full stablization time. Several factors, including drift in 
the sensors, logist ics of returning to a distant site and 
straining of electrical cables from internal deformation 
in the ice mass, often lead to a short record. Hot-water 
drills, in particular, create large thermal disturbances ex­
tending well beyond the initial drilling, as a result of the 
refreezing of the borehole. In water-filled holes, the nor­
malized record length can be short since the time span 
of the drilling disturbance may be many days, or the 
refreezing time may be long , such as when attempting 
to measure near-basal temperatures in ice that is close 
to the freezing temperature. A final practical consider­
ation is that knowledge of the ice-temperature field is 
often necessary in drilling projects, but to get ice tem­
peratures from recently drilled holes requires estimation 
wi th a short record. 

Measurement of the internal temperature of an ice mass 
usually requires some form of drilling to place temper­
ature sensors in the ice. This creates a thermal dis­
turbance in the ice, and the sensors register not the 
original temperature but a decay with time toward the 
undisturbed temperature. The time-scale of the decay 
can be approximately parameterized by normalizing the 
time since emplacement with the time span of the initial 
thermal disturbance (time is thus non-dimensionalized 
in this note). Zotikov (1986) has used the concept of a 
non-dimensional "stabilization time" for drilled holes, in 
which the thermal disturbance has decayed to a neglig­
ible level after several tens or hundreds. For deep drilling 
projects that create a long disturbance, this stabilization 
time can be years in real time. 

In practice, data are usually obtained for less than the 
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Temperature estimation by observation of the ther­
mal decay of a disturbance has been extensively studied 
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in permafrost by Lachenbruch and Brewer (1959). Their 
technique, or an even simpler model of the decay of an 
instantaneous line source of heat in an infinite medium 
(Carslaw and J aeger, 1959), has typically been applied 
in glacial studies. These decay models make simplify­
ing assumptions about the thermal disturbance to obtain 
analytical solutions and, as a result, are limited to record 
lengths of greater than 5 or 10. 

Refreezing of the borehole, with the attendant 
moving-boundary problem of the freezing walls, makes 
accurate modeling of shorter decay records a problem 
which can only be solved with numerical simulation. 
Jarvis and Clarke (1974) outlined the basic numerical 
technique and used it to correct readings made with ap­
parent data lengths of 3 to 5; however, they did not elab­
orate the technique to shorter records or discuss some of 
the associated problems. In the extreme case where the 
hole does not freeze shut and the hole can be melted to 
maintain a constant diameter, the technique of Harrison 
(1972) can be applied which uses the refreezing rate of 
the borehole to get an estimate of the temperature. 

However, there is usable information in temperature 
data from shortly after freeze-up, and this note discusses 
a technique for estimating the original ice temperature 
using short data lengths of between 1 and 5 (the case 
where the real-time data record is short or the total dis­
turbance time is long). The technique is illustrated with 
data from a borehole drilled through Ice Stream B in 
Antarctica. An additional objective is to warn against 
the case with which short data records can be incorrectly 
fitted with simpler curves of the Lachenbruch and Brewer 
(1959) type, where goodness of fit is no indication of the 
accuracy of projected temperatures. 

ANALYTIC MODELS OF THE DECAY OF A 
THERMAL DISTURBANCE 

When a thermal record is shorter than the stabilizat­
ion time, the data may be graphically compared with a 
thermal-decay model. The basic decay model is an anal­
ytical solution for the temperature in a solid that has 
been heated by an instantaneous line source of heat. The 
solution (Carslaw and Jaeger, 1959) shows the temper­
ature decrease is proportional to inverse time 

Q 1 
11T(t) = --

47r J( t 
(1) 

where 11 T is the temperature difference between the hole 
axis and the distant ice, Q is the total heat released per 
unit length, J( is the thermal conductivity of the ice 
and t is time since the thermal disturbance. Typically, 
when the data length is of order 10 (normalized time) 
or more, temperature data plotted against inverse time 
asymptotically approach a straight line, which can be 
used to extrapolate to infinite time based on Equation 
(1). Knowledge of the heat input to the ice, Q, is unnec­
essary since the graphical technique solves for Q / 47r K, 
as the slope of the line. 

When the data length is less than order 10, it is neces­
sary to account for the time span of the thermal distur­
bance. If the heat input to the ice is uniform in time, a 
better estimate of the short time behavior of the temper-
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ature decay is given in Lachenbruch and Brewer (1959) 

11T(t) = Q}( loge (_t_) 
47r8 t - 8 

(2) 

where s is the time span of the (assumed constant) ther­
mal disturbance, and the origin of time is at the start of 
the disturbance. Although originally developed for per­
mafrost, Equation (2) with minor modifications has been 
applied to ice. Lachenbruch and Brewer used the drilling 
time for S; however, in ice the latent heat of the refreezing 
water in the hole releases a similar magnitude of heat as 
drilling, and this extends the effective disturbance time. 
In this note, the drilling time plus the refreezing time is 
used for 8. However, the value of 8 for use in Equation 
(2) is not well defined when the thermal disturbance is 
non-uniform and this is one of several difficulties in using 
Equation (2) for short records. Equation (2) converges to 
Equation (1) as t » 8, and as Lachenbruch and Brewer 
pointed out, Equation (2) only differs from Equation (1) 
in terms of order (8/t)2 if t + 8/2 is substituted for t in 
Equation (1) . In practice, Equation (1) (with or without 
the 8/2 term) has been used in most glaciological work. 
Both are referred to here as inverse-time models. 

A normalized time of 5 is the approximate lower limit 
of applicability for the inverse-time models. At shorter 
times, temperature in the ice around a borehole deviates 
fronl the simple models in response to non-steady heat­
ing during drilling, phase changes in the borehole and 
non-zero hole diameter. This complex response is dis­
tinctive and can be compared to a numerical thermal 
model. Before discussing the numerical model, an exam­
ple of the short time response of a temperature sensor in 
a borehole is introduced. 

TEMPERATURE DECAY IN THE SHORT 
TERM, MEASURED BY A SENSOR IN A 
FREEZING BOREHOLE 

Thermal drilling results in a temperature decay in the 
borehole with a distinctive shape. This is illustrated with 
data from a hole in cold ice, at Ice Stream B, Antarctica, 
that was drilled to the bed with a hot-water drill (En­
gelhardt and others, 1990). The dotted line in Figure 
1 shows the data record, which is short (length about 
2.1) because the site was occupied for less than 3 weeks 
after the completion of the hole. The sensor was in­
stalled immediately after drilling, 4.8 d after the drill first 
reached 240 m depth. 

The temperature record goes through two "kinks". 
Initially, the sensor reads the freezing point of water, un­
til the refreezing walls of the hole engul f the sensor (at 
to + 6.3 d). As is typical, the sensor is located somewhat 
off the hole axis, so that after the sensor is frozen the 
hole remains partially unfrozen for some time and the 
heat liberated by the freezing water keeps the ice around 
the sensor relatively warm. Once the hole freezes com­
pletely (at to+6.73 d), the ice temperature drops rapidly 
as it decays towards the undisturbed temperature. The 
two diagnostic kinks, the first for sensor freeze-in and 
the second for hole freeze-up, are important features to 
identify. The second kink, which always precedes the 
steepest temperature drop, is used as the span of the 
thermal disturbance, s. 
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Fig. 1. The dotted line shows data from a 
sensor at 240m depth in a hot-water drilled 
hole at Up-B station, Ice Stream B, Antarc­
tica. The data, from an AD590 tempemture 
transd1Lcer and down-hole multiplexer, have 
had common mode electrical noise removed. 
A utomatic recording was started an hour be­
fore sensor freeze-in. The dashed curve is 
from Equation (2), 1tSing the solution from 
the numerical model to obtain Q. The dotted 
curve is the numerical solution to the decay of 
temperature. The origin of time (to) is when 
the drill first reached 240 m depth. Drilling 
lasted 4.8 d and freeze-up oCC1£TTed at 6.73 d 
(marked by the arTOw). 

NUMERICALLY EXTRAPOLATING TO 
FIN AL TEMPERATURE FROM VERY 
SHORT RECORDS 

A numerical model of the heat flow around a melt­
ing/freezing borehole was constructed (see Appendix) to 
investigate whether accurate estimations of ice temper­
ature can be made from short time records . The model 
assumes that the ice/borehole interface is smooth and 
circular, heat flow is radially symmetric, and the water 
and ice are pure and have constant thermal properties. 
Details of borehole freezing, such as slush-ice formation, 
non-circularity in the borehole or spatial instability in 
the freezing/melting process, were neglected under the 
assumption that their importance to the temperature de­
cay after borehole freeze-up would be small. 

The inputs to the model are the original ice temper­
ature and the heating history. A heating history is ap­
plied to a modeled region of ice and the melting and 
refreezing of the bore hole are followed through time. 
Borehole size and the surrounding temperature field are 
recorded. After the end of heating and after the eventual 
freeze-up, the model follows the decay of the temperature 
field. The output is typically obtained in the form of 
a temperature versus time record at some chosen rad­
ial location , which can then be directly compared to 
recorded data. 

Neither of the model inputs are known directly from 
the recorded temperature data. The original ice temper-
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ature is of course the unknown we are seeking, but 
the history is both complex and unknown, although es­
timates of the heat input can be made from the drilling 
records (see Humphrey and Echelmeyer, 1990). How­
ever, modeling shows that temperature decay following 
freeze-up is insensitive to the details of the heating of 
the hole during drilling. For example, comparisons were 
made between simulations in which heat was applied at 
a constant rate and simulations in which the hole was 
allowed to refreeze partially, with no direct heat input, 
and then re-opened with later heating. There was little 
difference in the post-freeze-up temperature response, as 
long as the total freeze-up time, s, was unchanged by 
the heating history. This behavior results from the fact 
that all heat lost to the ice has to traverse the constant­
temperature water/ice interface. Variations in heat in­
put to the borehole are compensated mostly by variat­
ions in melting/freezing at the walls, and not by changes 
in the heat flux into the ice. As a result, the heat lost 
by the borehole is largely determined by the hole size, 
which is itself parameterized by the time taken for the 
hole to refreeze after drilling stops. 

Thus, for the purposes of modeling the subsequent 
temperature decay, the heating history can be effectively 
parameterized by the duration of heating (of unknown in­
tensity) and the length of time from the end of heating to 
complete freeze-up. Since the freeze-up time can be dir­
ectly read from the temperature record and the heating 
time is known from the drilling record, the only unknown 
is the original ice temperature, and the numerical model 
is essentially a one-parameter model. The model is suffic­
iently constrained that only a short temperature record 
containing the initial curvature of the post-freezing decay 
is required to obtain reasonable temperature estimates. 

There are subtleties that limit the accuracy at very 
short record lengths. For example, the temperature de­
cay does depend on the location of the sensor relative to 
the hole a-xis. The sensor location is included as an in­
put parameter in the numerical model (location is chosen 
to match the first "kink" in the data). However, it has 
only a minor effect on the results and, after the hole has 
frozen, such details of the freezing process rapidly decline 
in importance. 

The numerical model is used to produce a suite of 
temperature-decay curves based on varying the final ice 
temperature and a best fit to the data is chosen from the 
suite of outputs. In the model, the heat loss to the ice, 
Q, is given as an output. The model provides a good 
fit to data, as illustrated in Figures 1 and 2, in which 
the final temperature is predicted to be -23.1 DC with an 
error from the curve-matching of order 0.1 DC (rv 0.5%), 
which is similar to the accuracy of the sensors. 

For these calculations, the hole size was treated as an 
unknown. As a check, it should be noted that the bore­
hole at Ice Stream B was reamed to a nominal minimum 
size of 5.1 cm radius , while the model calculated a hole 
size of 5.7 cm, in good agreement with the nominal size. 
The kinks in the recorded temperature data are typically 
less abrupt than in the simulated temperatures; this is 
believed to be a result of unevenness in the freezing front 
and the finite size of the sensors. Any non-circularity in 
the borehole or ice-slush formation as the freezing front 
closes the hole would cause the recorded temperature to 
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Fig. 2. The data from Figure 1 plotted as a 
function of the time transform from Equation 
(2). The upper scale is in non-dimensional 
time (tjs). 

0 

vary more smoothly than that derived from the mat­
hematically precise freezing front in the model. In ad­
dition, the sensors were inside 2cm diameter pressure 
housings which average the temperatures over a similar 
length scale. 

DISCUSSION AND C OMPARISON WITH 
ANALYTICAL MODELS 

The dashed lines in Figures 1 and 2 show temperatures 
predicted by Equation (2), using Q found by the num­
erical modeling and s from the total refreezing time. 
Note that the dashed lines are not fitted to the data, 
as would be the case if data were being fitted to Equat­
ion (2), and Q (and s) was considered unknown. The 
measured and the numerically mode led temperatures are 
always colder than given by Equation (2) but the decay is 
slower. Thus, in the refreezing borehole, heat in the ice is 
stored out to a larger radius but at a lower temperature 
difference than in the model underlying Equation (2). 
This observational evidence shows that a thermal model 
of steady heating of a line source does not accurately des­
cribe the physical situation in the short time. Although 
the smooth curves of both the data and the numerical 
model are asymptotically approaching the dashed line of 
the inverse time model in Figure 2, it is probable that a 
line chosen to fit only the data would have a lower slope 
and thus a slightly warmer final temperature. 

Choosing li nes to fit the data is the same as choos­
ing values for Q and s in Equation (2). Since the 
temperature-decay data are smooth and monotonic (af­
ter freeze-up), a very good fit to any short span of data 
can be obtained with the two-parameter inverse-time 
model, if Q and s are considered "free". The "good­
ness of fit" thus obtained is nonethe less spurious unless 
the temperatures are close to the asymptotic curve . Ex­
trapolation wil l lead to an incorrect final temperature. 
It may appear possible to avoid this problem and ex­
tend the range of Equations (1) and (2) by estimating 

. Q independently of the temperature records, such as by 
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Fig. 3. A short and noisy data record from 
870m depth (160m above the bed). The dotted 
line shows data from shortly before to shortly 
after freeze-up. The data before 6.6 d show a 
0.6° C pressure/temperature depression. Data 
from the deep sensors were more contaminated 
with electrical noise than the sensor shown in 
Figure 1, probably as a result of water leak­
age into the signal lines. The solid C1Lrves 
show numerical solutions for ice temperatures 
of -8.~ and - 9 .OOC (upper and lower C1LTVes, 
respectively). The match between data and 
modeling, although not exact, implies an ice 
temperature of - 9.00 C. 

using the drilling records. However, the estimation of Q 
is of simi lar complexity to the calculation of the temper­
ature decay, and it is probably more accurate to perform 
the temperature calculation directly. 

The potential for error from graphically extrapolating 
the data from Figure 2 using Equation (2) is small be­
cause the data record is long enough to approach closely 
the asymptotic line. However, when the data length is 
very short, the potential error can become large and the 
merit of the numerical technique is particularly appar­
ent. Figure 3 illustrates a difficult case where the data 
are from a sensor in relatively warm ice at a depth of 
870 m (160 m above the bed). The hole took 5 d after 
the end of dri lli ng to freeze-up, and a down-hole elect­
rical fai lure occurred only 1 d after freeze-up. Despite the 
noise and the shor t record (data length of 1.13), the mod­
eling shows that a reasonab le extrapolation of the data 
is possible and provides a final temperature of -9.0°C 
wi th an error of about ±0.2°C (rv 20%). 

The data (plotted as in Figure 2) are shown in Figure 
4, with a dashed li ne showing the asymptotic behavior 
as predicted by the inverse-time model (but with Q and 
s from the numerical mode ling). The abscissa at the 
figure top is in non-dimensional time, or data length. 
Although cases vary in detail, Figure 4 is typical of the 
temperature response of a sensor in a refrozen hole. It is 
difficult to assess directly the error associated with using 
Equation (2), but Figure 4 shows that the data record 
ends whi le the temperature is still almost 1°C from the 
asymptotic line. In addition, a straight-line projection 
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Fig. 4. Data from Figure 3 plotted as a func­
tion of the time tmnsfoTm from Equation (2). 
The upper scale is non-dimensional time (tls). 
In the short term, the data deviate signific­
antly from the simple analytic models. 

of the data leads to a predicted temperature up to 1°C 
(",20%) too warm. Indeed, from the numerical modeling, 
it appears that the difference in temperature between the 
asymptote and the numerical curve in Figure 4, at any 
particular data length, gives an estimate of the poten­
tial error in using an inverse time model. In this case 
of a very short data record, the necessity of using the 
numerical technique is obvious. 

CONCLUSIONS 

The length of record required to use accurately an anal­
ytical thermal-decay model (Equations (1) or (2)) for 
the extrapolation of temperature data from holes drilled 
wi th hot water, or from any thermally disturbed holes, 
may be longer than logistics or the durability of the sen­
sors allow. The short time behavior of the temperature 
in the hole is not described by the simple inverse time 
models, but the short-term temperature decay can be fit­
ted with simple models by using appropriate coefficients. 
Thus, there is potential for errors in extrapolating data 
to an undisturbed temperature by fitting to an incorrect 
model. 

Any temperature-sensor record that includes both 
sensor freeze-in and hole freeze-up in a water-filled hole in 
cold ice contains enough information to yield estimates of 
the original ice temperature, based on comparison with 
a numerical simulation. In practice, it was found that 
data lengths only marginally greater than 1, say greater 
than 1.1, gives estimates with errors of only a few tenths 
of a degree or better. The technique requires little fit­
ting, and can be routinely done in the field to check on 
progress of a temperature-measurement program. 
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APPENDIX 

A NUMERICAL MODEL OF THE 
THERMAL DECAY AROUND AN 
INITIALLY WATER-FILLED BOREHOLE 

The thermal diffusivity of ice is well constrained outside 
of a small region of temperatures near freezing (Harrison, 
1972), and mathematical models can be accurately ap­
plied. However, the melting and refreezing of a borehole 
is complicated by the existence of the moving boundary 
between the water and the ice walls of the hole. Al­
though the problem is well posed, the "Stefan" prob­
lem of the moving boundary in a cylindrical coordinate 
system precludes any useful analytic description of the 
melting/freezing of a borchole during and after ther­
mal drilling. Fortunately, the character of the problem 
does allow a particularly simple application of the finite­
element method. 

Following a development by Jarvis and Clarkc (1974), 
and using the cylindrical symmetry of the problem, the 
one-dimensional governing equation for the heat flow in 
the ice is 

D2T 1 DT aT 
--+--=a­
[Jr-2 r ar at 

(AI) 

where T and t are the space and time coordinates, T is 
temperature and a is the thermal diffusivity of ice. A 
description of the motion of the ice wall is given by a 
heat balance 

Pi dTo (qw + qi) 

Pw ill = PwL 
(A2) 

where P is the density of ice or water, q is the heat flux 
to the ice wall from the ice or water and L is the latent 
heat of the phase transition. The heat-flow Equation 
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(AI) can be transformed, using a log transform on the 
radial coordinate, into 

DT a2T 
a- = exp(-2w)-at Dw2 

(A3) 

where w is the log of the radial distance. The trans­
formed equation is particularly advantageous as a basis 
for dividing space in a numerical method. Equal-spaced 
nodes in logarithmic space create a high density of nodes 
near the freezing wall, where the largest temperature 
gradients occur. Equations (A2) and (A3), plus bound­
ary and initial conditions, were coded into a finite­
element formulation, which takes advantage of equal­
sized elements to avoid much of the overhead of matrix 
creation and solution. After each time step, the elements 
are remapped on to the solution space, so that the in­
ner element always bounds the freezing front, while the 
outer element remains at the outer boundary. 

The source of heat is the drilling hose during the melt 
phase (for more details, see Humphrey and Echelmeyer, 
IDDO) and the latent heat of fusion during the freezing 
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phase. Modeling is fast and stable until the hole freezes 
closed. At this point, the boundary condition (A2) is 
lost, which simplifies the problem except that Equation 
(A3) has a singularity at the origin. After hole clos­
ure, the temperature decay may be solved analytically 
in terms of a Fourier- Dessel expansion of the temper­
ature profile in the ice at freeze-up. However, it was 
found simplest to have the same code calculate the de­
cay of the temperature after freeze-up. A special element 
of small radius (5 mm) was used to cover the neighbor­
hood of the hole center to eliminate the mathematical 
singularity at r = O. 

Solutions were found using 25 elements occupying a 
radial space of 10 m surrounding the hole. The outer­
most node had a fixed temperature. The model pauses 
at freeze-up to integrate the heat in the ice, to obtain 
Q, and this sum is used to compare the numerical res­
ults from Equations (1) and (2). The model is small 
and runs quickly on personal computers. Progress of 
a temperature measurement can therefore be modeled 
while in the field, and estimates of the temperature field 
can be found shortly after freeze-up. 

MS received 14 March 1990 and in revised form 27 June 1990 
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